

Hughes Information Technology Systems
Upper Marlboro, Maryland

305-CD-024-002

EOSDIS Core System Project

Release B SDPS Data Server
Subsystem Design Specification

for the ECS Project

March 1996

305-CD-024-002

Hughes Information Technology Systems

Upper Marlboro, Maryland

Release B SDPS Data Server
Subsystem Design Specification

for the ECS Project

March 1996

Prepared Under Contract NAS5-60000
Item #046

SUBMITTED BY

Rick Kochhar /s/ 3/26/96

Rick Kochhar, Release B CCB Chairman Date
EOSDIS Core System Project

305-CD-024-002

This page intentionally left blank.

iii 305-CD-024-002

Preface

This document is one of eighteen comprising the detailed design specifications of the SDPS and
CSMS subsystem for Release B of the ECS project. A complete list of the design specification
documents is given below. Of particular interest are documents number 305-CD-020, which
provides an overview of the subsystems and 305-CD-039, the Data Dictionary, for those reviewing
the object models in detail.

The SDPS and CSMS subsystem design specification documents for Release B of the ECS Project
include:

305-CD-020 Release B Overview of the SDPS and CSMS Segment System Design
Specification

305-CD-021 Release B SDPS Client Subsystem Design Specification

305-CD-022 Release B SDPS Interoperability Subsystem Design Specification

305-CD-023 Release B SDPS Data Management Subsystem Design Specification

305-CD-024 Release B SDPS Data Server Subsystem Design Specification

305-CD-025 Release B SDPS Ingest Subsystem Design Specification

305-CD-026 Release B SDPS Planning Subsystem Design Specification

305-CD-027 Release B SDPS Data Processing Subsystem Design Specification

305-CD-028 Release B CSMS Segment Communications Subsystem Design
Specification

305-CD-029 Release B CSMS Segment Systems Management Subsystem Design
Specification

305-CD-030 Release B GSFC Distributed Active Archive Center Design
Specification

305-CD-031 Release B LaRC Distributed Active Archive Center Design
Specification

305-CD-033 Release B EDC Distributed Active Archive Center Design Specification

305-CD-034 Release B ASF Data Center Distributed Active Archive Center Design
Specification

305-CD-035 Release B NSIDC Distributed Active Archive Center Design
Specification

305-CD-036 Release B JPL Distributed Active Archive Center Design Specification

305-CD-037 Release B ORNL Distributed Active Archive Center Design
Specification

305-CD-038 Release B System Monitoring and Coordination Center Design
Specification

305-CD-039 Release B Data Dictionary for Subsystem Design Specification

iv 305-CD-024-002

Object models presented in this document have been exported directly from CASE or DBMS tools
and in some cases contain too much detail to be easily readable within hard copy page constraints.
The reader is encouraged to view these drawings on line using the Portable Document Format
(PDF) electronic copy available via the ECS Data Handling System (EDHS) at: URL http://
edhs1.gsfc.nasa.gov.

This document is a formal contract deliverable with an approval code of 2; as such it requires
Government review and approval prior to acceptance and use. This document is under ECS
contractor configuration control. Once this document is approved, Contractor approved changes
are handled in accordance with Class I and Class II change control requirements described in the
EOS Configuration Management Plan, and changes to this document shall be made by document
change notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Systems
1616 McCormick Drive
Upper Marlboro, MD 20774-5372

v 305-CD-024-002

Abstract

The Data Server Subsystem has the responsibility for storing earth science and related data in a
persistent fashion, providing search and retrieval access to this data, and supporting the
administration of the data and the supporting hardware devices and software products. As part of
its retrieval function, the subsystem also provides for the distribution of data electronically or on
physical media.

Keywords: data, server, SDSRV, STMGT, DDSRV, DDIST, DBMS, robotics, distribution,
subscription, hard, media, tapes, working, storage, archive, document, HTML, documents, types.

vi 305-CD-024-002

This page intentionally left blank.

vii 305-CD-024-002

Change Information Page

List of Effective Pages

Page Number Issue
Title Submitted as Final

iii through xxiv Submitted as Final

1-1 and 1-2 Submitted as Final

2-1 through 2-4 Submitted as Final

3-1 through 3-22 Submitted as Final

4-1 through 4-342 Submitted as Final

5-1 through 5-82 Submitted as Final

6-1 through 6-114 Submitted as Final

7-1 through 7-96 Submitted as Final

8-1 through 8-6 Submitted as Final

9-1 through 9-4 Submitted as Final

10-1 through 10-6 Submitted as Final

11-1 through 11-4 Submitted as Final

12-1 through 12-4 Submitted as Final

A-1 through A-16 Submitted as Final

AB-1 and AB-2 Submitted as Final

GL-1 through GL-12 Submitted as Final

Document History

Document Number Status/Issue Publication Date CCR Number
305-CD-024-001 Preliminary October 1995 95-0761

305-CD-024-002 Submitted as Final April 1996 96-0228

viii 305-CD-024-002

This page intentionally left blank.

ix 305-CD-024-002

Contents

1. Introduction

1.1 Identification ... 1-1
1.2 Scope ... 1-1
1.3 Document Organization .. 1-1
1.4 Status and Schedule .. 1-2

2. Related Documentation

2.1 Parent Documents ... 2-1
2.2 Applicable Documents .. 2-2
2.3 Information Documents Not Referenced .. 2-3

3. Subsystem Overview

3.1 Introduction and Context .. 3-1
3.2 Subsystem Overview .. 3-7

3.2.1 Subsystem Structure .. 3-7
3.2.2. Subsystem Design Rationale .. 3-11
3.2.3. Data Server Subsystem Common Design .. 3-16
3.2.4. Data Server Subsystem Use of Key Design Mechanisms 3-17

4. SDSRV - Science Data Server CSCI

4.1 CSCI Overview ... 4-1
4.2 CSCI Context .. 4-1
4.3 CSCI Object Model ... 4-5

4.3.1 DsAcACRIMB Class .. 4-26
4.3.2 DsAdBaseInterface Class ... 4-26
4.3.3 DsAdConfigurationInterface Class... 4-27
4.3.4 DsAdDatatypeInterface Class... 4-28
4.3.5 DsAdDescriptor Class... 4-30
4.3.6 DsAdLog Class .. 4-31
4.3.7 DsAdRequestInterface Class .. 4-32
4.3.8 DsAdResourceInterface Class ... 4-34
4.3.9 DsAdSubscriptionInterface Class .. 4-35
4.3.10 DsAdSystemInterface Class.. 4-37
4.3.11 DsAsAsterB Class .. 4-38

x 305-CD-024-002

4.3.12 DsCeCERES Class ... 4-38
4.3.13 DsClAction Class.. 4-39
4.3.14 DsClCollector Class ... 4-40
4.3.15 DsClCollectorVector Class... 4-42
4.3.16 DsClCommand Class .. 4-43
4.3.17 DsClDescriptor Class.. 4-44
4.3.18 DsClESDTReference Class ... 4-46
4.3.19 DsClESDTReferenceCollector Class ... 4-51
4.3.20 DsClESDTReferenceVector Class.. 4-58
4.3.21 DsClNotificationReceiver Class .. 4-60
4.3.22 DsClQuery Class .. 4-61
4.3.23 DsClRequest Class ... 4-65
4.3.24 DsClRequestVector Class... 4-68
4.3.25 DsClSubmittedRequest Class .. 4-69
4.3.26 DsClSubscription Class .. 4-73
4.3.27 DsClSubscriptionCollector Class.. 4-76
4.3.28 DsClTypeInfo Class ... 4-78
4.3.29 DsCnConfiguration Class .. 4-80
4.3.30 DsCnDSSConfiguration Class .. 4-82
4.3.31 DsCnDSSStartup Class .. 4-83
4.3.32 DsCoColorB Class .. 4-84
4.3.33 DsCoCombination Class .. 4-84
4.3.34 DsCs24BitImage Class ... 4-85
4.3.35 DsCs8BitImage Class .. 4-86
4.3.36 DsCsCSDT Class .. 4-86
4.3.37 DsCsGrid Class .. 4-89
4.3.38 DsCsImage Class .. 4-92
4.3.39 DsCsLookupTable Class .. 4-94
4.3.40 DsCsPoint Class.. 4-94
4.3.41 DsCsRaw Class .. 4-96
4.3.42 DsCsSwath Class .. 4-97
4.3.43 DsCsTableB Class ... 4-100
4.3.44 DsDbAccess Class ...4-101
4.3.45 DsDbAttributeToTableVector Class.. 4-107
4.3.46 DsDbEngine Class ...4-109
4.3.47 DsDbGranuleToDbVector Class ... 4-109
4.3.48 DsDbInterface Class .. 4-111
4.3.49 DsDeCoreValid Class ..4-114
4.3.50 DsDeCoreValidVector Class ... 4-116

xi 305-CD-024-002

4.3.51 DsDeDD Class ...4-117
4.3.52 DsDeDDVector Class ..4-118
4.3.53 DsDeESDTDescriptor Class ..4-120
4.3.54 DsDeESDTDescriptorSet Class... 4-125
4.3.55 DsDeEvent Class ...4-126
4.3.56 DsDeEventVector Class ...4-129
4.3.57 DsDeMathOp Class ...4-130
4.3.58 DsDeMetadataDef Class ..4-131
4.3.59 DsDeMetadataDefVector Class ...4-133
4.3.60 DsDeRange Class ...4-134
4.3.61 DsDeScienceParameter Class ..4-135
4.3.62 DsDeScienceParameterVector Class ...4-137
4.3.63 DsDeSeries Class ... 4-138
4.3.64 DsDeService Class ...4-139
4.3.65 DsDeServiceVector Class ..4-141
4.3.66 DsDeStaticMetadata Class ...4-142
4.3.67 DsDeStaticMetadataVector Class ..4-144
4.3.68 DsDeValid Class ..4-145
4.3.69 DsDeValidVector Class ...4-146
4.3.70 DsDoReferencePaper Class ... 4-148
4.3.71 DsErERSB Class.. 4-148
4.3.72 DsEtETMB Class... 4-149
4.3.73 DsFactory Class ...4-149
4.3.74 DsGeBrowseProduct Class .. 4-150
4.3.75 DsGeDynamicLibrary Class .. 4-151
4.3.76 DsGeECSDataProduct Class ... 4-152
4.3.77 DsGeESDT Class... 4-154
4.3.78 DsGeESDTConfiguration Class .. 4-158
4.3.79 DsGeESDTDynamicLibrary Class ..4-160
4.3.80 DsGeESDTEventTable Class ..4-162
4.3.81 DsGeESDTServiceProvider Class ...4-162
4.3.82 DsGeESDTWrapper Class ...4-164
4.3.83 DsGeScienceData Class ...4-165
4.3.84 DsGeSummaryProduct Class ...4-168
4.3.85 DsGeTypeID Class ..4-169
4.3.86 DsGuAdmin Class ... 4-172
4.3.87 DsGuConfigurationMgmt Class ..4-174
4.3.88 DsGuDatatypeMgmt Class .. 4-175
4.3.89 DsGuRequestMgmt Class ..4-176

xii 305-CD-024-002

4.3.90 DsGuResourceMgmt Class ..4-178
4.3.91 DsGuSubscriptionMgmt Class ...4-180
4.3.92 DsGuSystemMgmt Class ... 4-181
4.3.93 DsGvRadar Class ...4-182
4.3.94 DsJeJERSB Class ...4-183
4.3.95 DsLiLIS Class ..4-183
4.3.96 DsMdCatalog Class ...4-184
4.3.97 DsMdMetadata Class ...4-1
4.3.136DsSrConnection Class ...4-229
4.3.137DsSrCostB Class.. 4-232
4.3.138DsSrCostPolicyB Class ..4-234
4.3.139DsSrCostTableB Class... 4-234
4.3.140DsSrDiskUtilizationB Class... 4-235
4.3.141DsSrFixedPersonnelCostB Class ...4-236
4.3.142DsSrIOUtililizationB Class.. 4-236
4.3.143DsSrMediaUtilizationB Class 4-236
4.3.144DsSrQueuedConnection Class ... 4-237
4.3.145DsSrRequest Class ... 4-238
4.3.146DsSrRequestBase Class ...4-240
4.3.147DsSrRequestInfo Class .. 4-242
4.3.148DsSrRequestVector Class .. 4-243
4.3.149DsSrResourceB Class .. 4-244
4.3.150DsSrServer Class ...4-246
4.3.151DsSrSession Class...4-248
4.3.152DsSrSubmittedRequestVector Class.. 4-250
4.3.153DsSrWorkingCollection Class ...4-251
4.3.154DsSsSSAB Class.. 4-254
4.3.155DsSsSSMI Class .. 4-254
4.3.156DsSwSeaWindsB Class ... 4-255
4.3.157DsTmTMI Class ...4-255
4.3.158DsViVIRS Class ..4-256
4.3.159EosHdf24BitImage Class... 4-256
4.3.160EosHdf8BitImage Class ...4-257
4.3.161EosHdfGrid Class ..4-257
4.3.162EosHdfLUT Class ..4-258
4.3.163EosHdfPoint Class ... 4-258
4.3.164EosHdfSwath Class ..4-259
4.3.165GlBinaryP Class ...4-259
4.3.166GlDateP Class ..4-261

xiii 305-CD-024-002

4.3.167GlDoubleP Class.. 4-262
4.3.168GlLongP Class ...4-263
4.3.169GlParameter Class ..4-265
4.3.170GlParameterList Class ... 4-267
4.3.171GlStringP Class.. 4-269
4.3.172GlTimeP Class ... 4-270
4.3.173MSSLog Class ...4-272
4.3.174MsBaCostIF Class ...4-272
4.3.175PlOnDemandPRNB Class ..4-273
4.3.176RWTPtrOrderedVector Class .. 4-273

4.4 CSCI Dynamic Model ..4-274
4.4.1. SDSRV_Acquiring_an_ESDT.. 4-275
4.4.2. SDSRV_Asynchronous_Status_Updates.. 4-277
4.4.3. SDSRV_Auto-cancel_A_Subscription .. 4-279
4.4.4. SDSRV_Canceling_a_Subscription .. 4-281
4.4.5. SDSRV_Catalog_Deleting_a_Metadata_Entry.. 4-283
4.4.6. SDSRV_Catalog_Insert_Collection_Metadata .. 4-283
4.4.7. SDSRV_Catalog_Insertion_of_Metadata... 4-284
4.4.8. SDSRV_Catalog_Search ... 4-285
4.4.9. SDSRV_Catalog_Updating_Metadata ... 4-286
4.4.10. SDSRV_Changing_A_Request_Priority ... 4-287
4.4.11. SDSRV_Client_Browsing ... 4-288
4.4.12. SDSRV_Client_Connecting_to_a_Data_Server... 4-289
4.4.13. SDSRV_Client_Request_Submission ... 4-290
4.4.14. SDSRV_Client_Resuming_a_Session ... 4-291
4.4.15. SDSRV_Client_Searching ... 4-292
4.4.16. SDSRV_Deleting_A_Queued_Request ... 4-293
4.4.17. SDSRV_Ending_Session_No_Active_Request .. 4-294
4.4.18. SDSRV_Fulfilling_a_One-time_Subscription .. 4-295
4.4.19. SDSRV_Fulfilling_Open_Ended_Subscription .. 4-296
4.4.20. SDSRV_Inserting_Composite_ESDT ... 4-296
4.4.21. SDSRV_Inserting_New_ESDT.. 4-299
4.4.22. SDSRV_Inserting_Single_ESDT ... 4-301
4.4.23. SDSRV_Instantiating_an_ESDT ... 4-303
4.4.24. SDSRV_Op_View_Queued_Requests .. 4-305
4.4.25. SDSRV_Registering_a_Subscribable_Event .. 4-305
4.4.26. SDSRV_Returning_List_of_Subscriptions ... 4-306
4.4.27. SDSRV_Server_Handling_A_Browse_Request ... 4-307
4.4.28. SDSRV_Server_Handling_A_Search_Request.. 4-308

xiv 305-CD-024-002

4.4.29. SDSRV_Server_Request_Handling .. 4-309
4.4.30. SDSRV_Server_Resuming_a_Session .. 4-311
4.4.31. SDSRV_Startup_of_a_Science_Data_Server ..4-311
4.4.32. SDSRV_Submitting_a_Subscription ...4-312
4.4.33. SDSRV_Subsetting_an_ESDT ..4-313
4.4.34. SDSRV_Suspending_a_Session ..4-316
4.4.35. SDSRV_Unregistering_a_Subscribable_Event ...4-319
4.4.36. SDSRV_Update_Server_Configuration .. 4-320
4.4.37. SDSRV_Updating_a_Subscription ..4-320
4.4.38. SDSRV_Validating_Metadata ...4-321

4.5 CSCI Structure ... 4-323
4.5.1 CSC Definitions .. 4-324
4.5.2 CSCI Dynamic Architecture .. 4-336

4.6 SDSRV CSCI Management and Operation ...4-338
4.6.1 System Management Strategy.. 4-338
4.6.2 Operator Interfaces... 4-341
4.6.3 Standard SDSRV Reports ..4-342

5. DDSRV - Document Data Server CSCI

5.1 CSCI Overview ... 5-1
5.2 CSCI Context ... 5-1
5.3 CSCI Object Model ... 5-3

5.3.1 DsCdASCII Class ... 5-8
5.3.2 DsCdBinary Class.. 5-9
5.3.3 DsCdCSDT Class ... 5-10
5.3.4 DsCdHTML Class .. 5-13
5.3.5 DsCdKeyword Class... 5-14
5.3.6 DsCdKeywordLocator Class ... 5-16
5.3.7 DsCdPDF Class ... 5-17
5.3.8 DsCdPostScript Class ... 5-19
5.3.9 DsCdRTF Class .. 5-20
5.3.10 DsCdTypeID Class ... 5-21
5.3.11 DsCsCSDT Class ... 5-22
5.3.12 DsCtAcquireCommand Class ... 5-23
5.3.13 DsCtClient Class... 5-24
5.3.14 DsCtCommand Class ... 5-27
5.3.15 DsCtInsertCommand Class .. 5-28
5.3.16 DsCtRequest Class.. 5-29

xv 305-CD-024-002

5.3.17 DsCtSearchcommand Class .. 5-31
5.3.18 DsDoClient Class ... 5-34
5.3.19 DsDoCommand Class... 5-35
5.3.20 DsDoRequest Class .. 5-35
5.3.21 DsDoServer Class .. 5-37
5.3.22 DsEsAlgorithmDescription Class ... 5-38
5.3.23 DsEsAlgorithmDescriptionTypeID Class .. 5-39
5.3.24 DsEsESDT Class .. 5-40
5.3.25 DsEsGuide Class .. 5-43
5.3.26 DsEsGuideTypeID Class ... 5-44
5.3.27 DsEsProductionPlan Class ... 5-45
5.3.28 DsEsProductionPlanTypeID Class .. 5-47
5.3.29 DsEsReferencePaper Class ... 5-48
5.3.30 DsEsReferencePaperTypeID Class... 5-49
5.3.31 DsEsTypeID Class ... 5-50
5.3.32 DsGeCSDT Class ... 5-52
5.3.33 DsGeESDT Class ... 5-52
5.3.34 DsGeTypeID Class ... 5-53
5.3.35 DsSdCSDT Class .. 5-53
5.3.36 DsSdClient Class .. 5-54
5.3.37 DsSdCommand Class ... 5-55
5.3.38 DsSdESDT Class .. 5-55
5.3.39 DsSdRequest Class ... 5-56
5.3.40 DsSdServer Class ... 5-57
5.3.41 DsSdSession Class .. 5-57
5.3.42 DsSeIndexer Class .. 5-58
5.3.43 DsSeWWWServer Class .. 5-59
5.3.44 DsSvServer Class ... 5-59
5.3.45 InterleafB Class... 5-62
5.3.46 WordB Class .. 5-63
5.3.47 WordPerfectB Class ... 5-64

5.4 CSCI Dynamic Model .. 5-65
5.4.1 Inserting a Document ... 5-65
5.4.2 Searching for a Document ... 5-67
5.4.5 Document Metadata Insertion Subscription ... 5-73

5.5 CSCI Structure .. 5-74
5.5.1 DDSRV CSCs ... 5-74
5.5.2 DDSRV CI Processes ... 5-77

5.6 CSCI Management and Operation ... 5-78

xvi 305-CD-024-002

5.6.1 System Management Strategy... 5-78
5.6.2 Operator Interfaces .. 5-80
5.6.3 Standard DDSRV Reports .. 5-81

6. STMGT - Storage Management CSCI

6.1 CSCI Overview ... 6-1
6.2 CSCI Context .. 6-1
6.3 CSCI Object Model ... 6-1

6.3.1 DsCnConfiguration Class .. 6-14
6.3.2 DsStArchive Class ... 6-14
6.3.3 DsStBackupListB Class ... 6-18
6.3.4 DsStCDROM Class ... 6-19
6.3.5 DsStCacheConfig Class ... 6-22
6.3.6 DsStFaxB Class ... 6-22
6.3.7 DsStFileListB Class ... 6-23
6.3.8 DsStMonitor Class ... 6-24
6.3.9 DsStNetworkResource Class ... 6-28
6.3.10 DsStPhysicalResource Class .. 6-29
6.3.11 DsStPrinter Class ... 6-30
6.3.12 DsStPullConfig Class .. 6-31
6.3.13 DsStPullList Class ... 6-31
6.3.14 DsStPullMonitor Class ... 6-33
6.3.15 DsStRequestManager Class ... 6-35
6.3.16 DsStReservation Class ... 6-38
6.3.17 DsStResource Class ... 6-40
6.3.18 DsStResourceConfig Class .. 6-44
6.3.19 DsStResourceManager Class ... 6-44
6.3.20 DsStResourceManager. Class .. 6-48
6.3.21 DsStResourceQueue Class ... 6-48
6.3.22 DsStResourceSchedule Class ... 6-53
6.3.23 DsStRestoreListB Class ... 6-56
6.3.24 DsStSchedulingConfig Class ... 6-57
6.3.25 DsStStagingDataList Class .. 6-58
6.3.26 DsStStagingDisk Class .. 6-60
6.3.27 DsStStagingMonitor Class ... 6-63
6.3.28 DsStStorageResource Class ... 6-64
6.3.29 DsStStream Class ... 6-64
6.3.30 DsStTape Class .. 6-65
6.3.31 DsUzArchiveCostB Class .. 6-68

xvii 305-CD-024-002

6.3.32 DsUzCPUCostB Class ... 6-69
6.3.33 DsUzCostB Class ... 6-69
6.3.34 DsUzDiskCostB Class ... 6-70
6.3.35 DsUzFixedCostB Class .. 6-70
6.3.36 DsUzIOCostB Class ... 6-71
6.3.37 DsUzMediaCostB Class ... 6-72
6.3.38 DsUzResourceCostB Class .. 6-72
6.3.39 DsUzUtilizationTableB Class .. 6-73

6.4 CSCI Dynamic Model .. 6-73
6.4.1 Aborting a Request for Service .. 6-74
6.4.2 Activating a Resource Reservation .. 6-75
6.4.3 Allocation of a Physical Resource, No Resource Available 6-76
6.4.4 Allocation of a Physical Resource, Resource Available 6-77
6.4.5 Inserting Data into the Archive .. 6-78
6.4.6 Retrieving Data from the Archive, Checksum Error 6-79
6.4.7 Retrieving Data from the Archive, File not in Cache 6-79
6.4.8 Canceling a Resource Reservation ... 6-85
6.4.9 Creating Local Backup .. 6-86
6.4.10 Creating Offsite Backup .. 6-87
6.4.11 Deallocation of a Physical Resource, Queued Requests 6-88
6.4.12 Deallocation of a Physical Resource, Imminent Reservation for Resource ...6-89
6.4.13 Deletion of Pull Disk Data with Operations Confirmation6-90
6.4.14 Deletion of Staging Disk Data ...6-91
6.4.15 Failure Restoring Locally Backed Up File ...6-92
6.4.16 Rejecting Service Request Due to Insufficient ECS Funds6-92
6.4.17 Restoring a Locally Backed Up File ...6-92
6.4.18 Setting the Operational State of a Tape Device ..6-96
6.4.19 Submitting a Resource Reservation ..6-97
6.4.20 Backing Up Archive Data Initiation ...6-98
6.4.21 Deleting Files from the Archive ...6-99
6.4.22 Estimating Cost of Storage Allocation ...6-100
6.4.23 Estimating Time Delay to Retrieve Files from the Archive6-101
6.4.24 Monitoring CheckSum Errors ..6-103
6.4.25 Show Staging Disk Cache Configuration Parameters6-104

6.5 CSCI Structure ...6-105
6.5.1 CSC Definitions ...6-105
6.5.2 CSCI Dynamic Architecture ..6-108
6.6 CSCI Management and Operation ...6-109
6.6.1 System Management Strategy ..6-109

xviii 305-CD-024-002

6.6.2 Operator Interfaces ...6-111
6.6.3 Standard STMGT Reports ...6-112

7. DDIST - Data Distribution CSCI

7.1 CSCI Overview ... 7-1
7.2 CSCI Context .. 7-1
7.3 CSCI Object Model ... 7-1

7.3.1 DsDdCDLabelB Class ... 7-12
7.3.2 DsDdCDMedia Class ... 7-12
7.3.3 DsDdCDProcessor Class ... 7-14
7.3.4 DsDdDataItem Class .. 7-15
7.3.5 DsDdDistFile Class .. 7-16
7.3.6 DsDdDistList Class .. 7-17
7.3.7 DsDdDistRequest Class ... 7-19
7.3.8 DsDdDistRequestC Class .. 7-21
7.3.9 DsDdDistRequestS Class ... 7-22
7.3.10 DsDdDistSubRequestB Class .. 7-26
7.3.11 DsDdElectronicMedia Class .. 7-27
7.3.12 DsDdFaxMediaB Class .. 7-29
7.3.13 DsDdGranuleB Class ... 7-30
7.3.14 DsDdLabeledMedia Class ... 7-31
7.3.15 DsDdMedia Class .. 7-34
7.3.16 DsDdMediaLabelB Class ... 7-37
7.3.17 DsDdOpsInterventionListB Class .. 7-39
7.3.18 DsDdOpsRequestC Class ... 7-39
7.3.19 DsDdPackingSlip Class ... 7-40
7.3.20 DsDdPrivRequest Class ... 7-42
7.3.21 DsDdPullMedia Class .. 7-43
7.3.22 DsDdPullProcessor Class ... 7-45
7.3.23 DsDdPushMedia Class ... 7-45
7.3.24 DsDdPushProcessor Class ... 7-48
7.3.25 DsDdRequestLIst Class ... 7-49
7.3.26 DsDdRequestList Class ... 7-49
7.3.27 DsDdRequestManager Class ... 7-50
7.3.28 DsDdRequestManagerC Class ... 7-52
7.3.29 DsDdRequestManagerS Class ... 7-53
7.3.30 DsDdRequestProcessor Class .. 7-54
7.3.31 DsDdShippingLabelB Class .. 7-56
7.3.32 DsDdTapeLabelB Class ... 7-58

xix 305-CD-024-002

7.3.33 DsDdTapeMedia Class .. 7-58
7.3.34 DsDdTapeProcessor Class ... 7-59
7.3.35 DsSrCost Class ... 7-60
7.3.36 DsStResourceConfig Class .. 7-61
7.3.37 DsStSchedulingConfig Class ... 7-62
7.3.38 DsStStagingDisk Class .. 7-62
7.3.39 DsUzArchiveCostB Class .. 7-63
7.3.40 DsUzCPUCost Class .. 7-64
7.3.41 DsUzCostB Class ... 7-64
7.3.42 DsUzDi Class ... 7-66
7.3.43 DsUzFixedCost Class .. 7-67
7.3.44 DsUzIOCost Class ... 7-68
7.3.45 DsUzMediaCost Class ... 7-69
7.3.46 DsUzResourceCost Class ... 7-70
7.3.47 DsUzUtilizationTable Class ... 7-72
7.3.48 EcNotification Class .. 7-72
7.3.49 MsUtLogger Class ... 7-73

7.4 CSCI Dynamic Model .. 7-74
7.4.1 Distributed Creation of a New Distribution Request 7-74
7.4.2 Electronic Pull of Data ... 7-76
7.4.3 Electronic Push of Data ... 7-76
7.4.4 Physical Distribution to Tape ... 7-79
7.4.5 User Abort of a Request Waiting for a Device .. 7-79
7.4.6 Tape Fault .. 7-82
7.4.7 Estimation .. 7-82
7.4.8 3480 Distribution and Media Labeling .. 7-82
7.4.9 Detection of a Large Volume Data Distribution Request 7-85
7.4.10 Operator Intervention into a Large Volume Data Distribution Request 7-85

7.5 CSCI Structure ... 7-89
7.5.1 Distribution Products CSC ... 7-89
7.5.2 Distribution Client Interface CSC .. 7-90
7.5.3 Distribution Request Management CSC .. 7-90
7.5.4 Utilization CSC .. 7-91

7.6 CSCI Management and Operation ... 7-92
7.6.1 System Management Strategy .. 7-92
7.6.2 Operator Interfaces ... 7-94
7.6.3 Standard DDIST Reports ... 7-94

xx 305-CD-024-002

8. ACMHW - Access Control and Management HWCI

8.1 HW Design Drivers ... 8-1
8.1.1 Key Trade-off Studies and Prototypes .. 8-1
8.1.2 Sizing and Performance Analysis ... 8-1
8.1.3 Scalability, Evolvability, and Migration in Release B 8-2

8.2 HWCI Structure .. 8-2
8.2.1 HWCI Connectivity .. 8-2
8.2.2 HWCI Components ... 8-3
8.2.3 Failover and Recovery Strategy .. 8-5

9. WKSHW - Working Storage HWCI

9.1 HW Design Drivers ... 9-1
9.1.1 Key Trade-off Studies and Prototypes .. 9-2
9.1.2 Sizing and Performance Analysis ... 9-2
9.1.3 Scalability, Evolvability, and Migration in Release B 9-2

9.2 HWCI Structure .. 9-2
9.2.1 HWCI Connectivity .. 9-3
9.2.2 HWCI Component Description ... 9-4
9.2.3 Failover and Recovery Strategy .. 9-4

10. DRPHW - Data Repository HWCI

10.1 HWCI Design Rationale .. 10-1
10.1.1 Key Trades and Analysis ... 10-1
10.1.2 Scalability, Evolvability, and Migration in Release B 10-2

10.2 HWCI Structure ... 10-3
10.2.1 HWCI Connectivity ... 10-3
10.2.2 HWCI Component Description .. 10-5
10.2.3 Failover and Recovery Strategy ... 10-5

11. DIPHW - Distribution and Ingest Peripheral Management HWCI

11.1 HWCI Design Rationale .. 11-1
11.1.1 Key Trades and Analysis ... 11-1
11.1.2 Scalability Strategies .. 11-1

11.2 HWCI Structure ... 11-2
11.2.1 HWCI Connectivity ... 11-3
11.2.2 HWCI Component Description .. 11-3
11.2.3 Failover and Recovery Strategy ... 11-3

xxi 305-CD-024-002

12. DDSRVHW - Document Data Server HWCI

12.1 HW Design Drivers .. 12-1
12.1.1 Key Trade-off Studies and Prototypes ... 12-1
12.1.2 Scalability, Evolvability and Migration to Future Releases 12-1

12.2 HWCI Structure ... 12-1
12.2.1 HWCI Connectivity ... 12-1
12.2.2 HWCI Components .. 12-2
12.2.3 Failover and Recovery Strategy ... 12-2

Appendix A. Requirements Trace

Abbreviations and Acronyms

Glossary

Figures

3.2.2-1. Encapsulation of COTS Products in the Data Server Subsystem 3-12
6.2-1. STMGT_Event Flow Diagram .. 6-2
6.3-1. DSST_Configuration Object Model Diagram ... 6-6
6.3-2. DSST_CostUtilization Object Model Diagram ... 6-7
6.3-3. DSST_DataStorage Object Model Diagram .. 6-8
6.3-4. DSST_DiskMonitoring Object Model Diagram .. 6-9
6.3-5. DSST_FileAccess Object Model Diagram ... 6-10
6.3-6. DSST_FileList Object Model Diagram .. 6-11
6.3-7. DSST_Peripherals Object Model Diagram ... 6-12
6.3-8. DSST_ResourceManagement Object Model Diagram ... 6-13
6.4.1-1. Abort_Request Dynamic Model .. 6-74
6.4.2-1. Activate_Reservation Dynamic Model ... 6-75
6.4.3-1. ALLOCATEPHYSRES_NORESAVAIL Dynamic Model 6-76
6.4.4-1. ALLOCATEPHYSRES_RESAVAIL Dynamic Model .. 6-77
6.4.5-1. Archive_Insert Dynamic Model .. 6-78
6.4.6-1. Archive_Retrieve_CHECKSUMERROR Dynamic Model 6-81
6.4.7-1. Archive_Retrieve_NOCACHEHIT Dynamic Model .. 6-83
6.4.8-1. Cancel_Reservation Dynamic Model .. 6-85
6.4.9-1. Creating_Local_Backup Dynamic Model ... 6-86
6.4.10- 1. Creating_Offsite_Backup Dynamic Model ... 6-87
6.4.11- 1. DEALLOCATEPHYSRES_Queued_Requests Dynamic Model 6-88
6.4.12- 1. DEALLOCATEPHYSRES_Reservation Dynamic Model 6-89

xxii 305-CD-024-002

6.4.13- 1. Delete_PULLDISKDATA_Confirmed Dynamic Model 6-90
6.4.14- 1. Delete_STAGINGDISKDATA Dynamic Model ... 6-91
6.4.15- 1. Failure_Restoring_Local_Backup Dynamic Model ... 6-93
6.4.16- 1. Rejecting_Service_Insufficient_Funds Dynamic Model .. 6-94
6.4.17- 1. Restoring_Local_Backup Dynamic Model ... 6-95
6.4.18- 1. Set_TAPESTATE Dynamic Model .. 6-96
6.4.19- 1. Submit_Reservation Dynamic Model .. 6-97
6.4.20- 1. Backup_Archive_Data Dynamic Model ..6-98
6.4.21-1. Delete_Archived_File Dynamic Model ...6-99
6.4.22-1. Estimate_Storage_Allocation_Cost Dynamic Model ...6-100
6.4.23-1. Estimate_Time_Delay Dynamic Model ..6-102
6.4.24-1. Monitor_CHECKSUM_Errors Dynamic Model ...6-103
6.4.25-1. Show_Staging_Disk_Cache_Config Dynamic Model ...6-104
7.2-1. DIST Event Flow Diagram .. 7-2
7.3-1. DsDdOverview Object Model Diagram .. 7-5
7.3-2. DsDdRequest Object Model Diagram ... 7-7
7.3-3. DsDdRequestProcessor Object Model Diagram ... 7-8
7.3-4. DsDdDistList Object Model Diagram ... 7-8
7.3-5. DsDdMedia Object Model Diagram ... 7-10
7.3-6. DsDdLabeledMedia Object Model Diagram .. 7-11
7.3-7. DsUzResourceCost Object Model Diagram ... 7-13
7.4.1-1. Creating a Distribution Request ... 7-75
7.4.2-1. Electronic Pull of Data ... 7-77
7.4.3-1. Electronic Push of Data .. 7-78
7.4.4-1. Distribution via Tape .. 7-80
7.4.5-1. Abort a Request .. 7-81
7.4.6-1. Handling a Tape Fault .. 7-83
7.4.7-1. DsDdEstimate Dynamic Model .. 7-84
7.4.8-1. 3480 Tape Distribution Dynamic Model .. 7-86
7.4.9-1. Large Distribution Request Dynamic Model .. 7-87
7.4.10-1. Large Distribution Request Dynamic Model .. 7-88
8.2-1. Access Control and Management HWCI Block Diagram ... 8-3
8.2.1-1. Data Server Network Connectivity within DAAC .. 8-4
9.2-1. Working Storage HWCI Block Diagram .. 9-3
10.2-1. Data Repository HWCI Block Diagram .. 10-4
11.2-1. Distribution and Ingest Peripheral Management HWCI Block Diagram 11-2
12.2-1. Document Data Server HWCI Block Diagram ... 12-2

xxiii 305-CD-024-002

Tables

3.1-1. Subsystem Interfaces ... 3-2
3.1-2. Physical Architecture ... 3-6
3.2.2.7-1. Data Server Subsystem System Management GUI .. 3-14
6.2-1. STMGT_events Event Flow Summary Table .. 6-3
6.2-2. CSCI Interfaces .. 6-4
6.5-1. STMGT's Components .. 6-105
6.6.1.2-1. STMGT Error Categories .. 6-111
6.6.2-1. Storage Management GUI ... 6-112
6.6.3-1 Standard Storage Management Reports... 6-112
7.2-1. DDIST Event Flow Summary Table .. 7-2
7.2-2. DDIST CI Interfaces .. 7-3
7.5-1. DDIST's Components ... 7-89
7.6.1.2-1. DDIST Error Categories ... 7-93
7.6.2-1. Data Distribution Management GUI ... 7-94
7.6.3-1. Standard Distribution Reports .. 7-95
8.2.2-1. Access Control and Management HWCI Component Descriptions 8-5
9.2.2-1. Working Storage HWCI Component Descriptions .. 9-4
10.2.2-1. Data Repository HWCI Component Descriptions .. 10-6
11.2.2-1. Distribution and Ingest Peripheral HWCI Component Descriptions 11-3
12.2-1. Access Control & Management HWCI Component Descriptions 12-2
A-1. DSS Release B Requirements Trace ..A-1

xxiv 305-CD-024-002

This page intentionally left blank.

1-10 305-CD-024-002

1. Introduction

1.1 Identification
This Release B SDPS Data Server Subsystem Design Specification for the ECS Project, Contract
Data Requirement List (CDRL) Item 046, with requirements specified in Data Item Description
(DID) 305/DV2, is a required deliverable under the Earth Observing System Data and Information
System (EOSDIS) Core System (ECS), Contract NAS5-60000. This publication is part of a series
of documents comprising the Science and Communications Development Office design
specification for the Communications and System Management Segment (CSMS) and the Science
and Data Processing Subsystem (SDPS) for Release B.

1.2 Scope
The Release B Data Server Subsystem Design Specification defines the design of the subsystem.
It defines the Data Server Subsystem computer software and hardware architectural design, in
accordance with the ECS Level 4 requirements.

This document reflects the February 7, 1996 Technical Baseline maintained by the contractor
configuration control board in accordance with the ECS Technical Direction No. 11, dated
December 6, 1994.

1.3 Document Organization
The document is organized to describe the Release B Data Server Subsystem design as follows:

Section 1 provides information regarding the identification, scope, status, and organization of this
document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 provides an overview of the Subsystem, its interfaces, its structure, and the overall
approach to its design.

Section 4 describes the design of the Science Data Server (SDSRV) CSCI.

Section 5 describes the design of the Document Data Server (DDSRV) CSCI.

Section 6 describes the design of the Storage Management (STMGT) CSCI.

Section 7 describes the design of the Data Distribution (DDIST) CSCI.

Section 8 describes the design of the Access Control and Management (ACMHW) HWCI.

Section 9 describes the design of the Working Storage (WKSHW) HWCI.

Section 10 describes the design of the Data Repository (DRPHW) HWCI.

Section 11 describes the design of the Distribution and Ingest Peripheral Management (DIPHW)
HWCI.

Section 12 describes the design of the Document Data Server (DDSRVHW) HWCI.

1-11 305-CD-024-002

Appendix A lists the correspondence between ECS Level 4 requirements and the components of
the Data Server Subsystem.

The Glossary section contains a glossary of terms used to describe the Data Server Subsystem
Design.

The Abbreviations and Acronyms section contains an alphabetical list of the abbreviations and
acronyms used in this document.

1.4 Status and Schedule
This submittal of DID 305/DV2 meets the milestone specified in the Contract Data Requirements
List (CDRL) of NASA Contract NAS5-60000. The submittal contains changes and refinements
made to the design of the Data Server Subsystem since the SDPS Release B Interim Design Review
(IDR) and reflects changes to the design which resulted from that review.

2-1 305-CD-024-002

2. Related Documentation

2.1 Parent Documents
The parent document is the document from which the scope and content of this Data Server
Subsystem Design Specification is derived.

194-207-SE1-001 System Design Specification for the ECS Project

2.2 Applicable Documents
The following documents are referenced within this SDPS Subsystem Design Specification, or are
directly applicable, or contain policies or other directive matters that are binding upon the content
of this document.

209-CD-001-003 Interface Control Document Between EOSDIS Core System (ECS) and
the NASA Science Internet

209-CD-002-003 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System

209-CD-003-003 Interface Control Document Between EOSDIS Core System (ECS) and
EOS-AM Project for AM-1 Spacecraft Analysis Software

209-CD-004-003 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base

209-CD-005-005 Interface Control Document Between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF)

209-CD-006-005 Interface Control Document Between EOSDIS Core System (ECS) and
National Oceanic and Atmospheric Administration (NOAA) Affiliated
Data Center (ADC)

209-CD-007-003 Interface Control Document Between EOSDIS Core System (ECS) and
TRMM Science Data and Information System (TSDIS)

209-CD-008-004 Interface Control Document Between EOSDIS Core System (ECS) and
the Goddard Space Flight Center (GSFC) Distributed Active Archive
Center (DAAC)

209-CD-009-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Marshall Space Flight Center (MSFC) Distributed Active Archive
Center (DAAC)

209-CD-011-004 Interface Control Document Between EOSDIS Core System (ECS) and
the Version 0 System

305-CD-020-002 Overview of Release B SDPS and CSMS System Design Specification
for the ECS Project

308-CD-001-005 Software Development Plan for the ECS Project

2-2 305-CD-024-002

313-CD-006-002 Release B SDPS/CSMS Internal Interface Control Document for the
ECS Project

423-41-03 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

2.3 Information Documents Not Referenced
The following documents, although not referenced herein and/or not directly applicable, do
amplify and clarify the information presented in this document. These documents are not binding
on the content of this SDPS Subsystem Design Specification.

205-CD-002-002 Science User's Guide and Operations Procedure Handbook for the ECS
Project, Part 4: Software Developer’s Guide to Preparation, Delivery,
Integration and Test with ECS

206-CD-001-002 Version 0 Analysis Report for the ECS Project

209-CD-010-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Langley Research Center (LaRC) Distributed Active Archive Center
(DAAC)

302-CD-002-001 SDPS/CSMS Release A and FOS Release A and B Facilities Plan for the
ECS Project

101-303-DV1-001 Individual Facility Requirements for the ECS Project, Preliminary

194-317-DV1-001 Prototyping and Studies Plan for the ECS Project

318-CD-000-XXX Prototyping and Studies Progress Report for the ECS Project (monthly)

333-CD-003-002 SDP Toolkit Users Guide for the ECS Project

601-CD-001-004 Maintenance and Operations Management Plan for the ECS Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1 -- ECS Overview

604-CD-002-003 ECS Operations Concept for the ECS project: Part 2B -- Release B

101-620-OP2-001 List of Recommended Maintenance Equipment for the ECS Project

194-703-PP1-001 System Design Review (SDR) Presentation Package for the ECS Project

194-813-SI4-002 Planning and Scheduling Prototype Results Report for the ECS Project

194-813-SI4-003 DADS Prototype One FSMS Product Operational Evaluation [for the
ECS Project]

194-813-SI4-004 DADS Prototype One STK Wolfcreek 9360 Automated Cartridge
System Hardware Characterization Report [for the ECS Project]

813-RD-009-001 DADS Prototype Two Multi-FSMS Product Integration Evaluation [for
the ECS Project]

828-RD-001-002 Government Furnished Property for the ECS Project

193-TP-626-001 GCDIS/UserDIS Study [for the ECS Project], Draft 0.2

193-WP-118-001 Algorithm Integration and Test Issues for the ECS Project

2-3 305-CD-024-002

193-WP-611-001 Science-based System Architecture Drivers for the ECS Project,
Revision 1.0

193-WP-623-001 ECS Evolutionary Development White Paper

194-TP-266-002 Data Distribution Architecture Logical Object Model (LOM) for the
ECS Project, Version 2.01

194-TP-267-001 Data Server Architecture Logical Object Model (LOM) for the ECS
Project, Version 2.00

194-TP-313-001 ECS User Characterization Methodology and Results

194-TP-316-002 Data Compression Study for the ECS Project

194-TP-548-001 User Scenario Functional Analysis [for the ECS Project]

194-TP-569-001 PDPS Prototyping at ECS Science and Technology Laboratory,
Progress Report #4

194-WP-901-002 EOSDIS Core System Science Information Architecture, White Paper,
Working Paper

194-WP-902-002 ECS Science Requirements Summary, White Paper, Working Paper

194-WP-914-001 CORBA Object Request Broker Survey for the ECS Project, White
Paper, Working Paper

194-WP-918-001 DADS Prototype One FSMS Product Operational Evaluation [for the
ECS Project], White Paper, Draft Report

194-WP-925-001 Science Software Integration and Test [for the ECS Project], White
Paper, Working Paper

222-TP-003-008 Release Plan Content Description for the ECS Project

410-TD-001-002 ECS User Interface Style Guide, Technical Data

420-WP-001-001 Maximizing the Use of COTS Software in the SDPS SDS Software
Design [for the ECS Project], White Paper

430-TP-001-001 SDP Toolkit Implementation with Pathfinder SSM/I Precipitation Rate
Algorithm [for the ECS Project], Technical Paper

423-16-01 Goddard Space Flight Center, Data Production Software and Science
Computing Facility (SCF) Standards and Guidelines

423-16-02 Goddard Space Flight Center, PGS Toolkit Requirements Specification
for the ECS Project

423-41-02 Goddard Space Flight Center, Functional and Performance
Requirements Specification for the Earth Observing System Data and
Information System (EOSDIS) Core System

540-022 Goddard Space Flight Center, Earth Observing System (EOS)
Communications (Ecom) System Design Specification

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document
Between EDOS and the EOS Ground System

2-4 305-CD-024-002

This page intentionally left blank.

3-1 305-CD-024-002

3. Subsystem Overview

3.1 Introduction and Context
The Data Server Subsystem has the responsibility for storing, searching, and retrieving earth
science and related data. The subsystem provides data repositories and management capabilites
necessary to safely store data on a permanent basis. The subsystem stages data needed for data
processing by the Data processing Subsystem. The subsystem organizes and stores its data by data
types, and provides advanced search capabilities and processing services on those data types, in
support of earth science users. The Data Server Subsystem distributes data to users either
electronically or on physical media. It provides administrative capabilites necessary to operate and
manage its hardware and software.

Table 3.1-1 lists the Data Server Subsystem interfaces. These interfaces are summarized as
follows:

• The Data Server Subsystem provides advertisements, for data types and corresponding data
type services, to the Interoperability Subsystem.

• The Data Server Subsystem stores data ingested by the Ingest Subsystem, stores data
produced by the the Data Processing Subsystem, and stores historic data from FOS.

• The Data Server Subsystem receives service requests for data and data type services from
external clients including the Client Subsystem, the Data Management Subsystem, the
Planning and Data Processing Subsystem.

• The Data Server Subsystem provides data requested by service requests, to the originator
of the request, by means of either electronic transfer or physical media. Alternatively, the
subsystem can provide references to data in the Universal Reference format described in
the Overview Volume, 305-CD-020-002.

• The Data Server Subsystem issues production requests into the Planning Subsystem as a
result of data requests issued by Data Server clients. It also supports the Planning
Subsystem by storing data availability schedules.

• The Data Server Subsystem provides subsystem events, status, and management
information to the System Management Subsystem

• The Data Server Subsystem receives management directives from the System Management
Subsystem.

• The Data Server Subsystem interfaces with CSS provided security services to authorize
clients. This interface is provided via infrastructural components.

Table 3.1-2 represents the Physical Architecture of the Data Server Subsystem. The Physical
Architecture is defined to be the mapping of the subsystem's applications to the hardware
components in which they will execute.

3-2 305-CD-024-002

Table 3.1-1. Subsystem Interfaces (1 of 5)
Flow No. Source Destination Data Types Data Volume Frequency

1 Data Server Client * Results Set medium-high in response to
request

1 Data Server Client * Session Mgmt responses low in response to
request

1 Data Server Client * Notifications low in response to
subscription

2 Data Server DAACs Standard Products high as required

2 Data Server DAACs Metadata medium-high as required

2 Data Server DAACs Ancillary Data high as required

2 Data Server DAACs Correlative Data high as required

2 Data Server DAACs Calibration Data high as required

2 Data Server DAACs Documents medium as required

2 Data Server DAACs Orbit/Attitude Data medium as required

2 Data Server DAACs Data Availability
Schedules

medium as required

2 Data Server DAACs Algorithms high as required

2 Data Server DAACs Special Products high as required

2 Data Server DAACs L0 Data high as required

2 Data Server DAACs QA Data medium as required

3 Data Server Data Mgmt Session Mgmt Response low in response to
request

3 Data Server Data Mgmt Search Results medium-high in response to
request

3 Data Server Data Mgmt Schema medium as required

3 Data Server Data Mgmt data dictionary medium as required

4 Data Server Interoperabil
ity

Advertisement low when service/
data changes

4 Data Server Interoperabil
ity

Subscription low as required

5 Data Server MSS/SMC Status low in response to
request

5 Data Server MSS/SMC Logs low in response to
request

6 Data Server Planning subscription notice low at fulfillment of
subscription

6 Data Server Planning data query response
(granule information)

medium in response to
request

7 Data Server Processing Standard Products high in response to
staging
request

3-3 305-CD-024-002

Flow No. Source Destination Data Types Data Volume Frequency

7 Data Server Processing meta data medium in response to
staging
request

7 Data Server Processing L0 Data high in response to
staging
request

7 Data Server Processing Ancillary Data high in response to
staging
request

7 Data Server Processing Calibration Data medium in response to
staging
request

7 Data Server Processing Orbit/Attitude Data medium in response to
staging
request

7 Data Server Processing Algorithms high in response to
staging
request

8 Data Server TRMM
(TSDIS)

Metadata medium - 2 day's
worth of archived
data

daily

8 Data Server TRMM
(TSDIS)

Ancillary Data high - enough to
support 1 day of
processing and 2
day's worth of
reprocessing
(~10 Gbytes)

frequency
depends on
data set

8 Data Server TRMM
(TSDIS)

Calibration Data medium included in
ancillary data

8 Data Server TRMM
(TSDIS)

Correlative Data medium included in
ancillary data

8 Data Server TRMM
(TSDIS)

Documents low as required

8 Data Server TRMM
(TSDIS)

Data Products 2 days worth of
archived data
(~50 Gbyte)

daily

8 Data Server TRMM
(TSDIS)

Data Availability Notice low daily

8 Data Server TRMM
(TSDIS)

Status low as required

9 TRMM
(TSDIS)

Data Server Product Orders low as requested

9 TRMM
(TSDIS)

Data Server Subscriptions low as requested

10 Data Server Version 0
Gateway

Results Set medium-high in response to
request

10 Data Server Version 0
Gateway

Session Mgmt responses low in response to
request

Table 3.1-1. Subsystem Interfaces (2 of 5)

3-4 305-CD-024-002

Flow No. Source Destination Data Types Data Volume Frequency

10 Data Server Version 0
Gateway

Product Request Status low as required

 *23 Data Server ADCs/ODCs Metadata medium as required

 *23 Data Server ADCs/ODCs Calibration Data,
Correlative Data,
Documents

medium-high as required

 *23 Data Server ADCs/ODCs Algorithms medium-high as required

*23 Data Server ADCs/ODCs Data Products high as required

*23 Data Server ADCs/ODCs Schedule Adjudication
data

low as required

*23 Data Server ADCs/ODCs Status low as required

*24 Data Server IPs Ancillary Data medium as required
(Media
Delivery to
ASTER GDS

*24 Data Server IPs Correlative Data medium as required
(Media
Delivery to
ASTER GDS

*24 Data Server IPs Level 0 - Level 4 Products high dependent on
user input
(Media
Delivery to
ASTER GDS

*24 Data Server IPs Metadata low dependent on
user input

*24 Data Server IPs Orbit/Attitude Data low-medium infrequent
(only for s/c
anomalies (for
ASTER))

*24 Data Server IPs Schedule Adjudication
Data

low as required

*24 Data Server IPs Status low as required

*24 Data Server IPs Documents low as required

*24 Data Server IPs Calibration Data medium as required

*25 Data Server FOS Quick Look Images medium in response to
request

*25 Data Server FOS Historic Data medium in response to
request

*26 Data Server SCF Status low as required

*26 Data Server SCF Metadata/updates low as required

*26 Data Server SCF Calibration data medium as required

*26 Data Server SCF Correlative data medium as required

*26 Data Server SCF Documents low as required

*26 Data Server SCF Algorithms/updates medium as required

Table 3.1-1. Subsystem Interfaces (3 of 5)

3-5 305-CD-024-002

Flow No. Source Destination Data Types Data Volume Frequency

26 Data Server SCF Standard Products medium daily as
required for
QA

11* Client Data Server Search Requests low as requested

11* Client Data Server Access Requests low as requested

11* Client Data Server Session Mgmt Requests low as requested

11* Client Data Server Subscriptions low as requested

12 Data Mgmt Data Server Search requests low in response to
request

12 Data Mgmt Data Server Session Mgmt Requests low in response to
request

12 Data Mgmt Data Server Access requests low in response to
request

13 Ingest Data Server Standard Products high on reception

13 Ingest Data Server Metadata medium on reception

13 Ingest Data Server Ancillary Data high on reception

13 Ingest Data Server Correlative Data high on reception

13 Ingest Data Server Calibration Data medium on reception

13 Ingest Data Server Documents medium on reception

13 Ingest Data Server Orbit/Attitude Data medium on reception

13 Ingest Data Server Data Availability
Schedules

medium on reception

13 Ingest Data Server Algorithms high on reception

13 Ingest Data Server Special Products high on reception

13 Ingest Data Server L0 Data high on reception

13 Ingest Data Server Quick Look Data medium on reception

13 Ingest Data Server QA Data medium on reception

13 Ingest Data Server Resource Allocation /
Deallocation Requests

low on reception

14 Interoperability Data Server Notification low in response to
subscription

15 MSS/SMC Data Server Status requests low in response to
request

15 MSS/SMC Data Server Log Requests low in response to
request

16 Planning Data Server candidate plans /active
plans

medium as required for
archiving

16 Planning Data Server data query low as required

16 Planning Data Server Subscription Request low as required

17 Processing Data Server access requests low as required for
processing

Table 3.1-1. Subsystem Interfaces (4 of 5)

3-6 305-CD-024-002

In the table, where an exact number is unavailable, the data volume is estimated as low (less than 1 MB),
medium (between 1 MB and 1 GB), or high (greater than 1 GB) per use defined in the frequency column.
The frequency information will be updated as the interfaces are fully defined.
Entries marked with (*) represent interfaces that are new to Release B.

Flow No. Source Destination Data Types Data Volume Frequency

17 Processing Data Server standard products high as required for
processing

17 Processing Data Server metadata medium as required for
processing

17 Processing Data Server Science Algorithms low as requested

17 Processing Data Server QA Data medium as required for
processing

18 Version 0 Data Server Inventory low as required

18 Version 0 Data Server Guide low as required

18 Version 0 Data Server Browse data medium as required

18 Version 0 Data Server Dependent Valids low as required

*19 ADCs/ODCs Data Server Product Requests low frequency
dependent on
user input

*19 ADCs/ODCs Data Server Status low as required

20 SCF Data Server QA Data request low as required

20 SCF Data Server QA Data Subscription low as required

*21 FOS Data Server historic data low as required for
archiving

*21 FOS Data Server Status Info low in response to
request

*21 FOS Data Server Acquisition Plan Schedule medium as required

Table 3.1-2. Physical Architecture (1 of 2)

Software
Executable

COTS/Developed HWCI

NetworkResourceM
anager

Developed DIPHW

PullMonitor Developed ACMHW

ScienceDataServer Developed ACMHW

SubscriptionServer Developed ACMHW

StagingMonitor Developed DRPHW

StagingDiskResour
ceManager

Developed DRPHW

AMASS COTS DRPHW

Table 3.1-1. Subsystem Interfaces (5 of 5)

3-7 305-CD-024-002

3.2 Subsystem Overview

3.2.1 Subsystem Structure

The Data Server subsystem is composed of the following software configuration items (CSCIs):

• The Science Data Server CSCI (SDSRV) is a software component responsible for
managing and providing user access to collections of non-document earth science data.

• The Document Data Server CSCI (DDSRV) is a software component respsponsible for
managing electronic documents.

• The Storage Management CSCI (STMGT) is a software component that stores, manages,
and retrieves data files on behalf of other SDPS components. It provides an interface that
protects STMGT users from changes in technology.

• The Data Distribution CSCI (DDIST) is a software component that is responsible for
formatting and distributing data to users.

The Data Server subsystem is composed of the following hardware configuration items (HWCIs):

• The Access Control and Management HWCI (ACMHW) is a hardware component that
supports the software components of the Ingest and Data Server Subsystems which interact
directly with users. This HWCI also provides a level of security, isolating other hardware
components from external software access.

• The Working Storage HWCI (WKSHW) is a hardware component that provides high-
performance storage for the purpose of caching large volumes of data on a temporary basis.

• The Data Repository HWCI (DRPHW) is a hardware component that provides high-
capacity storage for the long-term storage of data files.

• The Distribution and Ingest Peripherals HWCI (DIPHW) provides the hardware necessary
to support ingest and distribution via physical media.

Software
Executable

COTS/Developed HWCI

Illustra COTS DRPHW

DistributionServer Developed DIPHW

ArchiveResourceM
anager

Developed DRPHW

TapeResourceMan
ager

Developed DIPHW

FAXResourceMana
ger

Developed DIPHW

CDROMResource
Manager

Developed DIPHW

PrinterResourceMa
nager

Developed DIPHW

Table 3.1-2. Physical Architecture (2 of 2)

3-8 305-CD-024-002

3.2.1.1 Science Data Server CSCI

The Science Data Server CSCI is responsible for managing collections of earth science and related
data, and for servicing requests for the storage, search, retrieval, and manipulation of data within
those collections. The science data server performs the following functions:

• manages earth science data as logical collections of related data, using interfaces that are
independent of any data formats and hardware configurations dictated by underlying
storage technologies;

• manages interactive sessions with external clients;

• manages the processing of service requests from users, thereby providing a variety of
services on earth science and related data;

• issues requests to the STMGT and DDIST CSCIs to perform storage and distribution
services in support of the processing of service requests;

• provides advertisements to the Interoperability Subsystem, in order to announce the
availability of data and services to external clients;

• manages the processing of service requests from the Ingest and Data Processing
Subsystems in order to "insert" data for long-term storage and access;

• manages the processing of service requests from the Data Processing Subsystem, in order
to provide data to be used as input for data processing;

• provides a subscription capability to perform services upon the occurrence of specified
events.

3.2.1.2 Document Data Server CSCI

The Document Data Server CSCI manages electronic documents and associated metadata. It
supports the browsing and searching of document data types via the World-Wide-Web. The
document data server performs the following functions:

• manages interactive sessions with external clients;

• manages the processing of service requests from users, thereby providing browsing,
searching, and distribution services;

• provides advertisements to the Interoperability Subsystem, in order to announce the
availability of documents and related services to external clients;

• manages the processing of service requests from the Ingest Subsystem in order to "insert"
documents for storage and access;

• issues requests to the STMGT and DDIST CSCIs to perform storage and distribution
services in support of the processing of service requests;

3.2.1.3 Storage Management CSCI

The Storage Management CSCI is a software component that provides management services for
file systems, storage devices, and media peripherals, in support of the Data Server, Ingest, and Data
Processing Subsystems: The Storage Management CSCI provides the following capabilities:

3-9 305-CD-024-002

1) It manages high-capacity storage hardware of the DRPHW HWCI and provides associated
file access and file management services, using a combination of COTS and custom
software. The STMGT CSCI provides a consistent file storage and retrieval interface
between the SDSRV CSCI and the file management software, independent of the
underlying file management and storage technologies.

2) It manages the high-performance storage hardware of the WKSHW HWCI and provides
associated file access and file management services, using a combination of COTS and
custom software. The resulting storage facility supported by this combination of software
and hardware is called "working storage".

3) It manages a user-accessible "pull" area used to stage data for distribution via FTP.

4) It manages the peripherals used to distribute data to physical media.

5) It manages the storage hardware that composes part of the ICLHW CSCI in the Ingest
Subsystem.

The STMGT CSCI supports a data referencing capability based on the use of unique file names
which do not change even if the location of the data changes within the resources managed by the
CSCI. STMGT clients can use these identifiers to reference the data at any time, but the STMGT
has the flexibility to move the data as needed according to operational or administrative necessities.

The STMGT CSCI supports the implementation of changeable policies which govern the
establishment of operational priorities. It supports the allocation of storage resources based on user
priority.

3.2.1.4 Data Distribution CSCI

The Data Distribution CSCI is responsible for formatting and distributing data to users at the
direction of the SDSRV CSCI and the DDSRV CSCI. Data is distributed either electronically or
by means of physical media. The DDIST CSCI performs the following functions:

• Accepts requests, from the SDSRV CSCI and the DDSRV CSCI, to distribute data which
has been staged to either working storage (WKSHW HWCI), or within the DRPHW
HWCI;

• Directs the STMGT CSCI to transfer data to the pull area, for user-initiated electronic
distribution;

• Directs the STMGT CSCI to transfer data to users electronically, either via ftp or via FAX.

• Transfers data managed by the STMGT CSCI to physical media, including 8mm tape, 4mm
tape, 6250 bpi 9-track tape, 3480/3490 tape, or CD-ROM.

• Supports operator management of distribution requests by allowing operators to view,
cancel, suspend/resume, and change the priorities of requests.

3.2.1.5 Access Management HWCI

The Access Control and Management HWCI consists of hardware that supports the software
components of the Ingest and Data Server subsystem which interact directly with users. The
ACMHW HWCI is connected to other ECS hardware components through a secure interface,

3-10 305-CD-024-002

ensuring that unauthorized network users cannot access those components. The ACMHW HWCI
hosts the following software:

• the SDSRV CSCI

• the DDSRV CSCI

• the INGST CSCI (Ingest Subsystem) software required to manage the ingest of non-Level
0 data by electronic means

• the STMGT CSCI software required to manage the user-accessable "pull" area used for
data distribution

3.2.1.6 Working Storage HWCI

The Working Storage HWCI is a hardware component that provides high-performance storage for
the purpose of caching large volumes of data on a temporary basis. The storage facilities of the
WKSHW HWCI are used by:

• Data Processing Subsystem for the caching of intermediate data products used as input for
for subsequent processing;

• SDSRV CSCI to stage data for processing by the Data Processing Subsystem;

• INGST CSCI to prepare L0 data prior to "insertion" by the SDSRV CSCI.

• STMGT CSCI to stage data until it can be stored in the long-term storage facilities of the
DRPHW CSCI;

• SDSRV to temporarily store data for post-retrieval processing, prior to distribution.

Access to the WKSHW is provided only by STMGT CSCI interfaces.

3.2.1.7 Data Repository HWCI

The Data Repository HWCI provides high-capacity storage hardware for the long-term storage and
maintenance of data files. This hardware includes mass-storage devices, staging disks, and
associated processors. This component is designed to support the expansion of storage capacity,
and the inclusion of multiple storage technologies as appropriate to the requirements of each site.
The Data Repository HWCI is managed by the STMGT CSCI.

3.2.1.8 Distribution and Ingest Peripherals HWCI

The Distribution and Ingest Peripherals HWCI provides the peripherals and associated processors
required for (1) the ingest of data from physical media, and (2) the distribution of data to physical
media. The DIPHW HWCI hosts the following software:

• the DDIST CSCI software used to manage the distribution of data via physical media ;

• the INGST CSCI (Ingest Subsystem) software used to manage the ingest of data via
physical media;

• the STMGT CSCI software used to manage the peripherals used to read from, and write to,
physical media.

3-11 305-CD-024-002

3.2.2. Subsystem Design Rationale

3.2.2.1 Support for Earth Science Research

The Data Server Subsystem is required to support earth science research by providing information-
rich logical data collections and providing efficient search, browse, reduction, transformation and
access methods on the data.

The Data Server Subsystem organizes each data collection as a set of logical data types. Each data
type has an associated set of storage, retrieval, and processing services that are available to the
science user on request. From the perspective of the science user, these data type services are
provided using methods and interfaces that are independent of any data formats and hardware
configurations dictated by underlying storage technologies.

The logical data types and their associated data type services are implemented with Earth Science
Data Type classes (ESDTs). ESDTs are implemented by combining off the shelf DBMS
technology with software developed to support data characteristics and operations (e.g. coordinate
transformations) that are unique to the data type and are unsupported by the DBMS.

3.2.2.2 Evolvability

The Data Server Subsystem is required to be adaptable to changing technologies and new
requirements. As a result, the subsystem design accommodates the widespread use of COTS
software products, custom encapsulation software, and configuration-controlled APIs..

3.2.2.3 COTS Encapsulation

The Data Server Subsystem employs COTS database management systems (DBMS) and COTS
file storage management systems (FSMS) to provide much of the subsystem's overall functionality.
These COTS products are encapsulated with "wrapper casses", as shown in Figure 3.2.2-1. The
wrapper classes translate between the vendor-specific interfaces provided by the COTS products,
and the configuration-controlled interfaces of the Data Server Subsystem. The replacement of a
given COTS product requires the modification of the wrapper class, only. Encapsulation of COTS
products through wrappers simplifies the replacement of those products, and supports the use of
combinations of different products.

3.2.2.4 DBMS Technology Selection

ECS has driving requirements to handle complex data types and queries, with a strong emphasis
on spatial queries. Spatial queries involve complex operations on spatial data types. The notion
of the Earth Science Data Type is an object-oriented concept which encapsulates data structure
with the operations that are useful to perform on data having that structure.

A DBMS is required which can combine the management of ECS data structures with the
performance of the complex operations required to search and access those structures. Relational
database management products, though mature and widely used, are not designed to meet these
requirements. The Illustra Object-Releational DBMS product has been selected to implement
Earth Science Data Types in the Release B Data Server Subsystem. Illustra provides a "server
engine" which supports complex operations on complex data types, including some operations

3-12 305-CD-024-002

Figure 3.2.2-1. Encapsulation of COTS Products in the Data Server Subsystem

which are particularly well suited to spatial queries. In addition, the product supports the
integration of user-defined operations into the server engine, along with the product's intrinsic
operations.

Use of Illustra in Release B requires revision of some Release A software, such as the Sybase Data
Definition Language (DDL) for the SDSRV CSCI database schema and the underlying Sybase
stored procedures. The database wrappers are changed in order to support the Illustra interfaces.
Most of the database load software related to the initial load of the SDSRV for Release B as well
as for data migration purposes is also revised to implement the Illustra database.

3.2.2.5 The Role of FSMS Products in ECS

The ECS program will make use of COTS file storage management systems to access and manage
the storage of ECS data files held in mass-storage devices.

Most FSMS products rely on a hierarchical storage approach ("hot" data on disk, "cold" data on
tape) where large volumes of data are stored in some mass-storage facility (e.g. optical disk, tape
library), or a disk-based caching mechanism is used to compensate for the relatively slow
performance of the mass-storage facility. Hierarchical storage is used in the Data Server
Subsystem for managing the user pull area. However, the total volume of data managed by ECS

ECS Protocol

Science Data Server CSCI

Data Type Services

DBMS

Storage Management CSCI

 Wrapper Classes

FSMS

Wrapper Classes

3-13 305-CD-024-002

is large enough that an FSMS product that utilizes a disk-based caching mechanism is used to
manage working storage and the permanent repository.

The Data Server subsystem employs a cost-effective cache management scheme in working
storage and the permanent repository that augments the generic COTS FSMS caching mechanisms
employed by FSMS products. The scheme is supported by the following design features:

• the separation of working storage from the staging disks maanged by the FSMS products

• the use of working storage for caching data generated and used by the Data Processing
Subsystem

• the separation of the data distribution "pull area" from working storage

3.2.2.6 FSMS Technology Selection

FSMS products can generally be divided into three basic groups according to the method used to
implement their file system interfaces:

1) Unix Resident Products - These products (e.g. EMASS FileServ, EMC EpochServ) are
integrated with the Unix File System so that all native UNIX file access methods can be
used to access data resident on the devices managed by the FSMS.

2) Separate File System Products - These products (e.g. UniTree products) implement
proprietary file systems and access methods which are independent of the UNIX file
system.

3) Hybrids - These products (e.g. EMASS AMASS, Qstar Mastermind, ANT Metior, LSC's
Sam-FSuse) implement file management systems that are separate from UNIX but, like
NFS, are linked to the UNIX file system via the Virtual File System (VFS) Virtual Node
(vnode) interface provided by the Unix kernel. As a result, these products allow the use of
native access methods but do not manage files using inodes.

The FSMS product selected for Release A was the Archival Management and Storage System
(AMASS) product marketed by EMASS Inc. The Release B design is also based on this product.
The features of the AMASS product are summarized as follows:

• The VFS-linked separate file system design allows all Unix File System access methods to
be employed (e.g. ftp, rcp, uucp, nfs, RPC, native, etc.).

• The AMASS product is not subject to limitations imposed by Unix inode structures.
AMASS maintains all inode information in database files rather than in associated disk
structures. This minimizes or eliminates many of the file search problems inherent in large
numbers of files in multiple directories.

 • AMASS organizes files as groups of blocks which can be individually retrieved. By
contrast, other FSMS products require that the entire contents of the file be staged even only
a portion is required for access.

• AMASS utilizes a disk based I/O buffer for communications rate matching between disk
and tape resources. The I/O buffer scheme supports the encapsulation of storage and data
viability functions while allowing the Data Server Subsystem to manage the associated
Working Storage.

3-14 305-CD-024-002

3.2.2.7 Layering of GUIs for System Operations

The Data Server Subsystem must be operable and controllable. This is made difficult by the size
and complexity of the Subsystem. Our approach to operator control is to òlayeró our operator
interfaces (GUIs). The subsystem level GUIs will provide normal operational control and insight
into system operations. These views into the system are grouped into system management and
request management functions. CI level information, both software and hardware, are available to
the operator if he or she wants to òdrill downó into the internals of the system, a request, or an
active system user. The subsystem level GUIs are described here in Table 3.2.2.7-1. Each of the
CI GUI interfaces are described in the appropriate CI section.

Table 3.2.2.7-1. Data Server Subsystem System Management GUI (1 of 3)

GUI Description Data Operations

Data Server
Subsystem
Management

Primary Screen for
Data Server System
Management. Root
screen for the
following GUIs.

References to:
 System State,
 Log & Reports,
 Configuration,
 Client
Management and
 Resource
Management GUIs.

Logon
Realizes and/or makes the GUIs visible.

System State GUI Allows operators to
manage the state of
the overall Data
Server.

Subsystem name
Subsystem state
(active, degraded,
down)

Startup
Shutdown
Restart

Log & Reports
GUI

Allows operators to
view and manage
DSS logs. This GUI
will utilize the
logging and
reporting GUIs
provided by MSS.

Logged information
including status,
errors, faults

View log contents
Sort
Generate Report (print)

Configuration GUI Allows operators to
manage the
configuration of
DSS component
software.

Persistent
Configuration
information (file or
database)

View
Update

Client
Management GUI

Allows operators to
manage the DSS
clients. This GUI
will utilize the GUIs
provided by MSS.

Client information
including:
 name,
 email address,
 privilege
information.
 (for further
definition see MSS
User Profile)

View
Register
Logon
Unregister
Update

3-15 305-CD-024-002

GUI Description Data Operations

Resource
Management GUI

Allows operators to
manage overall
DSS resources.

Scope/Filter (DSS-
wide, Process,
HWCI, Client)
Resource identified
Location
Description
State
Utilization data

Update State
View

Data Server
Request
Management

Primary Screen for
Data Server
Requests. Also root
screen for the
following GUIs (drill-
down support).

Request
information:
 ID,
 CSCI,
 Process,
 State,
 Current Status,
 Client,
 Priority
References to:
 Request,
 Log & Reports,
 Configuration,
 Client
Management and
 Resource
Management GUIs.

Logon
Filters on: All, State, Client, CSCI,
Process, Priority)
View Requests
Delete Requests
Update Requests
Realizes and/or makes the GUIs visible.

Request Lineage Allows operators to
determine the
relationships
between requests.

Request
information:
 ID,
 CSCI,
 Process,
 State
 Current Status,
 Priority
 Child Request
 Parent Request

View
Print
See lineage
Show Parent
Show Child

Client Information Allows operators to
manage the DSS
clients. This
information is
provided to support
a òdrill-downó
information about a
request. This GUI
will utilize the GUIs
provided by MSS.

Client information
including:
 name,
 email address,
 privilege
information.
 (for further
definition see MSS
User Profile)

View
Register
Logon
Unregister
Update

Table 3.2.2.7-1. Data Server Subsystem System Management GUI (2 of 3)

3-16 305-CD-024-002

3.2.3. Data Server Subsystem Common Design

This section describes some DSS design components that are common across DSS CSCIs.

3.2.3.1. Costing/Utilization

While it is the responsibility of the Billing and Accounting Subsystem (BAAS) to provide a
mechanism of pricing services and to the client account billing, the DSS components are
responsible for providing resource estimation and utilization. It is the responsibility of the BAAS
to convert that resource utilization into pricing and billing information. In this light, we look at the
DSS as responsible for providing "costing" (in terms of resource utilization) information, and
BAAS for converting those costs into prices (in terms of units relative to client account billing).

Since each DSS component has a responsibility to provide costing information, a single design
mechanism has been defined that will support a DAAC-configurable resource costing, on a
service-by-service basis. A set of classes that are to be re-used across the DSS CSCI for costing
estimation and utilization have been designed. For purposes of this document, these classes are
documented as part of the storage management CSCI, in the Utilization (Uz) CSC. All of the
classes have a prefix of DsUz.

This model is based on the concept of collecting the resources that are utilized to fulfill a given
service request, then determining how much they are/would be utilized in fulfilling that request.
There is a table that contains rows of application, service and resource tuples. The application is
included in order to allow support of multiple DSS applications from the same table. Each service
may require multiple resources used. In this case there would be multiple rows in the table for that
service, one for each resource used. This table is to be implemented using DBMS technology,
which will allow DAACs to modify the resources used on a service-by-service (by-application)
basis.

Once all the resources for a service are collected, each will support its own costing based on the
amount of data it is being applied to. The resource will convert the volume of data, in megabytes,
into appropriate units, based on a static utilization factor. This allows different types of resources
to vary in their "cost" per volume of data.

The detailed design of these classes is presented within the Storage Management section of this
document.

GUI Description Data Operations

Process Resource
Management

Allows operators to
manage overall
DSS resources
utilized by a
request. This
information is
provided to support
a òdrill-downó
information about a
request.

Scope/Filter (DSS-
wide, Process,
HWCI, Client
[default])
Resource identified
Location
Description
State
Utilization data

Update State
View

Table 3.2.2.7-1. Data Server Subsystem System Management GUI (3 of 3)

3-17 305-CD-024-002

3.2.3.2. Generic Server

Early in the development cycle of Release A, the DSS development team recognized the value of
a generic framework to support development of distributed objects in a client/server architecture.
The goals of this framework were to support distributed objects for a variety of client/server
applications, isolate the generic mechanisms from the application specific logic, allow extension
on both the client and server sides of the application, support both state-less and stateful
connections and abstract away all the underlying distributed object technology (currently
OODCE), allowing for a technology migration with no impact to client software interfaces.

The result of this effort is a framework, implemented as a set of class libraries, that supports not
only distributed objects, but also client connections to the server. These connections are easily
established and broken. The connections can be either state-less or state-ful. State-less
connections support short-term single activity sessions with clients, while state-ful connections
support longer term, multiple activity sessions, with a capability of queueing requests. The types
of connections are built to support application specific behavior through specialization.

The basic information passed between application clients and their servers are commands and
requests. As part of their usage of the framework, applications can specialize commands and
requests, adapting them to implement application specific behavior. The requests that are
submitted can be synchronous or asynchronous. Asynchronous request use a callback function to
notify clients of changes in state, including completion.

This framework is used to support several of the application processes being developed as part of
the DSS. This is being implemented within the Release A effort.

3.2.4. Data Server Subsystem Use of Key Design Mechanisms

This section is provided to describe how the Data Server Subsystem will utilize some of the ECS
provided Key Mechanisms. These Key Mechanisms are being developed as a part of the normal
development effort, under the responsibility of the Infrastructure Design Group (IDG) for Release
B. The design details of each of these Key Mechanisms can be found in the volume titled Release
B CSMS Communication Subsystem Design Specification, 305-CD-028-002, of this document.

3.2.4.1. Universal References

Universal References are the Key Mechanism used to uniquely identify an entity within ECS. The
general application specific use of the Universal Reference Key Mechanism is to specialize two
classes, EcUrUR and EcUrURProvider, for each type of UR that is offered by the application to
the ECS.

Within the DSS, we have identified the need for 5 different types of data server URs that will
inherit from the EcUrUR and EcUrURProvider classes. These five types of data server URs are:

GranuleUR

DsConnectionUR

SubscriptionUR

EventUR

DsServerUR

3-18 305-CD-024-002

As developers we've been given a model and a set of classes upon which to base our needed URs.
This model requires us to create specialization classes from two base classes for each type of UR
that will be required by the data server. These base classes are the EcUrUR and EcUrURProvider
classes. In classes derived from each of these two base classes we need to specialize two virtual
functions. These virtual functions are:

EcUrUR::Externalize

EcUrUR::Internalize

EcUrURProvider::Extract

EcUrURProvider::Reconstitute

The basic implementation of URs based on this model is:

UR:<URID>:<implementation specific data><0>

The UR and colons are literals. The <URID> is defined at UR registration time, and will be defined
by the CSS/DE UR implementors. The <implementation specific data> is where we get to declare
what we need in order to uniquely identify those entities represented by the UR.

3.2.4.1.1. GranuleUR

The GranuleUR will be used to represent a granule in the data server. Its <implementation specific
data> is defined to be:

<serverUR><GranuleID>,

where <serverUR> is as defined below and <GranuleID> is defined as:

<type>:<subtype>:<uniqueID>.

<type>::16 bytes

<subtype>::16 bytes

<uniqueID>::20 bytes

The total size of a GranuleUR is 187 bytes, plus TBD, the size of the URID that will be determined
by CSS/DE/UR developers.

3.2.4.1.2. DsConnectionUR

The DsConnectionUR will be used to represent a clientõs connection with the data server. This
will be primarily used when a session is to be suspended and resumed. Its <implementation
specific data> is defined to be:

<serverUR><ConnectionID>,

where <serverUR> is as defined below and <ConnectionID> is defined as:

Connection::<uniqueID>.

<uniqueID>::8 bytes

The total size of a DsConnectionUR is 153 bytes, plus TBD, the size of the URID that will be
determined by CSS/DE/UR developers.

3-19 305-CD-024-002

3.2.4.1.3. SubscriptionUR

The SubscriptionUR will be used to represent a specific subscription that has been submitted to a
subscription server. Its <implementation specific data> is defined to be:

<serverUR><SubscriptionID>,

where <serverUR> is as defined below and <SubscriptionID> is defined as:

Subscription::<uniqueID>.

<uniqueID>::8 bytes

The total size of a SubscriptionUR is 155 bytes, plus the size of the URID that will be determined
by CSS/DE/UR developers.

3.2.4.1.4. EventUR

The EventUR will be used to represent a specific event that has been registered with a subscription
server. Its <implementation specific data> is defined to be:

<serverUR><EventID>,

where <serverUR> is as defined below and <EventID> is defined as:

SubscriptionEvent::<uniqueID>.

<uniqueID>::8 bytes

The total size of an EventUR is 160 bytes, plus the size of the URID that will be determined by
CSS/DE/UR developers.

3.2.4.1.5. DsServerUR

The DsServerUR will be used to represent a specific executing data server application that is a
service provider. Examples of these include running ScienceDataServer and SubscriptionServer
applications. The <implementation specific data> of a DsServerUR is defined to be:

<CDSname>,

where <CDSname> is the uuid of the process as it was registered with the DCE Naming
Service.

<serverUR>::UR:<URID>:<CDSname>

<URID>:: TDB (by CSS/DE)

<CDSname>:: 128 bytes

The total size of a DsServerUR is 133 bytes, plus the size of the URID that will be determined by
CSS/DE/UR developers.

3.2.4.2. Distributed Object Framework

The use of the Distributed Obejct Framework (DOF) key mechanism within DSS is encapsulated
in the generic server (discussed above) or in the use of Server/Request Framework. Significant
effort was been taken to eliminate direct use of the DOF within DSS applications.

3-20 305-CD-024-002

3.2.4.3. Event Detection/Logging

The Data Server will use MSS Event services to log a number of system level events. The types
of events are best categorized as general events and CSCI based events. While the entire list of
MSS events is not yet completely defined, the following is a solid representation of those MSS
events that are required by the Data Server applications in order to support the appropriate system
level management. In this list we are not accounting for any fault, error or warning-type of events.
Also not included in this list are any instrumentation events.

3.2.4.3.1. General Events

Process Startup

Process Normal Shutdown

3.2.4.3.2. SDSRV Events

Client Session Established

Client Session Suspended

Client Session Resumed

Client Session Terminated

Request Received

Request Queued

Request Activated

Request Completed

Request Deleted

Search Started

Search Completed

OnDemand Process Initiated

OnDemand Process Completed

Granule Insertion

3.2.4.3.3. DDIST Events

Distribution Request Received

Distribution Notice sent

Distribution Request Completed

Distribution Operator Intervention

3.2.4.3.4. STMGT Events

Resource Allocation

Resource Deallocation

Archive connection established

3-21 305-CD-024-002

Archive connection terminated

Store Service complete

Retrieve Service complete

Resource not available

Resource in maintenance

Resource on-line

3.2.4.4. Managed Process Framework

This Key Mechanism provides ECS application teams a common framework that facilitates the
development of client/server ECS applications. In general, this Key Mechanism defines a
classification of ECS applications, and a set of services provided by each classification. This
classification is implemented as a set of classes. The leaf-node types in the classification tree are
designed to be specialized by the application, allowing for the application to develop its own
implementation for various process services.

Each of the ECS-built applications that comprise the DSS are types of ManagedProcesses. As
managed processes, each will be specializing the EcPfManagedServer class. This specialization
will include implementations of the PfShutdown and PfGetShutdownSec member functions.
During coding, the specialized classes will be instantiated immediately after the main () function.
The following is an example of a snippet of code instantiating the type of ManagedProcess object.

.

.

.

main()

{

 <DsXXCSCI>ManagedProcessmyApp(argc, argv, configfile);

.

.

.

myApp.PfStart();

}

The details of the CSCI application specializations, as well as the logic for the implemented
member functions is described in detail within each of the CSCI sections of this document.

3.2.4.5. Mode Management

Mode Management within DSS will be handled in two ways. The first is within ECS-built
software, which will utilize the Managed Process Framework (MPF). Within the MPF, various
environment and configuration parameters will be managed, allowing the Managed Process to be
running in the specified mode. At this time there is expected to be no mode specific logic required

3-22 305-CD-024-002

for our ECS-build applications. Their mode will be dicated by their configuration and the
environement in which they are executing.

The second technique for managing mode within DSS is related to how the COTS products used
are mode aware. Since COTS products are not themselves MSS managed applications the MPF
does not support their configuration and execution environment. COTS products role in
supporting various modes of operation will be described within the appropriate CSCI sections of
this design document.

4-1 305-CD-024-002

4. SDSRV - Science Data Server CSCI

This section contains the design information presented at IDR-B. Detailed design is currently in
progress for the SDSRV CI and will be fully documented in the re-delivery of The Release B SDPS
Data Server (305-CD-024) prior to the Delta Detailed Design Review for the SDSRV and the
DDSRV.

4.1 CSCI Overview
The Science Data Server CSCI provides the interface via which clients request the functions
offered by the data server subsystem. There may be one or several implementations of the Science
Data Server CSCI (called Science Data Servers) at any given site. Each Science Data Server
provides access to a collection of earth science and related data. The scope of data and services
offered by a Science Data Server are defined in the following manner:

• The Science Data Server makes its data types and operations on those data types known to
the ECS community by advertising itself to the Advertising Server (ADSRV, part of the
Interoperability Subsystem, see Volume 6 of this design specification). The contents of
Advertisements include the identifier of the specific science data server (the service
provider), the name of the data type (ESDT) offering that service, and the name of the
service being offered, as well as descriptions of the general services being offered for the
collection and the required interface definition of the service.

• The Science Data Server uses Data Type Descriptors, one for each ESDT, as formal
descriptions of the ESDT, including its attributes and operations. The Descriptor for an
ESDT contains many pieces of information about the specific ESDT that are required for
the ESDT to participate in the ECS. Data search and access operations are expressed in
terms provided by this Descriptor. For example, searching for LIS03 data based on 'spatial
coverage' and 'temporal coverage' is only possible if 'spatial coverage' and 'temporal
coverage' have been defined in the LIS03 Descriptor (and made available through
Data Dictionary services); the definition would specify, for example, what types of
input parameters can be used in the search. Requirements for this schema-type information
contained within the Descriptor are laid down in the ECS Core Meta Data Model.

• The Science Data Server provides a description of the meaning of each ESDT, each
attribute, and each operation or service. This information is an integral part of the database
managed by the Science Data Server, is available for access by queries sent to a Data
Server,

 and is made available for access by and input into the Data Dictionary
Services CSCI (DDICT). The source of this information is also in the ESDT's
Descriptor.

4.2 CSCI Context
Figure 4.2-1 provides the context diagram for the SDSRV CI. This context diagram shows the
Release B interfaces to other ECS CSCIs.

4-2 305-CD-024-002

S
ci

en
ce

D
at

a
S

er
ve

r

P
R

O
N

G

P
LA

N
G

V
er

si
on

_0
 G

at
ew

ay

IN
G

S
T

A
IT

T
L

D
D

IS
T

C
S

M
S

A
D

S
R

V

S
T

M
G

T

A
dm

in
/O

P

C
lie

nt
In

fo
, S

es
si

on
Id

,
R

eq
ue

st
Id

, S
ea

rc
hC

rit
er

ia
,

D
at

aO
bj

ec
tR

ef
er

en
ce

s,
A

cq
ui

re
In

fo
, E

S
D

T
In

fo
,

S
ub

se
tIn

fo

C
lie

nt
In

fo
, S

es
si

on
Id

,
R

eq
ue

st
Id

, E
S

D
T

In
fo

S
es

si
on

Id
, S

ta
tu

s,

N
ot

ifi
ca

tio
n,

S
ub

sc
rip

tio
nI

d,
 R

es
ul

ts
S

et
,

R
eq

ue
st

Id

S
es

si
on

Id
, S

ta
tu

s,
 N

ot
ifi

ca
tio

n,
S

ub
sc

rip
tio

nI
d,

R
es

ul
ts

S
et

, R
eq

ue
st

Id

S
es

si
on

Id
, S

ta
tu

s,
N

ot
ifi

ca
tio

n,
 R

eq
ue

st
Id

S
es

si
on

Id
, S

ub
sc

rip
tio

nI
d,

S
ta

tu
s,

 N
ot

ifi
ca

tio
n,

R
eq

ue
st

Id
S

es
si

on
Id

, S
ta

tu
s,

R
es

ul
ts

S
et

,
R

eq
ue

st
Id

C
lie

nt
In

fo
, S

es
si

on
Id

, R
eq

ue
st

Id
, S

ub
sc

rip
tio

nI
nf

o,
S

ub
sc

rip
tio

nI
d,

 S
ea

rc
h

C
rit

er
ia

, D
at

aO
bj

ec
tR

ef
er

en
ce

s,
A

cq
ui

re
In

fo
, B

ro
w

se
In

fo
,

M
et

ad
at

aI
nf

o

C
lie

nt
In

fo
, S

es
si

on
Id

, R
eq

ue
st

Id
, S

ub
sc

rip
tio

nI
nf

o,
S

ub
sc

rip
tio

nI
d,

 S
ea

rc
hC

rit
er

ia
, D

at
aO

bj
ec

tR
ef

er
en

ce
s,

A
cq

ui
re

In
fo

, E
S

D
T

In
fo

, B
ro

w
se

In
fo

,,
M

et
ad

at
aI

nf
o

C
lie

nt
In

fo
, S

es
si

on
Id

,
S

ub
sc

rip
tio

nI
nf

o,
 S

ub
sc

rip
tio

nI
d,

R
eq

ue
st

Id

A
dv

er
tis

em
en

t,
C

an
ce

lA
dv

er
tis

em
en

tR
eq

ue
st

S
ta

tu
s

S
es

si
on

Id
, S

ta
tu

s,

N
ot

ifi
ca

tio
n,

 R
eq

ue
st

Id

C
lie

nt
In

fo
, S

es
si

on
Id

,
R

eq
ue

st
Id

, E
S

D
T

In
fo

S
ta

tu
s,

U
til

iz
at

io
n

R
eq

ue
st

Id
, D

at
aR

ef
er

en
ce

,
D

is
tr

ib
ut

io
nM

od
e,

D
is

tr
ib

ut
io

nF
or

m
at

,
C

lie
nt

Id

A
llo

ca
tio

nI
de

nt
ifi

er
,

D
at

aT
yp

eO
bj

ec
t,

C
on

fir
m

at
io

n,
S

ta
tu

s,
 E

ve
nt

, U
til

iz
at

io
n

S
ta

tu
s,

 R
eq

ue
st

Id
, D

at
aR

ef
er

en
ce

,
P

rio
rit

y,
 D

at
aT

yp
eO

bj
ec

t,
C

lie
nt

Id
,

A
llo

ca
tio

nI
de

nt
ifi

er
, R

eq
ue

st
or

N
am

e,
R

es
ou

rc
e,

 S
iz

e

C
on

fig
ur

at
io

nT
ok

en
, C

on
fig

ur
at

io
nV

al
ue

, S
ch

em
aI

nf
o,

A
ct

iv
ity

D
om

ai
n,

 D
at

aO
bj

ec
tR

ef
er

en
ce

, C
lie

nt
In

fo
, S

es
si

on
Id

,
R

eq
ue

st
Id

, S
ub

sc
rip

tio
nI

nf
o,

 S
ub

sc
rip

tio
nI

d,
 S

ea
rc

hC
rit

er
ia

,
A

cq
ui

re
In

fo
, E

S
D

T
In

fo
, B

ro
w

se
In

fo

S
ta

tu
s,

 C
on

fig
ur

at
io

nV
al

ue
,

A
ct

iv
ity

S
ta

tu
s,

 S
es

si
on

Id
, N

ot
ifi

ca
tio

n,
S

ub
sc

rip
tio

nI
D

, R
es

ul
ts

S
et

F
ig

u
re

 4
.2

-1
.

S
D

S
R

V
 C

I I
n

te
rf

ac
es

4-3 305-CD-024-002

Table 4.2-1 provides a mapping for the SDSRV CI interfaces provided to other ECS CSCI's. The
table defines the interfaces in terms of the SDSRV-provided classes (from the Client CSC), and the
specific service to be used to accomplish that interface. The response (return parameter) from that
member function is also included.

Table 4.2.1. SDSRV CI Interfaces (1 of 3)

Interface Interface Input Interface Output Description

ConnectServ-
er (Session)

DsClESDTReferenceCol-
lector::DsClESDTRefer-
enceCollector ()

*DsClESDT
ReferenceCollector

This interface is used by SDSRV clients
to initiate a session with the SDSRV.
The SDSRV will create a session for
this client and return a reference to that
session.

GetStatus
(Session |
Request)

DsClRequest::GetStatus() GlStatus This interface is used by SDSRV clients
to obtain the current status of a speci-
fied session, or a specified request
within that session. The SDSRV will re-
turn the status of the request.

Terminate
(Session |
Request)

DsClESDTReferenceCol-
lector::~DsClESDTRefer-
enceCollector ()

void This interface is used by SDSRV clients
to terminate the entire session with the
SDSRV.

ChangePrior-
ity (Session |
Request)

DsClRequest::SetPriori-
ty(DsTRequestPriority)

GlStatus This interface is used by the SDSRV cli-
ents to alter the priority of a given re-
quest within a session. The SDSRV will
respond with a status.

Notify (Ses-
sion |
Request)

none GlNotification This interface is used by the SDSRV to
send notifications to its clients. The no-
tification may be either a direct mes-
sage (for example, information to be
displayed within a dialogue box on the
desktop) or an e-mail message (utiliz-
ing the CSS e-mail services).

Search DsClESDTReferenceCol-
lector::Search(DsClQuery)

GlStatus This interface is used by SDSRV clients
to search a collection of data objects.
The search will either define or refine
the domain of data objects that the cli-
ent has in their context of the SDSRV
holdings. The SDSRV will return a sta-
tus of the search and populate the
DsClESDTReferenceCollector with
DsClESDTReference objects for each
search "hit".

AddtoCollec-
tion

DsClESDTReferenceCol-
lector::Insert(DsClES-
DTReference)

GlStatus This interface is used by SDSRV clients
to add data objects to the client’s cur-
rent collection of data objects. The SD-
SRV will return the status of the
collection modification.

Suspend
Session

DsClESDTReferenceCol-
lector::Suspend()

GlUR This interface is used by SDSRV clients
to suspend the current session. The
SDSRV will return the UR of the sus-
pended session.

4-4 305-CD-024-002

Interface Interface Input Interface Output Description

Resume Ses-
sion

DsClESDTReferenceCol-
lector::Re-
sume(MSS_UserProfile,
GlUR)

GlStatus This interface is used by SDSRV clients
to resume a previously suspended ses-
sion. The SDSRV will return the status
of the resume activity.

GetResults-
Set

DsClRequest::GetResults() GlParameterList This interface is used by SDSRV clients
to assess the results of a completed re-
quest. A ResultsSet is a implemented
as a GlParameterList.

ListContents DsClESDTReferenceCol-
lector::ListURs(DsClRe-
quest)

GlParameterList This interface is used by SDSRV clients
to get a set of URs, one for each gran-
ule represented in the clients current
session.

Acquire DsClESDTReferenceCol-
lector::Submit(DsClRe-
quest)

GlStatus This interface is used by SDSRV clients
to submit request for the acquire ser-
vice of ESDT data objects. The client
will submit information about the acqui-
sition (e.g. other support files [QA Sta-
tistics, ProductionHistory, etc.]) as a
GlParameterList within the request.
The SDSRV will return a status of the
acquisition request.

Insert DsClESDTReferenceCol-
lector::Submit(DsClRe-
quest)

GlStatus This interface is used by SDSRV clients
to submit a request for the insert ser-
vice of an ESDT. This is an interface
which is expected to be rather limited in
terms of availability to general users.
The SDSRV will return the status of the
insert request.

Browse DsClESDTReference::Sub-
mit(DsClRequest)

GlStatus This interface is used by SDSRV clients
to submit a request for the browse ser-
vice of an ESDT data object. The SD-
SRV will return the status of the browse
request.

Change
Configuration

DsAdRequestCollec-
tor::Update(GlParameter)

GlStatus This interface is used by SDSRV ad-
ministrator/operators to modify the con-
figuration of the SDSRV. The
administrator/operator will submit the
configuration item as a token and the
new value that the configuration item is
to have. The SDSRV will return a status
of the ChangeConfiguration service.

GetConfigu-
ration

DsAdRequestCollec-
tor(GlParameter&)

GlParameter This interface is used by SDSRV ad-
ministrator/operators to retrieve the val-
ue of an SDSRV configuration item.
The administrator/operator will submit
the desired configuration item token
and the SDSRV will return the value of
that configuration item.

Table 4.2.1. SDSRV CI Interfaces (2 of 3)

4-5 305-CD-024-002

4.3 CSCI Object Model
This section provides and describes the object model for the Science Data Server CSCI's design.
The model is depicted in Figures 4.3-1 through 4.3-20. Each of the objects in this figure is
described in the subsequent paragraphs. The Science Data Server Object model consists of a series
of OMT class diagrams. The SDSRV CI's design has been decomposed into a set of class
categories. A class category is a collection cooperating classes that fulfill a common set of
responsibilities to other classes in the system. Each class category can be viewed from two
perspectives: the public view and the implementation view. The public view is the interfaces
(method signatures) of those classes that the users (other software classes, outside this class
category) have access to, or will interface with. The implementation view is the entire set of
classes that comprise the class category. This includes both those classes in the public view, as
well as the collaborating classes used by those public classes. Each class category has at least one
OMT class diagram. The public view is defined as those classes adorned as [PUBLIC]. Due to
complexity, some class categories are modeled in more than one OMT class diagram.

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text "All Attributes inherited from the
parent class" (and analogously for operations). If a derived class has additional attributes of its
own, those new attributes are listed, but the attributes from the parent class are not repeated
(analogously for operations).

Interface Interface Input Interface Output Description

UpdateSche-
ma

DsAdDescriptor::Up-
date(GlParameterList)

GlStatus This interface is used by SDSRV ad-
ministrator/operators modify the exist-
ing data type schema. The
administrator/operators will submit the
new schema information, or a refer-
ence to where it is held. The SDSRV
will update the schema and return the
status of the UpdateSchema service.

MonitorActivi-
ty

DsAdRequestCollector::Li-
stAllRequests()

DsClSRVCollector This interface is used by SDSRV ad-
ministrator/operators to monitor the ac-
tivity of the SDSRV. The SDSRV will
respond with a vector of all currently
submitted requests.

Table 4.2.1. SDSRV CI Interfaces (3 of 3)

4-6 305-CD-024-002

D
sA

dR
eq

ue
st

In
te

rf
ac

e

D
sA

dD
at

at
yp

eI
nt

er
fa

ce

D
sA

dD
es

cr
ip

to
r

M
S

S
Lo

g

D
sA

dL
og

D
sC

lD
es

cr
ip

to
r

D
sA

dS
ub

sc
rip

tio
nI

nt
er

fa
ce

D
sA

dC
on

fig
ur

at
io

nI
nt

er
fa

ce

D
sA

dB
as

eI
nt

er
fa

ce
D

sA
dS

ys
te

m
In

te
rf

ac
e

D
sA

dR
es

ou
rc

eI
nt

er
fa

ce

D
sA

dR
es

ou
rc

eI
nt

er
fa

ce
()

G
et

R
es

ou
rc

es
()

G
et

R
es

ou
rc

es
(D

sS
rC

lie
nt

&
)

G
et

R
es

ou
rc

es
(R

W
C

S
tr

in
g

C
S

C
I)

G
et

R
es

ou
rc

es
(R

W
C

S
tr

in
g

re
so

ur
ce

)

~
D

sA
dR

es
ou

rc
eI

nt
er

fa
ce

()

D
sA

dS
ys

te
m

In
te

rf
ac

e(
)

R
es

ta
rt

(R
W

C
S

tr
in

g
su

bs
ys

te
m

, D
sE

A
dP

ro
ce

ss
 p

ro
ce

ss
)

S
hu

td
ow

n(
R

W
C

S
tr

in
g

su
bs

ys
te

m
, D

sE
A

dP
ro

ce
ss

 p
ro

ce
ss

)

S
ta

rt
up

(R
W

C
S

tr
in

g
su

bs
ys

te
m

, D
sE

A
dP

ro
ce

ss
 p

ro
ce

ss
)

~
D

sA
dS

ys
te

m
In

te
rf

ac
e(

)

D
sA

dB
as

eI
nt

er
fa

ce
()

C
lo

se
F

ile
(f

st
re

am
&

)

H
el

p(
)

O
pe

nF
ile

(R
W

C
S

tr
in

g
fil

en
am

e)

S
av

eF
ile

(f
st

re
am

&
)

~
D

sA
dB

as
eI

nt
er

fa
ce

()

D
sA

dC
on

fig
ur

at
io

nI
nt

er
fa

ce
()

E
di

t(
fs

tr
ea

m
&

)

S
av

e(
fs

tr
ea

m
&

)

~
D

sA
dC

on
fig

ur
at

io
nI

nt
er

fa
ce

()

D
sA

dS
ub

sc
rip

tio
nI

nt
er

fa
ce

()

G
et

S
ub

sc
rip

tio
nI

nf
o(

G
lU

R
&

 s
ub

sc
rip

tio
n)

G
et

S
ub

sc
rip

tio
ns

()

G
et

S
ub

sc
rip

tio
ns

(D
sE

S
bA

ct
io

n
ac

tio
n)

G
et

S
ub

sc
rip

tio
ns

(D
sE

S
bE

ve
nt

 e
ve

nt
)

G
et

S
ub

sc
rip

tio
ns

(M
S

S
_U

se
rP

ro
fil

e)

G
et

U
se

rI
nf

o(
D

sS
rC

lie
nt

&
)

~
D

sA
dS

ub
sc

rip
tio

nI
nt

er
fa

ce
()

D
sA

dL
og

()

~
D

sA
dL

og
()

D
sA

dD
es

cr
ip

to
r(

ty
pe

: R
W

C
S

tr
in

g&
, v

sn
: R

W
C

S
tr

in
g&

, c
lie

nt
: G

lC
lie

nt
&

, d
s:

 G
lU

R
&

)

D
sA

dD
es

cr
ip

to
r(

ty
pe

: R
W

C
S

tr
in

g&
, v

sn
: R

W
C

S
tr

in
g&

, c
lie

nt
: G

lC
lie

nt
&

, d
s:

 G
lU

R
&

,

st
rm

: i
os

tr
ea

m
&

)

U
pd

at
e(

G
lP

ar
am

et
er

Li
st

&
)

~
D

sA
dD

es
cr

ip
to

r(
)

D
sA

dD
at

at
yp

eI
nt

er
fa

ce
()

D
sA

dD
at

at
yp

eI
nt

er
fa

ce
(G

lU
R

&
 d

at
as

er
ve

r)

A
dd

D
at

at
yp

e(
D

sT
G

eT
yp

eI
D

, R
W

C
S

tr
in

g
de

sc
rip

to
rF

ile
na

m
e,

 R
W

C
S

tr
in

g
D

LL
fil

en
am

e)

D
el

et
eD

at
at

yp
e(

D
sT

G
eT

yp
eI

D
)

E
di

tD
at

at
yp

e(
D

sT
G

eT
yp

eI
D

)

F
in

dD
at

at
yp

e(
R

W
C

S
tr

in
g

na
m

e,
 R

W
C

S
tr

in
g

ve
rs

io
n,

 D
sT

G
eT

yp
eI

D
)

~
D

sA
dD

at
at

yp
eI

nt
er

fa
ce

()

D
sA

dR
eq

ue
st

In
te

rf
ac

e(
G

lU
R

&
, G

lC
lie

nt
&

)

G
et

C
lie

nt
In

fo
(D

sS
rC

lie
nt

&
)

G
et

H
is

to
ry

(D
sT

S
rR

eq
ue

st
ID

)

G
et

R
eq

ue
st

(D
sT

S
rR

eq
ue

st
ID

)

G
et

R
eq

ue
st

s(
)

G
et

R
eq

ue
st

s(
D

sE
S

rP
rio

rit
y)

G
et

R
eq

ue
st

s(
D

sE
S

rS
ta

te
)

G
et

R
eq

ue
st

s(
D

sS
rC

lie
nt

&
)

G
et

R
eq

ue
st

s(
D

sT
S

rP
ro

ce
ss

 p
id

)

G
et

R
eq

ue
st

s(
R

W
C

S
tr

in
g

C
S

C
I)

G
et

R
es

ou
rc

es
(D

sT
S

rR
eq

ue
st

ID
)

S
et

Q
ue

ue
S

iz
e(

th
re

sh
ol

d:
 in

t)

~
D

sA
dR

eq
ue

st
In

te
rf

ac
e(

)

[D
IS

T
R

 O
B

J]
[D

IS
T

R
 O

B
J]

+

+

 :

R
W

V
ec

to
r(

is
tr

ea
m

&
)

+

 :

R
W

V
ec

to
r(

is
tr

ea
m

&
)

+

 :

R
W

V
ec

to
r(

is
tr

ea
m

&
)

+

 :

is
tr

ea
m

&

+

+

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

+

+

 :

co
ns

t G
lS

ta
tu

s
&

+

 :

R
W

B
oo

le
an

+

 :

fs
tr

ea
m

&

+

 :

co
ns

t G
lS

ta
tu

s
&

+

+

+

+

+

+

+

 :

D
sS

bS
ub

sc
rip

tio
n&

+

 :

R
W

V
ec

to
r<

D
sS

bS
ub

sc
rip

tio
n>

+

 :

R
W

V
ec

to
r<

D
sS

bS
ub

sc
rip

tio
n>

+

 :

R
W

V
ec

to
r<

D
sS

bS
ub

sc
rip

tio
n>

+

 :

R
W

V
ec

to
r<

D
sS

bS
ub

sc
rip

tio
n>

+

 :

M
S

S
_U

se
rP

ro
fil

e

+

+

+

+

+

+

+

+

+

+

 :

co
ns

t G
lS

ta
tu

s&

+

+

+

 :

D
sD

eD
es

cr
ip

to
r&

+

+

+

 :

M
S

S
_U

se
rP

ro
fil

e

+

 :

is
tr

ea
m

 &

+

 :

D
sS

rR
eq

ue
st

&

+

 :

D
sS

rR
eq

ue
st

V
ec

to
r&

+

 :

D
sS

rR
eq

ue
st

V
ec

to
r&

+

 :

D
sS

rR
eq

ue
st

V
ec

to
r&

+

 :

D
sS

rR
eq

ue
st

V
ec

to
r&

+

 :

D
sS

rR
eq

ue
st

V
ec

to
r&

+

 :

D
sS

rR
eq

ue
st

V
ec

to
r&

+

 :

is
tr

ea
m

&

+

 :

R
W

B
oo

le
an

+

F
ig

u
re

 4
.3

-1
.

D
sA

d
A

d
m

in
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-7 305-CD-024-002

D
sG

uA
dm

in

D
sG

uC
on

fig
ur

at
io

nM
gm

t

D
sG

uS
ys

te
m

M
gm

t

D
sG

uD
at

at
yp

eM
gm

t
D

sG
uR

es
ou

rc
eM

gm
t

D
sG

uR
eq

ue
st

M
gm

t

D
sG

uS
ub

sc
rip

tio
nM

gm
t

D
sG

uS
ub

sc
rip

tio
nM

gm
t(

)

G
et

S
ub

sc
rip

tio
nI

nf
o(

D
sS

bS
ub

sc
rip

tio
n&

)

G
et

U
se

rP
ro

fil
e(

D
sS

bS
ub

sc
rip

tio
n&

)

S
et

F
ilt

er
A

ct
io

n(
D

sE
S

bA
ct

io
n

ac
tio

nI
D

)

S
et

F
ilt

er
C

lie
nt

(M
S

S
_U

se
rP

ro
fil

e&
)

S
et

F
ilt

er
E

ve
nt

(D
sT

S
bE

ve
nt

ID
 e

ve
nt

ID
)

~
D

sG
uS

ub
sc

rip
tio

nM
gm

t(
)

D
sG

uR
eq

ue
st

M
gm

t(
)

G
et

C
lie

nt
In

fo
(D

sS
rR

eq
ue

st
&

)

G
et

R
eq

ue
st

H
is

to
ry

(D
sS

rR
eq

ue
st

&
)

G
et

R
eq

ue
st

In
fo

(D
sS

rR
eq

ue
st

&
)

G
et

R
eq

ue
st

R
es

ou
rc

es
(D

sS
rR

eq
ue

st
&

)

S
et

F
ilt

er
C

S
C

I(
R

W
C

S
tr

in
g

C
S

C
I)

S
et

F
ilt

er
C

lie
nt

(M
S

S
_U

se
rP

ro
fil

e)

S
et

F
ilt

er
P

rio
rit

y(
R

W
C

S
tr

in
g

pr
io

rit
y)

S
et

F
ilt

er
P

ro
ce

ss
(R

W
C

S
tr

in
g

pi
d)

S
et

F
ilt

er
S

ta
te

(R
W

C
S

tr
in

g
st

at
e)

~
D

sG
uR

eq
ue

st
M

gm
t(

)

D
sG

uR
es

ou
rc

eM
gm

t(
)

S
et

F
ilt

er
C

I(
R

W
C

S
tr

in
g

C
S

C
I)

S
et

F
ilt

er
C

lie
nt

(M
S

S
_U

se
rP

ro
fil

e&
)

S
et

F
ilt

er
R

es
ou

rc
e(

R
W

C
S

tr
in

g
re

so
ur

ce
)

~
D

sG
uR

es
ou

rc
eM

gm
t(

)

D
sG

uD
at

at
yp

eM
gm

t(
)

A
dd

D
at

at
yp

e(
D

sG
eT

yp
eI

D
, R

W
C

S
tr

in
g

de
sc

rip
to

rF
ile

, R
W

C
S

tr
in

g
D

LL
fil

eN
am

e)

D
el

et
eD

at
at

yp
e(

D
sG

eT
yp

eI
D

)

E
di

tD
at

at
yp

e(
D

sG
eT

yp
eI

D
)

F
in

dD
at

at
yp

e(
D

sE
G

eT
yp

eC
od

e,
 R

W
C

S
tr

in
g

na
m

e,
 R

W
C

S
tr

in
g

ve
rs

io
n)

~
D

sG
uD

at
at

yp
eM

gm
t(

)

D
sG

uS
ys

te
m

M
gm

t(
)

R
es

ta
rt

(R
W

C
S

tr
in

g
su

bs
ys

te
m

, D
sE

A
dP

ro
ce

ss
 p

ro
ce

ss
)

S
hu

td
ow

n(
R

W
C

S
tr

in
g

su
bs

ys
te

m
, D

sE
A

dP
ro

ce
ss

 p
ro

ce
ss

)

S
ta

rt
up

(R
W

C
S

tr
in

g
su

bs
ys

te
m

, D
sE

A
dP

ro
ce

ss
 p

ro
ce

ss
)

~
D

sG
uS

ys
te

m
M

gm
t(

)

D
sG

uC
on

fig
ur

at
io

nM
gm

t(
)

E
di

t(
)

S
av

e(
)

~
D

sG
uC

on
fig

ur
at

io
nM

gm
t(

)

D
sG

uA
dm

in
()

C
le

ar
F

ilt
er

()

C
lo

se
F

ile
(f

st
re

am
, R

W
C

S
tr

in
g

fil
en

am
e)

C
lo

se
F

ile
(if

st
re

am
, R

W
C

S
tr

in
g

fil
en

am
e)

C
lo

se
F

ile
(o

fs
tr

ea
m

, R
W

C
S

tr
in

g
fil

en
am

e)

E
xi

t(
)

H
el

p(
)

O
pe

nF
ile

(R
W

C
S

tr
in

g
fil

en
am

e,
 fs

tr
ea

m
&

))

O
pe

nF
ile

(R
W

C
S

tr
in

g
fil

en
am

e,
 if

st
re

am
&

)

O
pe

nF
ile

(R
W

C
S

tr
in

g
fil

en
am

e,
 o

fs
tr

ea
m

&
)

S
av

eF
ile

(R
W

C
S

tr
in

g
fil

en
am

e)

S
et

A
ct

io
n(

D
sE

G
uA

ct
io

n)

S
et

F
ilt

er
(D

sE
G

uF
ilt

er
)

S
et

M
od

e(
D

sE
G

uM
od

e)

~
D

sG
uA

dm
in

()

+

+

 :

is
tr

ea
m

&
 in

fo
rm

at
io

n

+

 :

M
S

S
_U

se
rP

ro
fil

e

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

+

 :

M
S

S
_U

se
rP

ro
fil

e

+

 :

is
tr

ea
m

&
 h

is
to

ry

+

 :

is
tr

ea
m

&
 in

fo
rm

at
io

n

+

 :

is
tr

ea
m

&
 r

es
ou

rc
eL

is
t

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

+

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

+

+

+

+

+

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

 :

co
ns

t G
lS

ta
tu

s&

+

F
ig

u
re

 4
.3

-2
.

D
sA

d
G

U
I O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-8 305-CD-024-002

DsClCollector

DsClSubscriptionCollector <RWVector> DsClESDTReferenceCollector <RWVector>

DsClESDTReference

DsClTypeInfo

DsClSubscription

DsClCollectorVector <T:class>

DsGeTypeID

DsClRequest <RWVector>

DsClCommand

RWTPtrOrderedVector <T>

DsClRequestVector <RWVector>

DsClSubmittedRequest

DsClESDTReferenceVector

myTypeInfo

DsClESDTReferenceVector()
DsClESDTReferenceVector(DsClTypeInfo &)
~DsClESDTReferenceVector()
getTypeID()
setTypeInfo(DsClTypeInfo*)
getTypeInfo()

DsClCollectorVector()
~DsClCollectorVector()
GetCollector(const GlUr &dataserver)

myStatus
myMetadata
myQueryableParameters
myScienceParametersB

GetName(RWCString &)
GetVersionB(RWCString &)
GetMetadata(GlParameterList &)
GetQueryableParameters(GlParameterList &)
GetScienceParametersB(GlParameterList &)

mySearchCallback
myStateB
myStatus

DsClESDTReferenceCollector(GlUR &dataserver, MSS_UserProfile &, DsTSessionID =
NULL)
DsClESDTReferenceCollectorB(MSS_UserProfile &, GlUR &session)
~DsClESDTReferenceCollector()
UpdateState(GlParameterList &)
Search(DsClQuery &)
Reset()
GetStatusB()
ListURsB()
SetStateB(DsEClState)
GetStateB()
SetStatusCallback(GlCallback&)
SetDialogCallbackB(GlCallback&)
SetSearchCallback(GlCallback&)
GetSessionLogB(ostream &outfile)
ResumeSessionB(GlUR &SuspendedSession)
SuspendSessionB(GlUR &SuspendedSession)
DeleteESDTReference(DsClESDTReference*)
CreateESDTReference(GlUR &)
AddESDTReferenceB(const DsClESDTReference *ERef)
RemoveESDTReferenceB(DsClESDTReference &)
GetRequestVector()
Submit(DsClRequest &)
GetRequestsB(GlURVector &)
BuildRequestVectorB(GlURVector &)

myStatus

DsClSubscriptionCollector(GlUR &dataserver, MSS_UserProfile &)
~DsClSubscriptionCollector()
BuildListB()
BuildList(MSS_UserProfile &)
BuildList(Advertisement&)
CancelSubscription(DsClSubscription*)
CreateSubscription(RWBoolean SubmittedFlag, istream &Stream,
DsClSubscriptionCollector *me)

DsClCollector(GlUR &dataserver, MSS_UserProfile &)
~DsClCollector()
SubmitToServer(DsClRequest&)
GetConnectionID()

[DISTR OBJ]

[DISTR OBJ]

<RWVector>

[DISTR OBJ]

<RWVector>

<T:class>

[PERSISTENT CLASS]

<RWVector>

<T>

<RWVector>

[DISTR OBJ][PERSISTENT CLASS]

 - : DsClTypeInfo*

 +
 +
 +
 +
 +
 +

 +
 +
 + : T&

 - : GlStatus
 - : GlParameterList
 - : GlParameterList
 - : GlParameterList

 + : GlStatus &
 + : GlStatus &
 + : GlStatus &
 + : GlStatus &
 + : GlStatus &

 - : GlCallback
 - : DsEClState = Active
 - : GlStatus

 +

 +
 +

± : const GlStatus &
 + : const GlStatus &
 + : const GlStatus &
 + : const GlStatus &
 + : GlURVector &
 + : RWBoolean
 + : DsEClState
 + : void
 + : void
 ± : void
 + : const GlStatus &
 ± : const GlStatus &
 + : const GlStatus &
 ± : RWBoolean
 ± : DsClESDTReference*
 +
 + : const GlStatus &
 + : const DsClRequestVector &
 + : const GlStatus &
 ± : const GlStatus &

± : const GlStatus &

 - : GlStatus

 +
 +
 + : const GlStatus &
 + : const GlStatus &
 + : const GlStatus &
 - : const GlStatus &
 - : DsClSubscription*

 -
 +
 ± : const GlStatus &
 + : DsESrConnectionID

collected by

1+

1+

Figure 4.3-3. DsClCollector Object Model Diagram

4-9 305-CD-024-002

D
sC

lD
es

cr
ip

to
r

D
sC

lE
S

D
T

R
ef

er
en

ce

D
sG

eT
yp

eI
D

m
yU

R

m
yC

re
at

eD
at

e

m
yS

iz
e

m
yC

ol
le

ct
or

ou
rC

ol
le

ct
or

V
ec

to
r

m
yT

yp
eI

nf
o

m
yS

ta
tu

s

m
yR

ef
er

en
ce

V
ec

to
r

D
sC

lE
S

D
T

R
ef

er
en

ce
(t

he
D

S
S

:G
lU

R
 &

, t
he

B
os

s:
D

sC
lE

S
D

T
R

ef
er

en
ce

C
ol

le
ct

or
 *

=
 N

U
LL

)

G
et

C
ol

le
ct

or
()

G
et

C
re

at
eD

at
e(

)

G
et

Q
ue

ry
ab

le
P

ar
am

et
er

s(
G

lP
ar

am
et

er
Li

st
 &

)

G
et

R
ef

er
en

ce
V

ec
to

r(
)

G
et

S
er

vi
ce

A
pp

le
tB

(t
he

S
vc

:R
W

C
S

tr
in

g
&

, s
vc

U
R

:G
lU

R
&

, t
he

V
er

si
on

:R
W

C
S

tr
in

g
&

=
N

U
LL

)

G
et

S
er

vi
ce

C
on

fig
ur

at
io

nB
(t

he
S

vc
:R

W
C

S
tr

in
g

&
, t

he
C

on
fig

:G
lP

ar
am

et
er

Li
st

 &
)

G
et

S
iz

e(
)

G
et

T
yp

eI
D

()

G
et

T
yp

eI
nf

o(
)

G
et

U
R

()

In
sp

ec
t(

G
lP

ar
am

et
er

Li
st

 &
)

S
et

C
ol

le
ct

or
(D

sC
lE

S
D

T
R

ef
er

en
ce

C
ol

le
ct

or
 *

)

S
et

C
re

at
eD

at
e(

R
W

D
at

e
&

)

S
et

R
ef

er
en

ce
V

ec
to

r(
D

sC
lE

S
D

T
R

ef
er

en
ce

V
ec

to
r

*)

S
et

S
iz

e(
si

ze
_t

)

S
et

T
yp

eI
nf

o(
D

sC
lT

yp
eI

nf
o

*)

S
et

U
R

(G
lU

R
 &

)

S
et

V
er

si
on

B
(R

W
C

S
tr

in
g

&
)

S
ub

m
it(

D
sC

lR
eq

ue
st

 &
)

~
D

sC
lE

S
D

T
R

ef
er

en
ce

()

ou
rC

ol
le

ct
or

V
ec

to
r

m
yT

yp
eI

D

m
yS

ta
tu

s

~
D

sC
lD

es
cr

ip
to

r(
)

V
al

id
at

eB
(is

tr
ea

m
 &

m
et

ad
at

a)

G
et

Q
ue

ry
ab

le
P

ar
am

et
er

s(
G

lP
ar

am
et

er
Li

st
 &

)

G
et

M
C

F
(o

st
re

am
 &

)

G
et

T
yp

eI
D

()

D
sC

lD
es

cr
ip

to
r(

G
lC

lie
nt

 &
, G

lU
R

 &
,D

sG
eT

yp
eI

D
 &

)

G
et

C
ol

le
ct

or
()

S
et

T
yp

eI
D

(D
sG

eT
yp

eI
D

 &
)

m
yV

er
si

on
B

m
yC

od
e

m
yN

am
e

G
et

T
yp

eV
er

si
on

B
()

G
et

T
yp

eC
od

e(
)

G
et

T
yp

eN
am

e(
)

S
et

T
yp

eV
er

si
on

B
(R

W
C

S
tr

in
g

&
)

S
et

T
yp

eC
od

e(
un

si
gn

ed
 lo

ng
)

S
et

T
yp

eN
am

e(
R

W
C

S
tr

in
g

&
)

D
sG

eT
yp

eI
D

(R
W

C
S

tr
in

g
&

th
eC

od
e)

D
sG

eT
yp

eI
D

(R
W

C
S

tr
in

g
&

th
eN

am
e,

 R
W

C
S

tr
in

g
th

eV
er

si
on

=
N

U
LL

)

~
D

sG
eT

yp
eI

D
()

[D
IS

T
R

 O
B

J]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

-

 :
U

R

-

 :
R

W
D

at
e

-

 :
si

ze
_t

-

 :
D

sC
lE

S
D

T
R

ef
er

en
ce

C
ol

le
ct

or
 *

 =
 N

U
LL

-

 :
D

sC
lC

ol
le

ct
or

V
ec

to
r<

D
sC

lE
S

D
T

R
ef

er
en

ce
C

ol
le

ct
or

>

-

 :
D

sC
lT

yp
eI

nf
o

*

-

 :
G

lS
ta

tu
s

-

 :
D

sC
lE

S
D

T
R

ef
er

en
ce

V
ec

to
r

*

+

+

 :

co
ns

t D
sC

lE
S

D
T

R
ef

er
en

ce
C

ol
le

ct
or

 &

+

 :

co
ns

t R
W

D
at

e
&

+

 :

co
ns

t G
lS

ta
tu

s
&

-

 :
D

sC
lE

S
D

T
R

ef
er

en
ce

V
ec

to
r

*

+

 :

co
ns

t G
lS

ta
tu

s
&

+

 :

co
ns

t G
lS

ta
tu

s
&

+

 :

si
ze

_t

+

 :

co
ns

t D
sG

eT
yp

eI
D

 &

-

 :
co

ns
t D

sC
lT

yp
eI

nf
o

&

+

 :

co
ns

t G
lU

R
 &

+

 :

co
ns

t G
lS

ta
tu

s
&

-

 :
vo

id

-

 :
vo

id

-

 :
vo

id

-

 :
vo

id

-

 :
vo

id

-

 :
vo

id

-

 :
vo

id

+

 :

co
ns

t G
lS

ta
tu

s
&

+

-

 :
R

W
V

ec
to

r
*

-

 :
D

sG
eT

yp
eI

D
 *

-

 :
G

lS
ta

tu
s

+

+

 :

G
lS

ta
tu

s

+

 :

R
W

B
oo

le
an

+

 :

G
lS

ta
tu

s

+

 :

D
sG

eT
yp

eI
D

 &

-

-

 :
D

sC
lD

es
cr

ip
to

rC
ol

le
ct

or
*

+

-

 :
R

W
C

S
tr

in
g

-

 :
un

si
gn

ed
 lo

ng

-

 :
R

W
C

S
tr

in
g

+

 :

R
W

C
S

tr
in

g

+

 :

un
si

gn
ed

 lo
ng

 &

+

 :

R
W

C
S

tr
in

g

-

-

-

+

+

+

F
ig

u
re

 4
.3

-4
.

D
sC

IE
S

D
T

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

4-10 305-CD-024-002

DsClQuery

DsClSubscription

ourCollectorvector
myCollector
mySubmittedFlag
myDescription
myUserInfo
myExpirationDate
myAction
myDurationType

DsClSubscription()
DsClSubscription(submittedflag, DsClSubscriptionCollector&, Stream)
DsClSubscription(userinfo, Advertisement&, DsClSubscriptionCollector&)
GetAction(DsClAction &)
GetDescription()
GetDurationtype()
GetExpirationdate()
GetSubmittedflag()
GetUserinfo(GLClient&)
SetAction(DsClAction&)
SetDescription(RWCString)
SetDurationType(DsEClSubscriptionType)
SetExpirationDate(RWDate)
SetSubmittedFlag(RWBoolean)
Submit()
Withdraw()
~DsClSubscription()

myStatus
QueryTypeB

Constraints
MaxHitsB
myLocalCallback

DsClQuery()
DsClQuery(GlParameterList &)
ConvertToCommand(DsClRequest &)
GetCallback(GlCallback &)
GetConstraints(GlParameterList &)
GetMaxHitsB(int &)
GetQueryTypeB()
SetCallback(GlCallback &)
SetConstraints(GlParameterList &)
SetMaxHitsB(int)
SetQueryTypeB(DsTQueryType)
~DsClQuery()

±

 : DsClSubscriptionCollectorVector&

±

 : DsClSubscriptionCollector&

±

 : RWBoolean = RWTrue

±

 : RWCString

±

 : DsClClient&

±

 : RWDate

±

 : DsClAction

±

 : enum DsEClSubscriptionType = {ONCE, OUTSTANDING}

 +
 +
 +
 + : void
 + : RWCString
 + : DsEClSubscriptionType
 + : RWDate
 + : RWBoolean
 +
 + : void
 + : void
 + : void
 + : void

±

 : void
 + : GlStatus&
 + : GlStatus&
 +

 - : GlStatus
 - : DsTQueryType = Inventory

 - : GlParameterList
 - : int
 - : GlCallback

 +
 +

±

 : DsClRequest &
 + : GlStatus &
 + : GlStatus &
 + : GlStatus &
 + : DsTQueryType
 + : GlStatus &
 + : GlStatus &
 + : GlStatus &
 + : GlStatus &
 +

Figure 4.3-5. DsClQuery_Subscription Object Model Diagram

4-11 305-CD-024-002

D
sC

lA
ct

io
n

D
sC

lC
om

m
an

d

D
sC

lR
eq

ue
st

<
R

W
V

ec
to

r>

D
sC

lS
ub

sc
rip

tio
n

D
sC

lS
ub

m
itt

ed
R

eq
ue

st

R
W

T
P

tr
O

rd
er

ed
V

ec
to

r
<

T
>

D
sC

lN
ot

ifi
ca

tio
nR

ec
ei

ve
r

D
sS

rR
eq

ue
st

B
as

e

D
sS

rC
om

m
an

dB
as

e

D
sS

bA
ct

io
nB

as
e

m
yC

al
lb

ac
k

m
yR

ec
ei

ve
F

la
g

D
sC

lN
ot

ifi
ca

tio
nR

ec
ei

ve
r(

)

D
sC

lN
ot

ifi
ca

tio
nR

ec
ei

ve
r(

se
rv

er
: G

lU
R

, c
al

lb
ac

k:
 G

lC
al

lb
ac

k)

~
D

sC
lN

ot
ifi

ca
tio

nR
ec

ei
ve

r(
)

S
et

C
al

lb
ac

k(
ca

llb
ac

k:
 G

lC
al

lb
ac

k)

S
ta

rt
R

ec
ei

vi
ng

()

S
to

pR
ec

ei
vi

ng
()

G
et

O
ne

N
ot

ifi
ca

tio
n(

)

m
yS

ta
tu

s

m
yR

es
ul

ts

m
yC

al
lb

ac
k

m
yU

se
r

m
yC

on
ne

ct
io

n

m
yS

ub
m

itT
im

e

m
yF

in
is

hT
im

e

m
yI

D
B

m
yI

nf
o

D
sC

lS
ub

m
itt

ed
R

eq
ue

st
(D

sE
S

rC
on

ne
ct

io
nI

D
, M

S
S

_U
se

rI
D

, D
sC

lR
eq

ue
st

&
)

~
D

sC
lS

ub
m

itt
ed

R
eq

ue
st

()

S
et

S
ta

tu
s(

G
lS

ta
tu

s
*)

G
et

S
ta

tu
s(

)

G
et

R
es

ul
ts

()

S
et

C
al

lb
ac

k(
G

lC
al

lb
ac

k)

G
et

U
se

r(
)

G
et

C
on

ne
ct

io
nI

D
()

G
et

S
ub

m
itT

im
e(

)

G
et

F
in

is
hT

im
e(

)

G
et

ID
B

()

G
et

In
fo

()

W
ai

tS
ta

tu
s(

)

S
et

P
rio

rit
yB

(D
sE

S
rR

eq
ue

st
P

rio
rit

y)

m
yS

ub
m

itt
ed

F
la

g

m
yC

ol
le

ct
or

m
yC

al
lb

ac
k

m
yQ

ue
ry

m
yS

ta
te

B

m
yL

as
tS

ta
tu

sB

m
yL

as
tR

es
ul

ts
B

D
sC

lR
eq

ue
st

()

~
D

sC
lR

eq
ue

st
()

T
ex

tif
y(

)

C
an

ce
lB

()

S
et

S
ta

tu
sC

al
lb

ac
k(

G
lC

al
lb

ac
k

*)

S
ub

m
it(

D
sC

lE
S

D
T

R
ef

er
en

ce
 &

)

E
st

im
at

eB
()

G
et

R
es

ul
ts

()

S
et

Q
ue

ry
(D

sC
lQ

ue
ry

 *
)

G
et

Q
ue

ry
()

D
sC

lR
eq

ue
st

(c
m

d:
 D

sC
lC

om
m

an
d

*,
 p

ty
: D

sE
S

rR
eq

ue
st

P
rio

rit
y)

S
et

S
ta

te
B

(D
sE

C
lS

ta
te

)

G
et

S
ta

te
B

()

S
et

La
st

S
ta

tu
sB

(G
lS

ta
tu

s)

D
sC

lC
om

m
an

d(
)

D
sC

lC
om

m
an

d(
ad

v:
 A

dv
er

tis
em

en
t &

, p
ar

m
s:

 G
lP

ar
am

et
er

Li
st

 &
)

D
sC

lC
om

m
an

d(
sv

c:
 R

W
C

S
tr

in
g&

, p
l:

G
lP

ar
am

et
er

Li
st

&
, c

at
: D

sE
S

rC
om

m
an

dC
at

eg
or

y)

D
sC

lC
om

m
an

d(
S

pe
ci

al
C

om
m

an
d)

~
D

sC
lC

om
m

an
d(

)

T
ex

tif
y(

)

m
yR

eq
ue

st

D
sC

lA
ct

io
n(

)

D
sC

lA
ct

io
nB

(D
sC

lR
eq

ue
st

 &
, R

W
B

oo
le

an
 =

 F
A

LS
E

, R
W

C
S

tr
in

g
*

=
 N

U
LL

)

D
sC

lA
ct

io
nB

(R
W

C
S

tr
in

g
&

te
xt

, D
sC

lR
eq

ue
st

 *
 =

 N
U

LL
)

~
D

sC
lA

ct
io

n(
)

G
et

R
eq

ue
st

B
()

S
et

R
eq

ue
st

B
(D

sC
lR

eq
ue

st
 &

)

C
le

ar
R

eq
ue

st
B

()

<
R

W
V

ec
to

r>

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

<
T

>

[D
IS

T
R

 O
B

J]

-

 :
G

lC
al

lb
ac

k

-

 :
R

W
B

oo
le

an

+

+

+

+

 :

vo
id

+

 :

vo
id

+

 :

vo
id

±
 :

G
lS

ta
tu

s

-

 :
G

lS
ta

tu
s

-

 :
G

lP
ar

am
et

er
Li

st

-

 :
G

lC
al

lb
ac

k

-

 :
M

S
S

_U
se

rI
D

-

 :
D

sE
S

rC
on

ne
ct

io
nI

D

-

 :
R

W
T

im
e

-

 :
R

W
T

im
e

-

 :
D

sC
lS

ub
m

itt
ed

R
eq

ue
st

ID

-

 :
D

sS
rR

eq
ue

st
In

fo
*

+

+

+

 :

vo
id

+

 :

co
ns

t G
lS

ta
tu

s
&

+

 :

G
lP

ar
am

et
er

Li
st

 &

+

 :

vo
id

+

 :

M
S

S
_U

se
rI

D

+

 :

D
sE

S
rC

on
ne

ct
io

nI
D

+

 :

R
W

T
im

e

+

 :

R
W

T
im

e

+

 :

D
sC

lS
ub

m
itt

ed
R

eq
ue

st
ID

±

 :
D

sS
rR

eq
ue

st
In

fo
*

+

 :

vo
id

+

 :

vo
id

-

 :
R

W
B

oo
le

an

-

 :
D

sC
lE

S
D

T
R

ef
er

en
ce

C
ol

le
ct

or
 *

-

 :
G

lC
al

lb
ac

k

-

 :
D

sC
lQ

ue
ry

 *

-

 :
D

sE
C

lS
ta

te
 =

 A
ct

iv
e

-

 :
G

lS
ta

tu
s

-

 :
G

lP
ar

am
et

er
Li

st
&

+

+

+

 :

R
W

C
S

tr
in

g

+

 :

G
lS

ta
tu

s

+

+

 :

G
lS

ta
tu

s

+

 :

co
ns

t D
sS

rC
os

t

+

 :

co
ns

t G
lP

ar
am

et
er

Li
st

 &

+

+

 :

D
sC

lQ
ue

ry
 *

+

+

+

 :

D
sE

C
lS

ta
te

+

 :

co
ns

t G
lS

ta
tu

s&

+

+

+

+

+

+

 :

R
W

C
S

tr
in

g

-

 :
D

sC
lR

eq
ue

st

+

+

+

+

+

 :

co
ns

t D
sC

lR
eq

ue
st

&

+

 :

vo
id

+

 :
vo

id

ac
tio

n
of

F
ig

u
re

 4
.3

-6
.

D
sC

IR
eq

u
es

t
O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-12 305-CD-024-002

DsCnConfiguration

DsCnDSSStartup

DsCnDSSConfiguration
DsGeESDTConfiguration

DsDeESDTDescriptor <RWVector>

GetProcessesToStart()

DsCnDSSStartup()

StartProcesses()

InitializeESDTs()

RestartESDTs()

~DsCnDSSStartup()

myFile

DsCnConfiguration(const RWCString&)

Add(const RWCString&, const RWCString&)

Add(const RWCString&, const RWCString&, const RWCString&)

Get(const RWCString&)

Get(const RWCString&, const RWCString&)

GetSectionToken(const RWCString&, RWCString&)

ReDoFile()

Remove(const RWCString&)

Remove(const RWCString&, const RWCString&)

Update(const RWCString&, const RWCString&)

Update(const RWCString&, const RWCString&, const RWCString&)

~DsCnConfiguration()

[PERSISTENT CLASS]

[PERSISTENT CLASS]

<RWVector>

 +

 +

 +

 + : RWBoolean

 + : RWBoolean

 +

 - : RWCString

 +

 + : RWBoolean

 + : RWBoolean

 + : const RWString

 + : const RWString

±

 : RWBoolean

±

 : const RWBoolean

 + : RWBoolean

 + : RWBoolean

 + : RWBoolean

 + : RWBoolean

 + {abstract}

enquires

initializes

enquires
enquires

Figure 4.3-7. DsCnConfiguration Object Model Diagram

4-13 305-CD-024-002

D
sC

sC
S

D
T D
sC

sI
m

ag
e

D
sC

s8
B

itI
m

ag
e

D
sC

s2
4B

itI
m

ag
e

D
sC

sG
rid

D
sC

sS
w

at
h

D
sC

sP
oi

nt

D
sC

sR
aw

D
sG

eE
S

D
T

E
os

H
df

P
oi

nt

E
os

H
df

8B
itI

m
ag

e
E

os
H

df
24

B
itI

m
ag

e

E
os

H
df

G
rid

E
os

H
df

S
w

at
h

D
sC

sL
oo

ku
pT

ab
le

E
os

H
df

LU
T

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

D
sC

sT
ab

le
B

G
et

La
be

l()

G
et

C
ol

um
n(

)

G
et

R
ow

()

m
yC

ol
or

N
am

es

m
yN

am
e

S
et

C
ol

or
(id

)

S
et

C
on

tr
as

t(
)

m
yn

am
e

m
ys

iz
e

m
yl

oc
at

io
n

G
et

S
iz

e(
)

m
yS

iz
e

m
yL

ab
el

s

m
yL

oc
at

io
n

m
yN

am
e

m
yR

es
ol

ut
io

n

m
yT

im
e

m
yV

ec
to

r

G
et

La
be

ls
()

G
et

R
ec

or
dT

yp
e(

)

G
et

S
iz

e(
)

P
ar

am
et

er
S

ub
se

tB
()

S
et

La
be

ls
()

m
yC

om
pr

es
si

on

m
yD

im
en

si
on

s

m
yL

ab
el

s

m
yL

oc
at

io
n

m
yN

am
e

m
yO

rb
itR

ep
re

se
nt

at
io

n

m
yR

es
ol

ut
io

n

m
yS

iz
e

m
yS

w
at

hT
yp

e

m
yT

im
e

C
om

pr
es

s(
)

C
re

at
eR

ow
s(

)

D
el

et
eR

ow
s(

)

E
xt

ra
ct

R
ow

s(
)

G
et

R
ec

or
dT

yp
e(

)

G
et

S
iz

e(
)

S
ub

sa
m

pl
eB

(s
ca

nl
in

e)

S
ub

sa
m

pl
eB

(t
im

e)

S
ub

sa
m

pl
eB

(r
ow

)

S
ub

se
tB

(p
ar

am
et

er
)

S
ub

se
tB

(s
ca

nl
in

e)

S
ub

se
tB

(t
im

e)

m
yA

rr
ay

La
be

ls

m
yC

om
pr

es
si

on

m
yD

im
en

si
on

m
yG

eo
ph

ys
ic

al
P

ar
am

et
er

s

m
yG

rid
T

yp
e

m
yN

am
e

m
yR

es
ol

ut
io

n

A
pp

ly
P

ro
je

ct
io

n(
)

C
om

pr
es

s(
)

E
xt

ra
ct

S
lic

e(
)

G
et

O
rb

itM
od

el
N

am
e(

)

S
ub

sa
m

pl
eB

(p
ol

yg
on

)

S
ub

sa
m

pl
eB

(r
ec

ta
ng

le
)

S
ub

se
tB

(p
ar

am
et

er
)

S
ub

se
tB

(p
ol

yg
on

)

S
ub

se
tB

(r
ec

ta
ng

le
)

S
ub

se
tB

(t
im

e)

U
nc

om
pr

es
s(

)

m
yB

itD
ep

th

m
yI

m
ag

eT
yp

e

m
yL

en
gt

h

m
yN

am
e

m
yR

es
ol

ut
io

n

m
yW

id
th

A
ni

m
at

eB
()

C
om

pr
es

sB
()

O
ve

rla
yB

()

S
ub

sa
m

pl
eB

()

S
ub

se
tB

()

U
nc

om
pr

es
sB

()

m
yC

om
pr

es
si

on
T

yp
e

m
yD

at
e

m
yF

or
m

at

m
yP

er
m

is
si

on
s

m
yS

iz
e

D
el

et
eC

S
D

T
(v

oi
d)

E
xt

ra
ct

(c
ha

r)

G
et

F
or

m
at

()

G
et

Lo
ca

tio
n(

ch
ar

)

G
et

P
er

m
is

si
on

s(
vo

id
)

G
et

S
iz

e(
vo

id
)

G
et

V
er

si
on

N
o(

)

G
et

V
ie

w
()

In
se

rt
(c

ha
r)

N
ew

C
S

D
T

(v
oi

d)

S
et

P
er

m
is

si
on

s(
ch

ar
)

U
pd

at
eC

S
D

T
(c

ha
r)

. .
 .

+

+

+

-

-

+

+

-

-

-

+

-

-

-

-

-

-

-

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

+

+

+

+

+

-

 :
ty

pe
de

f =
 N

on
e

-

 :
ch

ar
 =

 y
yy

y/
m

m
m

/d
dd

-

 :
ty

pe
de

f =
 R

aw

-

 :
ch

ar
 =

 R
W

-

 :
in

te
ge

r
=

 0

+

 :

su
cc

es
s/

fa
il

{a
bs

tr
ac

t}

+

 :

su
cc

es
s/

fa
il

{a
bs

tr
ac

t}

+

 :

ty
pe

de
f {

ab
st

ra
ct

}

+

+

 :

ty
pe

de
f

+

 :

in
t

+

 :

R
W

C
S

tr
in

g
ve

rs
io

n

+

 {

ab
st

ra
ct

}

+

 :

su
cc

es
s/

fa
il

{a
bs

tr
ac

t}

+

 :

su
cc

es
s/

fa
il

{a
bs

tr
ac

t}

+

+

 {

ab
st

ra
ct

}

F
ig

u
re

 4
.3

-8
.

D
sC

sC
S

D
T

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

4-14 305-CD-024-002

DsDbAccess

DsDbGranuleToDbVector

DsDbAttributeToTableVector

DsDbInterface

DsDbEngine

DsMdCatalog

myUserName

myPassWord

myServerName

myContext

myConnection

myCommand

myExecStatus

myState

DsDbInterface()

~DsDbInterface()

Connect(char* userName, char* password, char* serverName)

Disconnect()

ReConnect()

ConnectionState()

ExecutionStatus()

Execute(char* SQLCmd)

FetchQueryResult(GlParameterList& result)

FetchQueryResult(RWTPtrOrderedVector<void*>& result)

VerifyConnection()

myAttributeToTableVector

GetTableColumnName(DsTMdAttributeTableXref& attribute, DsMdDbConnection&
connection)

PutTableColumnNames(DsTMdAttributeTableXref& newAttribute, DsMdDbConnection&
connection)

UpdateTableColumnName(DsTMdAttributeTableXref& attribute, DsMdDbConnection&
connection)

Initialize(DsMdDbConnection& connection)

myGranuleToDBVector

UpdateProductDb(DsTMdProductDbXrefList& productDbList, DsMdDbConnection&
connection)

GetProductDb(DsTMdProductDbXref& product, DsTMdProductDbXrefList& result,
DsMdDbConnection&)

PutProductDb(DsTMdProductDbXrefList& productDbList, DsMdDbConnection&
connection)

Initialize(DsMdConnection& connection)

myDatabase

ourDBConnections
myObjectType

myObjectIdentifier

myPersistenceType

myLocation

myPrimaryKey

myAssociations

myForeignKeys

myIndexableColumns

myResponseLevel

DsDbAccess()

DsDbAccess(CollectableObject &)

~DsDbAccess()

OpenDatabase()

CloseDatabase()

GetDBHandle()

ReturnDBHandle(DsDbInterface)

Fill(const CollectableObject &, ostream &)

Update(const CollectableObject &, istream &)

Store(const CollectableObject &)

UnStore(CollectableObject &)

NextTypeCode()

[PERSISTENT CLASS]

 - : char* = null

 - : char* = null

 - : char* = null

 - : CS_CONTEXT* = null

 - : CS_CONNECTION* = null

 - : CS_COMMAND* = null

 - : DsTDbExecStatus = EXEC_NONE

 - : DsTDbConnectionState = NOT_CONNECTED

 +

 +

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : DsTDbConnectionState

 + : DsTDbExecStatus

 + : DsTDbExecStatus

 + : DsTDbExecStatus

 + : DsTDbExecStatus

 + : GlStatus

 - : DsTMdAttributeTableXrefList = null

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 - : DsMdProductDbXrefList = NULL

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

$/- : RWCString & DBName

$/- : RWTPtrOrderedVector<DsDbInterface>
 - : DsEDbObjectType

 - : int

 - : DsEDbPersistenceType

 - : RWCString

 - : RWCString = myObjectIdentifier

 - : RWTPtrOrderedVector<RWCString>

 - : RWTPtrOrderedVector<RWCString>

 - : RWTPtrOrderedVector<RWCString>

 - : binary = unit

 +

 +

 +

$

± : const GlStatus &

$ ± : const GlStatus &

 ± : DsDbInterface

 ± : const GlStatus &

 + : const GlStatus &

 + : const GlStatus &

 + : int

 + : const GlStatus &

 + : int

Figure 4.3-9. DsDbWrapper Object Model Diagram

4-15 305-CD-024-002

D
sD

eE
S

D
T

D
es

cr
ip

to
r

<
R

W
V

ec
to

r>

D
sD

eM
et

ad
at

aD
ef

D
sD

eS
er

vi
ce

D
sD

eE
ve

nt

D
sD

eV
al

id
<

T
:c

la
ss

>

D
sD

eD
D

D
sD

eR
an

ge
<

T
:c

la
ss

>
D

sD
eM

at
hO

p
<

T
:c

la
ss

>
D

sD
eS

er
ie

s
<

T
:c

la
ss

>

D
sD

eS
ci

en
ce

P
ar

am
et

er

D
sD

eE
S

D
T

D
es

cr
ip

to
rS

et

D
sD

eD
D

V
ec

to
r

<
R

W
V

ec
to

r>
D

sD
eS

er
vi

ce
V

ec
to

r
<

R
W

V
ec

to
r>

D
sD

eE
ve

nt
V

ec
to

r
<

R
W

V
ec

to
r>

D
sD

eC
or

eV
al

id
V

ec
to

r
<

R
W

V
ec

to
r>

D
sD

eC
or

eV
al

id

D
sD

eS
ci

en
ce

P
ar

am
et

er
V

ec
to

r
<

R
W

V
ec

to
r>

D
sD

eM
et

ad
at

aD
ef

V
ec

to
r

<
R

W
V

ec
to

r>

D
sS

bE
ve

nt

D
sG

eT
yp

eI
D

D
sG

eE
S

D
T

D
sD

eS
ta

tic
M

et
ad

at
aV

ec
to

r
<

R
W

V
ec

to
r>

D
sD

eS
ta

tic
M

et
ad

at
a

D
sD

eV
al

id
V

ec
to

r

D
sG

eE
S

D
T

E
ve

nt
T

ab
le

<
R

W
V

ec
to

r>

D
sC

nD
S

S
S

ta
rt

up

D
sG

eE
S

D
T

C
on

fig
ur

at
io

n

D
sD

eV
al

id
V

ec
to

r(
fr

om
:is

tr
ea

m
 &

)

F
in

d(
w

ha
t:

R
W

C
S

tr
in

g
&

)

V
al

id
at

e(
m

df
ile

:is
tr

ea
m

 &
)

~
D

sD
eV

al
id

V
ec

to
r(

)

m
yN

am
e

m
yT

yp
e

m
yV

al
ue

D
sD

eS
ta

tic
M

et
ad

at
a(

fr
om

: i
st

re
am

 &
)

E
xt

er
na

liz
e(

to
: G

lP
ar

am
et

er
Li

st
 &

, s
ta

tu
s:

 G
lS

ta
tu

s
&

)

G
et

V
al

ue
()

~
D

sD
eS

ta
tic

M
et

ad
at

a(
)

D
sD

eS
ta

tic
M

et
ad

at
aV

ec
to

r(
fr

om
:is

tr
ea

m
 &

)

E
xt

er
na

liz
e(

to
:G

lP
ar

am
et

er
Li

st
 &

, s
ta

tu
s:

 G
lS

ta
tu

s&
)

F
in

dE
nt

ry
(t

he
N

am
e:

 R
W

C
S

tr
in

g)

~
D

sD
eS

ta
tic

M
et

ad
at

aV
ec

to
r(

)

D
sD

eM
et

ad
at

aD
ef

V
ec

to
r(

fr
om

: i
st

re
am

 &
)

E
xt

er
na

liz
e(

th
eM

C
F

: o
st

re
am

 &
)

G
et

Q
ue

ry
ab

le
P

ar
am

et
er

s(
th

eP
ar

am
et

er
s:

G
lP

ar
am

et
er

Li
st

 &
)

F
in

dE
nt

ry
(t

he
N

am
e:

 R
W

C
S

tr
in

g,
 th

eE
nt

ry
: D

sD
eM

et
ad

at
aD

ef
 &

)

P
ar

am
et

er
iz

e(
th

eP
ar

m
s:

G
lP

ar
am

et
er

Li
st

 &
)

H
as

M
an

da
to

ry
(t

he
M

et
: i

st
re

am
 &

, s
ta

tu
s:

 G
lS

ta
tu

s)

~
D

sD
eM

et
ad

at
aD

ef
V

ec
to

r(
)

D
sD

eS
ci

en
ce

P
ar

am
et

er
V

ec
to

r(
fr

om
: i

st
re

am
 &

)

F
in

dS
ci

en
ce

P
ar

am
et

er
(t

he
N

am
e:

 R
W

C
S

tr
in

g)

~
D

sD
eS

ci
en

ce
P

ar
am

et
er

V
ec

to
r(

)

m
yN

am
e

m
yT

yp
e

m
yV

al
id

D
sD

eC
or

eV
al

id
(f

ro
m

: i
st

re
am

 &
)

V
al

id
at

e(
th

eV
al

ue
:R

W
C

S
tr

in
g

&
)

~
D

sD
eC

or
eV

al
id

()

D
sD

eC
or

eV
al

id
V

ec
to

r(
fr

om
: i

st
re

am
 &

)

F
in

d(
m

yN
am

e:
 R

W
C

S
tr

in
g)

V
al

id
at

e(
m

yC
or

eM
et

ad
at

a:
is

tr
ea

m
 &

, G
lS

ta
tu

s
&

)

~
D

sD
eC

or
eV

al
id

V
ec

to
r(

)

D
sD

eD
D

V
ec

to
r(

fr
om

: i
st

re
am

 &
)

E
xp

or
tD

D
()

F
in

d(
th

eN
am

e:
 R

W
C

S
tr

in
g

&
)

D
sD

eS
er

vi
ce

V
ec

to
r(

fr
om

:is
tr

ea
m

 &
)

A
dv

er
tis

e(
)

F
in

d(
sv

c:
R

W
C

S
tr

in
g&

)

W
ith

dr
aw

()

~
D

sD
eS

er
vi

ce
V

ec
to

r(
)

~
D

sD
eD

D
V

ec
to

r(
)

D
sD

eE
ve

nt
V

ec
to

r(
fr

om
: i

st
re

am
 &

)

F
in

dE
ve

nt
(t

he
N

am
e:

 R
W

C
S

tr
in

g)

R
eg

is
te

r(
)

D
sD

eE
S

D
T

D
es

cr
ip

to
rS

et
()

A
dd

(t
he

N
am

e:
 R

W
C

S
tr

in
g,

 th
eV

er
si

on
: R

W
C

S
tr

in
g,

 th
eD

ef
: i

st
re

am
 &

)

R
em

ov
e(

th
eT

yp
e:

 D
sG

eT
yp

eI
D

)

E
xt

er
na

liz
e(

)

In
iti

al
iz

e(
)

R
ep

la
ce

(t
he

T
yp

e:
D

sG
eT

yp
eI

D
, n

ew
D

ef
in

iti
on

:is
tr

ea
m

 &
)

~
D

sD
eE

S
D

T
D

es
cr

ip
to

rS
et

()

m
yN

am
e

m
yI

nt
er

na
lN

am
e

m
yD

es
cr

ip
tio

n

D
sD

eS
ci

en
ce

P
ar

am
et

er
(f

ro
m

: i
st

re
am

 &
)

G
et

In
te

rn
al

N
am

e(
)

G
et

D
es

cr
ip

tio
n(

)

~
D

sD
eS

ci
en

ce
P

ar
am

et
er

()

m
yD

om
ai

nV
al

ue
s

D
sD

eS
er

ie
s(

fr
om

: i
st

re
am

 &
)

~
D

sD
eS

er
ie

s(
)

m
yM

at
hO

pe
ra

tio
n

m
yD

om
ai

n

D
sD

eM
at

h(
fr

om
: i

st
re

am
 &

)

~
D

sD
eM

at
h(

)

m
yH

ig
h

m
yL

ow

D
sD

eR
an

ge
(f

ro
m

: i
st

re
am

 &
)

~
D

sD
eR

an
ge

()

~
D

sD
eE

ve
nt

V
ec

to
r(

)

m
yN

am
e

D
sD

eV
al

id
(f

ro
m

:is
tr

ea
m

 &
)

Is
V

al
id

(t
he

V
al

ue
: T

&
)

~
D

sD
eV

al
id

()

m
yN

am
e

m
yP

ar
am

et
er

Li
st

m
yR

eq
ui

re
dP

ar
am

et
er

s

m
yD

es
cr

ip
tio

n

D
sD

eS
er

vi
ce

(f
ro

m
: i

st
re

am
&

)

A
dv

er
tis

e(
)

W
ith

dr
aw

()

V
al

id
at

e(
pa

rm
s:

G
lP

ar
am

et
er

Li
st

 &
, r

es
ul

t:G
lS

ta
tu

s
&

)

~
D

sD
eS

er
vi

ce
()

m
yA

dv
er

tis
ed

S
er

vi
ce

s

m
yC

or
eM

et
ad

at
aC

on
fig

ur
at

io
n

m
yD

at
aD

ic
tio

na
ry

In
fo

m
yE

ve
nt

s

m
yP

ro
du

ct
M

et
ad

at
aC

on
fig

ur
at

io
n

m
yS

ci
en

ce
P

ar
am

et
er

s

m
yS

ta
tic

M
et

ad
at

a

m
yS

ta
tu

s

m
yT

yp
e

m
yV

al
id

s

ou
rC

or
eV

al
id

s

D
sD

eE
S

D
T

D
es

cr
ip

to
r(

th
eT

yp
e:

 D
sG

eT
yp

eI
D

 &
)

C
on

ve
rt

T
oP

lis
t(

th
eM

D
:is

tr
ea

m
 &

, t
he

Li
st

:G
lP

ar
am

et
er

Li
st

 &
)

E
xt

er
na

liz
e(

os
tr

ea
m

)

G
et

C
ol

le
ct

io
nG

ro
up

(s
ta

tic
M

D
: G

lP
ar

am
et

er
Li

st
&

, s
ta

tu
s:

G
lS

ta
tu

s
&

)

G
et

M
C

F
(t

he
M

C
F

: o
st

re
am

 &
)

G
et

P
ar

am
et

er
(n

am
e:

 D
sT

pn
am

e)

G
et

Q
ue

ry
ab

le
P

ar
am

et
er

s(
th

eP
ar

am
et

er
s:

 G
lP

ar
am

et
er

Li
st

 &
)

In
iti

al
iz

e(
)

In
te

rn
al

iz
e(

th
eD

ef
: i

st
re

am
 &

)

V
al

id
at

eB
(M

et
ad

at
aF

ile
, G

lS
ta

tu
s

&
)

V
al

id
at

e(
th

eC
m

d:
 D

sS
rC

om
m

an
d,

 s
ta

tu
s:

 G
lS

ta
tu

s
&

)

W
ith

dr
aw

()

~
D

sD
eE

S
D

T
D

es
cr

ip
to

r(
)

m
yD

es
cr

ip
tio

n

m
yN

am
e

D
sD

eD
D

(f
ro

m
: i

st
re

am
 &

)

E
xp

or
tD

D
()

G
et

N
am

e(
)

~
D

sD
eD

D
()

m
yE

ve
nt

ID

m
yE

ve
nt

N
am

e

m
yR

et
ur

nI
nf

or
m

at
io

n

m
yD

es
cr

ip
tio

n

D
sD

eE
ve

nt
(f

ro
m

: i
st

re
am

 &
)

G
et

D
es

cr
ip

tio
n(

)

G
et

N
am

e(
)

R
eg

is
te

r(
)

U
nr

eg
is

te
r(

)

~
D

sD
eE

ve
nt

()

m
yA

ttr
ib

ut
eN

am
e

m
yD

at
aL

oc
at

io
n

m
yM

an
da

to
ry

F
la

g

m
yT

yp
e

D
sD

eM
et

ad
at

aD
ef

(f
ro

m
: i

st
re

am
 &

)

E
xt

er
na

liz
e(

to
: o

st
re

am
 &

)

P
ar

am
et

er
iz

e(
)

~
D

sD
eM

et
ad

at
aD

ef
()

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

<
T

:c
la

ss
>

<
T

:c
la

ss
>

<
T

:c
la

ss
>

<
T

:c
la

ss
>

<
R

W
V

ec
to

r>
<

R
W

V
ec

to
r>

<
R

W
V

ec
to

r>

<
R

W
V

ec
to

r>

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>
<

R
W

V
ec

to
r>

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

<
R

W
V

ec
to

r>

+

+

 :

D
sD

eV
al

id
 *

+

 :

G
lS

ta
tu

s

+

-

 :
R

W
C

S
tr

in
g

-

 :
D

sT
A

ttr
ib

ut
eT

yp
e

=
 S

T
R

IN
G

-

 :
R

W
C

S
tr

in
g

+

+

 :

R
W

B
oo

le
an

+

 :

G
lP

ar
am

et
er

 &

+

+

+

 :

R
W

B
oo

le
an

+

 :

D
sD

eS
ta

tic
M

et
ad

at
a

*

+

+

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

 :

R
W

B
oo

le
an

+

+

+

 :

D
sD

eS
ci

en
ce

P
ar

am
et

er
 *

+

-

 :
R

W
C

S
tr

in
g

-

 :
D

sT
A

ttr
ib

ut
eT

yp
e

=
 S

T
R

IN
G

-

 :
D

sD
eV

al
id

+

+

 :

R
W

B
oo

le
an

+

+

+

 :

D
sD

eC
or

eV
al

id
 *

+

 :

R
W

B
oo

le
an

+

+

+

 :

G
lS

ta
tu

s

+

 :

D
sD

eD
D

+

+

 :

R
W

B
oo

le
an

+

 :

D
sD

eS
er

vi
ce

*

+

 :

R
W

B
oo

le
an

+

+

+

+

 :

D
sD

eE
ve

nt
 *

+

 :

G
lS

ta
tu

s

+

+

 :

G
lS

ta
tu

s

+

+

 :

os
tr

ea
m

 &

+

 :

G
lS

ta
tu

s

+

 :

G
lS

ta
tu

s

+

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

+

+

 :

R
W

C
S

tr
in

g
&

+

 :

R
W

C
S

tr
in

g
&

+

-

 :
R

W
V

ec
to

r<
T

>

+

+

-

 :
R

W
C

S
tr

in
g

-

 :
T

+

+

-

 :
T

-

 :
T

+

+

+

-

 :
R

W
C

S
tr

in
g

+

+

 :

R
W

B
oo

le
an

+

-

 :
R

W
C

S
tr

in
g

-

 :
G

lP
ar

am
et

er
Li

st

-

 :
R

W
V

ec
to

r<
R

W
C

S
tr

in
g>

-

 :
R

W
C

S
tr

in
g

+

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

-

 :
D

sD
eS

er
vi

ce
V

ec
to

r

-

 :
D

sD
eM

et
ad

at
aD

ef
V

ec
to

r

-

 :
D

sD
eD

D
V

ec
to

r

-

 :
D

sD
eE

ve
nt

V
ec

to
r

-

 :
D

sD
eM

et
ad

at
aD

ef
V

ec
to

r

-

 :
D

sD
eS

ci
en

ce
P

ar
am

et
er

V
ec

to
r

-

 :
D

sD
eS

ta
tic

M
et

ad
at

aV
ec

to
r

-

 :
G

lS
ta

tu
s

-

 :
D

sG
eT

yp
eI

D

-

 :
R

W
V

ec
to

r<
D

sD
eV

al
id

>

-

 :
D

sD
eC

or
eV

al
id

V
ec

to
r

+

+

 :

vo
id

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

vo
id

+

 :

R
W

C
S

tr
in

g

+

 :

vo
id

+

 :

R
W

B
oo

le
an

+

 :

G
lS

ta
tu

s

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

-

 :
R

W
C

S
tr

in
g

=
 N

U
LL

-

 :
R

W
C

S
tr

in
g

+

+

 :

G
lS

ta
tu

s

+

 :

R
W

C
S

tr
in

g
&

+

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
G

lP
ar

am
et

er
Li

st

-

 :
R

W
C

S
tr

in
g

+

+

 :

R
W

C
S

tr
in

g
&

+

 :

R
W

C
S

tr
in

g
&

+

 :

G
lS

ta
tu

s

+

 :

G
lS

ta
tu

s

+

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
B

oo
le

an
 =

 F
al

se

-

 :
D

sT
A

ttr
ib

ut
eT

yp
e

=
 S

T
R

IN
G

+

+

 :

G
lS

ta
tu

s

+

 :

G
lP

ar
am

et
er

+

ha
s

co
re

 m
et

ad
at

a
va

lid
s

fo
r

re
gi

st
er

s

cr
ea

te
s

qu
er

ie
d

by

in
iti

al
iz

ed
 b

y

F
ig

u
re

 4
.3

-1
0.

 D
sD

eE
S

D
T

D
es

cr
ip

to
r

O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

4-16 305-CD-024-002

D
sG

eE
C

S
D

at
aP

ro
du

ct

D
sL

iL
IS

D
sC

eC
E

R
E

S

P
lO

nD
em

an
dP

R
N

B

D
sA

sA
st

er
B

D
sM

sM
IS

R
B

D
sM

oM
O

D
IS

B

D
sS

w
S

ea
W

in
ds

B

D
sC

oC
ol

or
B

D
sS

sS
S

A
B

D
sS

aS
ag

eB

D
sA

cA
C

R
IM

B
D

sE
tE

T
M

B

D
sE

rE
R

S
B

D
sR

aR
ad

ar
sa

tB
D

sJ
eJ

E
R

S
B

D
sM

pM
O

P
P

IT
B

m
yA

lg
or

ith
m

U
R

m
yS

um
m

ar
yL

is
t

m
yP

G
E

m
yS

S
A

P

S
ub

se
tB

(p
ar

s:
G

lP
ar

am
et

er
Li

st
)

S
ub

sa
m

pl
eB

(p
ar

s:
G

lP
ar

am
et

er
Li

st
)

G
et

S
S

A
P

()

H
as

S
um

m
ar

yS
ta

ts
()

G
et

S
um

m
ar

yS
ta

ts
()

G
et

P
G

E
In

fo
()

-

 :
G

lU
R

-

 :
G

lU
R

-

 :
G

lU
R

-

 :
G

lU
R

+

 :

G
lU

R

+

 :

G
lU

R

+

 :

G
lU

R

+

 :

R
W

B
oo

le
an

+

 :

G
lU

R

+

 :

G
lU

R

su
bm

its

F
ig

u
re

 4
.3

-1
1.

 D
sG

eE
C

S
D

at
aP

ro
d

u
ct

s
O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-17 305-CD-024-002

D
sG

eE
S

D
T

S
er

vi
ce

P
ro

vi
de

r

D
sG

eE
S

D
T

W
ra

pp
er

D
sG

eE
S

D
T

D
sG

eT
yp

eI
D

D
sG

eE
S

D
T

E
ve

nt
T

ab
le

<
R

W
V

ec
to

r>

D
sG

eE
S

D
T

D
yn

am
ic

Li
br

ar
y

D
sG

eD
yn

am
ic

Li
br

ar
y

D
sG

eS
ci

en
ce

D
at

a
D

sD
oR

ef
er

en
ce

P
ap

er
D

sN
sQ

A
S

ta
tis

tic
s

D
sN

sP
ro

du
ct

io
nH

is
to

ry
D

sG
eB

ro
w

se
P

ro
du

ct
D

sN
sS

ci
en

ce
S

of
tw

ar
eA

rc
hi

ve
P

ac
ka

ge

D
sG

eE
C

S
D

at
aP

ro
du

ct

D
sG

eS
um

m
ar

yP
ro

du
ct

D
sS

bE
ve

nt

D
sG

eE
S

D
T

C
on

fig
ur

at
io

n

D
sC

nC
on

fig
ur

at
io

n

D
sC

sC
S

D
T

D
sD

eE
S

D
T

D
es

cr
ip

to
r

<
R

W
V

ec
to

r>

D
sD

eE
S

D
T

D
es

cr
ip

to
r

<
R

W
V

ec
to

r>

D
sD

eE
S

D
T

D
es

cr
ip

to
r

<
R

W
V

ec
to

r>

D
sC

lT
yp

eI
nf

o

D
sC

lD
es

cr
ip

to
r

m
yG

ra
nu

le
Li

st

Li
st

G
ra

nu
le

s(
)

A
dd

G
ra

nu
le

(d
at

a:
G

lU
R

 &
)

R
em

ov
eG

ra
nu

le
()

m
yA

lg
or

ith
m

U
R

m
yS

um
m

ar
yL

is
t

m
yP

G
E

m
yS

S
A

P

S
ub

se
tB

(p
ar

s:
G

lP
ar

am
et

er
Li

st
)

S
ub

sa
m

pl
eB

(p
ar

s:
G

lP
ar

am
et

er
Li

st
)

G
et

S
S

A
P

()

H
as

S
um

m
ar

yS
ta

ts
()

G
et

S
um

m
ar

yS
ta

ts
()

G
et

P
G

E
In

fo
()

m
yR

ef
er

en
ce

P
ap

er
s

m
yQ

A
S

ta
tis

tic
s

m
yP

ro
du

ct
H

is
to

ry

m
yB

ro
w

se
Li

st

G
et

R
ef

er
en

ce
P

ap
er

s(
)

G
et

Q
A

D
at

aS
ta

tis
tic

s(
)

G
et

P
ro

du
ct

io
nH

is
to

ry
()

A
dd

R
ef

er
en

ce
P

ap
er

(t
he

P
ap

er
:G

lU
R

 &
)

R
em

ov
eR

ef
er

en
ce

P
ap

er
()

H
as

B
ro

w
se

()

B
ro

w
se

(p
ar

s:
G

lP
ar

am
et

er
Li

st
 &

)

m
yH

an
dl

e

D
sG

eD
yn

am
ic

Li
br

ar
y(

)

G
et

S
ym

bo
l(t

he
S

ym
bo

l:R
W

C
S

tr
in

g)

Lo
ad

Li
br

ar
y(

lib
N

am
e:

 R
W

C
S

tr
in

g)

U
nl

oa
d(

)

~
D

sG
eD

yn
am

ic
Li

br
ar

y(
)

m
yN

ew
F

un
ct

io
n

m
yT

yp
eI

D

m
yD

LL
F

ile
N

am
e

D
sG

eE
S

D
T

D
yn

am
ic

Li
br

ar
y(

D
sG

eT
yp

eI
D

 &
)

ne
w

E
S

D
T

()

~
D

sG
eE

S
D

T
D

yn
am

ic
Li

br
ar

y(
)

m
yV

er
si

on
B

m
yC

od
e

m
yN

am
e

G
et

T
yp

eV
er

si
on

B
()

G
et

T
yp

eC
od

e(
)

G
et

T
yp

eN
am

e(
)

S
et

T
yp

eV
er

si
on

B
(R

W
C

S
tr

in
g

&
)

S
et

T
yp

eC
od

e(
un

si
gn

ed
 lo

ng
)

S
et

T
yp

eN
am

e(
R

W
C

S
tr

in
g

&
)

D
sG

eT
yp

eI
D

(R
W

C
S

tr
in

g
&

th
eC

od
e)

D
sG

eT
yp

eI
D

(R
W

C
S

tr
in

g
&

th
eN

am
e,

 R
W

C
S

tr
in

g
th

eV
er

si
on

=
N

U
LL

)

~
D

sG
eT

yp
eI

D
()

m
yA

rc
hi

ve

m
yI

nt
er

fa
ce

C
on

fig
Li

st

m
yM

et
ad

at
a

m
yS

iz
e

m
yT

yp
e

m
yU

R

A
rc

hi
ve

()

E
xt

er
na

liz
e(

to
W

he
re

: o
st

re
am

 &
)

F
ill

(t
he

M
D

:
D

sM
dM

et
ad

at
a)

G
et

G
U

IC
on

fig
ur

at
io

nB
(s

vc
: R

W
C

S
tr

in
g)

G
et

Q
ue

ry
ab

le
P

ar
am

et
er

s(
G

lP
ar

am
et

er
Li

st
 &

)

G
et

S
er

vi
ce

Li
st

()

G
et

S
iz

e(
)

In
sp

ec
t(

w
ha

tE
nt

rie
s:

G
lP

ar
am

et
er

Li
st

 &
)

In
te

rn
al

iz
e(

th
eA

rg
s:

 G
lP

ar
am

et
er

Li
st

)

T
yp

e(
)

U
pd

at
e(

ne
w

M
D

V
al

ue
s:

 G
lP

ar
am

et
er

Li
st

 &
)

V
al

id
at

e(
M

et
ad

at
aF

ile
: R

W
C

S
tr

in
g

&
, R

es
ul

ts
: G

lP
ar

am
et

er
Li

st
 &

)

m
yD

ll

m
yE

S
D

T

D
sG

eE
S

D
T

W
ra

pp
er

(d
at

at
yp

e:
 D

sG
eT

yp
eI

D
 &

)

D
sG

eE
S

D
T

W
ra

pp
er

(m
et

ad
at

a:
 D

sM
dM

et
ad

at
a)

~
D

sG
eE

S
D

T
W

ra
pp

er
()

G
et

S
er

vi
ce

Li
st

(t
he

S
vc

s:
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r<

R
W

C
S

tr
in

g>
)

Is
S

er
vi

ce
A

va
ila

bl
e(

sv
cN

am
e:

 R
W

C
S

tr
in

g
&

)

D
sG

eE
S

D
T

S
er

vi
ce

P
ro

vi
de

r(
)

~
D

sG
eE

S
D

T
S

er
vi

ce
P

ro
vi

de
r(

)

E
xe

cu
te

C
om

m
an

d(
th

eC
m

d:
 D

sS
rC

om
m

an
d

&
)

m
yE

S
D

T
T

yp
es

G
et

D
ef

in
iti

on
F

ile
F

or
T

yp
e(

th
eT

yp
e:

D
sG

eT
yp

eI
D

 &
)

G
et

Li
br

ar
yF

or
T

yp
e(

th
eT

yp
e:

D
sG

eT
yp

eI
D

 &
)

G
et

E
ve

nt
T

ab
le

F
or

T
yp

e(
th

eT
yp

e:
D

sG
eT

yp
eI

D
 &

)

D
sG

eE
S

D
T

C
on

fig
ur

at
io

n(
fil

en
am

e:
R

W
C

S
tr

in
g

&
)

G
et

A
llD

at
aT

yp
es

()

~
D

sG
eE

S
D

T
C

on
fig

ur
at

io
n(

)

G
et

E
S

D
T

T
ok

en
(t

he
T

yp
e:

D
sG

eT
yp

eI
D

 &
)

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[D
IS

T
R

 O
B

J]

-

 :
G

lU
R

+

 :

G
lU

R

+

+

 :

R
W

B
oo

le
an

-

 :
G

lU
R

-

 :
G

lU
R

-

 :
G

lU
R

-

 :
G

lU
R

+

 :

G
lU

R

+

 :

G
lU

R

+

 :

G
lU

R

+

 :

R
W

B
oo

le
an

+

 :

G
lU

R

+

 :

G
lU

R

-

 :
G

lU
R

-

 :
G

lU
R

-

 :
G

lU
R

-

 :
G

lU
R

+

 :

G
lU

R

+

 :

G
lU

R

+

 :

G
lU

R

+

+

 :

G
lS

ta
tu

s

+

 :

R
W

B
oo

le
an

+

-

 :
vo

id
 *

+

+

 :

vo
id

 *

+

 :

R
W

B
oo

le
an

+

+

-

 :
D

sG
eE

S
D

T
 *

()

-

 :
D

sG
eT

yp
eI

D

-

 :
R

W
C

S
tr

in
g

+

+

 :

D
sG

eE
S

D
T

 *

+

-

 :
R

W
C

S
tr

in
g

-

 :
un

si
gn

ed
 lo

ng

-

 :
R

W
C

S
tr

in
g

+

 :

R
W

C
S

tr
in

g

+

 :

un
si

gn
ed

 lo
ng

 &

+

 :

R
W

C
S

tr
in

g

-

-

-

+

+

+

-

-

 :
D

sC
nE

S
D

T
G

U
IC

on
fig

ur
at

io
n

-

 :
D

sM
dM

et
ad

at
a

-

 :
si

ze
_t

-

 :
D

sG
eT

yp
eI

D

-

 :
G

lU
R

±
 :

G
lS

ta
tu

s

±

 :
G

lS
ta

tu
s

+

 :

vo
id

±

 :
G

lS
ta

tu
s

±

 :
R

W
B

oo
le

an

±

 :
R

W
V

ec
to

r<
R

W
C

S
tr

in
g>

±

 :
si

ze
_t

±

 :
G

lS
ta

tu
s

±

 :
G

lS
ta

tu
s

±

 :
R

W
C

S
tr

in
g

±

 :
G

lS
ta

tu
s

±

 :
G

lS
ta

tu
s

-

 :
D

sG
eE

S
D

T
D

yn
am

ic
Li

br
ar

y
=

 N
U

LL

-

 :
D

sG
eE

S
D

T
 *

 =
 N

U
LL

+

+

+

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

+

 :

G
lS

ta
tu

s

-

 :
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r<

D
sG

eT
yp

eI
D

>

+

 :

R
W

C
S

tr
in

g

+

 :

R
W

C
S

tr
in

g

+

 :

R
W

C
S

tr
in

g

+

+

 :

R
W

T
P

tr
O

rd
er

ed
V

ec
to

r<
D

sG
eT

yp
eI

D
>

+

-

 :
R

W
C

S
tr

in
g

su
m

m
ar

iz
es

is
 u

se
d

to
 c

re
at

e

is
 d

es
cr

ib
ed

 b
y

ha
s

w
ra

ps

de
sc

rib
es

 g
en

er
at

io
n

of

ha
s

re
st

or
es

fr
om

is
 lo

ad
ed

 b
y

tr
ig

ge
rs

is
 in

fo
rm

ed
 b

y

cr
ea

te
d

by

F
ig

u
re

 4
.3

-1
2.

 D
sG

eG
en

er
al

E
S

D
T

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

4-18 305-CD-024-002

DsMdMetadata

DsMdCatalog

DsDbGranuleToDbVector

DsDbAttributeToTableVector

DsDbInterface

myId

myType

myScienceMetadata

myNonScienceMetadata

myUpdatedAttributes

DsMdMetadata()

~DsMdMetadata()

MyId()

MyType()

SetMyId(DsTMdIdentifier& Id)

SetMyType(char* type)

LoadFromExternal(char* externalForm)

SaveToExternal(char*& externalForm)

GetAttribute(char* attributeName, GlParameter& attribute)

PutAttribute(const GlParameter& attribute)

GetAttributes(GlParameterList& attributes)

PutAttributes(const GlParameterList& attributes)

UpdateAttribute(const GlParameter& attribute)

UpdateAttributes(const GlParameterList& attributes)

GetUpdatedAttributes(GlParameterList& modifiedAttributes)

myResultVector

mySQLQuery

DsMdCatalog(void)

AddGranuleToCollectionB(DsTMdIdentifier collectionId, DsTMdIdentifier granuleId)

AddGranuleToCollectionB(string collectionName, DsTMdIdentifier granuleId)

CollectionSearchB(char *pvlString, RWTPtrOrderedVector<DsMdMetadata>&
collectionMetadata)

DeleteCollectionMetadata(DsTMdIdentifier collectionId)

DeleteCollectionMetadata(char *collectionName)

DeleteGranuleMetadata(DsTMdIdentifier granuleId)

GetCollectionMetadataB(DsTMdIdentifier collectionId, DsMdMetadata& metadata)

GetCollectionMetadataB(char *collectionName, DsMdMetadata& metadata)

GetDistributionMetadata(DsTMdIdentifier id, DsMdMetadata &metadata)

GetEphemeris(DsTMdIdentifier id, DsMdMetadata &metadata)

GetGranuleMetadata(DsTMdIdentifier id, DsMdMetadata &metadata)

GetHouseKeeping(DsTMdIdentifier id, DsMdMetadata &metadata)

GetProductionHistory(DsTMdIdentifier collectionId, DsMdMetadata& metadata)

GetUniqueID(DsTMdIdentifier& id)

GranuleSearch(InvQuery& query, RWPtrOrderedVector<DsMdMetadata>& metadata)

Initialize(void)

InsertCollectionMetadata(DsTMdIdentifier collectionId, DsMdMetadata& metadata)

InsertGranuleMetadata(DsMdMetadata& metadata)

InsertGranuleMetadata(DsTMdIdentifier granuleId, DsMdMetadata& granuleMetadata)

InsertGranuleMetadata(RWTPtrOrderedVector<DsMdMetadata>)

RemoveGranuleFromCollectionB(DsTMdIdentifier collectionId, DsTMdIdentifier
granuleId)

RemoveGranuleFromCollectonB(string collectionName, DsTMdIdentifier granuleId)

Search(DsSrCommand&, RWTPtrOrderedVector<DsMdMetadata>*, GlStatus&)

UpdateCollectionMetadataB(DsTMdIdentifier collectionId, DsMdMetadata&
newMetadata)

UpdateCollectionMetadataB(char *collectionName, DsMdMetadata& newMetadata)

UpdateGranuleMetadata(DsTMdIdentifier granuleId, DsMdMetadata& newMetadata)

~DsMdCatalog(void)

 - : DsTMdIdentifier = null

 - : char* = null

 - : GlParameterList

 - : GlParameterList

 - : GlParameterList

 +

 +

 + : DsTMdIdentifier

 + : char*

 +

 +

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 - : RWPtrOrderedVector<DsMdMetadata> = null

 - : char * = null

 + : void

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 +

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 - : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : void

Figure 4.3-13. DsMdMetadata Object Model Diagram

4-19 305-CD-024-002

D
sN

pN
on

E
C

S
D

at
aP

ro
du

ct

D
sN

pP
la

tfo
rm

D
sP

rR
ad

ar
D

sT
m

T
M

I
D

sG
vR

ad
ar

D
sC

oC
om

bi
na

tio
n

D
sS

sS
S

M
I

D
sN

m
N

M
C

D
sV

iV
IR

S

F
ig

u
re

 4
.3

-1
4.

 D
sN

p
N

o
n

E
C

S
D

at
aP

ro
d

u
ct

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

4-20 305-CD-024-002

DsNpCalibration DsNpCorrelative DsNpAncillary DsNpOA

DsNsNonECSDataProduct

DsGeScienceData

DsNpVersion0

myReferencePapers

myQAStatistics

myProductHistory

myBrowseList

GetReferencePapers()

GetQADataStatistics()

GetProductionHistory()

Browse(pars:GlParameterList &)

 - : GlUR

 - : GlUR

 - : GlUR

 - : GlUR

 + : GlUR

 + : GlUR

 + : GlUR

 +

Figure 4.3-15. DsNpNonECSScienceData Object Model Diagram

4-21 305-CD-024-002

D
sN

sS
ci

en
ce

S
of

tw
ar

eA
rc

hi
ve

P
ac

ka
ge

D
sN

sQ
A

S
ta

tis
tic

s
D

sN
sP

ro
du

ct
io

nH
is

to
ry

D
sN

sM
P

R
B

D
sG

eE
S

D
T

D
sG

eS
ci

en
ce

D
at

a

D
sG

eE
C

S
D

at
aP

ro
du

ct

D
sN

sH
is

to
ric

al
D

at
aB

D
sN

sP
ro

dP
la

ns

m
yG

ra
nu

le
U

R

G
et

G
ra

nu
le

()

m
yB

in
ar

yL
is

t

m
yG

ra
nu

le
Li

st

m
yH

os
tL

is
t

m
yS

ou
rc

eC
od

e

D
sN

sS
ci

en
ce

S
of

tw
ar

eA
rc

hi
ve

P
ac

ka
ge

()

A
dd

G
ra

nu
le

(t
he

U
R

: G
lU

R
)

G
et

B
in

ar
y(

ho
st

T
yp

e)

G
et

S
ou

rc
e(

)

H
as

B
in

ar
y(

ho
st

T
yp

e)

Li
st

G
ra

nu
le

s(
)

Li
st

H
os

ts
(h

os
tT

yp
e)

R
em

ov
eG

ra
nu

le
(t

he
U

R
: G

lU
R

)

~
D

sN
sS

ci
en

ce
S

of
tw

ar
eA

rc
hi

ve
P

ac
ka

ge
()

-

+

-

 :
R

W
V

ec
to

r<
is

tr
ea

m
>

-

 :
R

W
V

ec
to

r<
G

lU
R

>

-

 :
R

W
V

ec
to

r<
R

W
C

S
tr

in
g>

-

 :
R

W
C

S
tr

in
g

+

+

 :

R
W

B
oo

le
an

+

 :

os
tr

ea
m

 &

+

 :

R
W

C
S

tr
in

g

+

 :

R
W

B
oo

le
an

+

 :

R
W

V
ec

to
r<

G
lU

R
>

+

 :

R
W

V
ec

to
r<

R
W

C
S

tr
in

g>

+

 :

R
W

B
oo

le
an

+

de
sc

rib
es

 g
en

er
at

io
n

of

ha
s

is
 u

se
d

to

cr
ea

te

F
ig

u
re

 4
.3

-1
6.

 D
sN

sN
o

n
S

ci
en

ce
E

S
D

T
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-22 305-CD-024-002

D
sS

bE
ve

nt

D
sS

bE
ve

nt
H

an
dl

er

D
sS

bE
ve

nt
T

im
er

D
sS

bC
al

lB
ac

kT
im

er

D
sS

bT
im

er

D
sS

bS
ub

sc
rip

tio
nI

nt
er

fa
ce

D
sS

bR
eg

is
te

re
dE

ve
nt

D
sS

bS
ub

sc
rip

tio
n

D
sS

bA
ct

io
n

D
sS

rR
eq

ue
st

<
R

W
V

ec
to

r>

D
sS

bA
ct

io
nB

as
e

D
sS

bF
ac

to
ry

D
sD

eE
S

D
T

D
es

cr
ip

to
r

<
R

W
V

ec
to

r>

D
sG

eE
S

D
T

D
sS

rC
on

ne
ct

io
n

D
sS

bF
ac

to
ry

()

~
D

sS
bF

ac
to

ry
()

M
ak

eE
ve

nt
()

m
yT

ex
t

m
yN

ot
ify

F
la

g

m
yR

eq
ue

st
F

la
gB

D
sS

bA
ct

io
nB

as
e(

)

D
sS

bA
ct

io
nB

as
e(

R
W

B
oo

le
an

 n
ot

ify
 =

 F
A

LS
E

, c
on

st
 R

W
C

S
tr

in
g

*t
ex

t =
 0

)

C
le

ar
R

eq
ue

st
B

()

G
et

N
ot

ify
()

G
et

T
ex

t(
)

H
as

R
eq

ue
st

B
()

S
et

N
ot

ify
(R

W
B

oo
le

an
)

S
et

T
ex

t(
R

W
C

S
tr

in
g

&
)

~
D

sS
bA

ct
io

nB
as

e(
)

D
sS

bA
ct

io
nB

(D
sS

bR
eq

ue
st

 &
, R

W
B

oo
le

an
 =

 T
R

U
E

, R
W

C
S

tr
in

g
*

=
 N

U
LL

)

D
sS

bA
ct

io
n(

R
W

C
S

tr
in

g
&

te
xt

, D
sS

bR
eq

ue
st

 *
 =

 N
U

LL
)

G
et

R
eq

ue
st

B
()

S
et

R
eq

ue
st

B
(c

on
st

 D
sS

bR
eq

ue
st

&
)

~
D

sS
bA

ct
io

n(
)

m
yU

se
rI

d

m
yE

xp
ira

tio
nD

at
e

m
yT

yp
e

N
ot

ify
E

xp
ira

tio
n(

)

N
ot

ify
C

an
ce

l()

S
et

E
xp

ira
tio

n(
D

at
e)

D
sS

bS
ub

sc
rip

tio
n(

)

~
D

sS
bS

ub
sc

rip
tio

n(
)

E
xe

cu
te

(G
lP

ar
am

et
er

Li
st

)
m

yE
ve

nt
Id

C
an

ce
lS

ub
sc

rip
tio

n(
)

A
dd

S
ub

sc
rip

tio
n(

)

E
xe

cu
te

S
ub

sc
rip

tio
ns

(G
lP

ar
am

et
er

Li
st

)

G
et

S
ub

sc
rip

tio
ns

()

~
D

sS
bR

eg
is

te
re

dE
ve

nt
()

D
sS

bR
eg

is
te

re
dE

ve
nt

()

C
an

ce
lS

ub
sc

rip
tio

ns
()

A
dd

S
ub

sc
rip

tio
n(

)

C
an

ce
lS

ub
sc

rip
tio

n(
)

E
xe

cu
te

C
om

m
an

d(
)

G
et

A
llS

ub
sc

rip
tio

ns
()

R
eg

is
te

rE
ve

nt
()

U
pd

at
eS

ub
sc

rip
tio

n(
)

C
he

ck
E

xp
ira

tio
ns

()

U
nr

eg
is

te
rE

ve
nt

()

D
sS

bS
ub

sc
rip

tio
nI

nt
er

fa
ce

()

~
D

sS
bS

ub
sc

rip
tio

nI
nt

er
fa

ce
()

G
et

A
llE

ve
nt

s(
)

m
yI

nt
er

va
l

D
sS

bT
im

er
()

~
D

sS
bT

im
er

()

R
es

et
()

m
yC

al
lb

ac
kF

un
ct

io
n

D
sS

bC
al

lB
ac

kT
im

er
()

S
et

C
al

lb
ac

k(
)

~
D

sS
bC

al
lB

ac
kT

im
er

()

D
sS

bE
ve

nt
T

im
er

()

R
eg

is
te

rE
ve

nt
()

~
D

sS
bE

ve
nt

T
im

er
()

D
sS

bE
ve

nt
H

an
dl

er
()

E
ve

nt
O

cc
ur

re
d(

G
lP

ar
am

et
er

Li
st

&
)

R
ep

or
tS

ta
tu

s(
)

~
D

sS
bE

ve
nt

H
an

dl
er

()

m
yD

es
cr

ip
tio

n

m
yN

am
e

m
yE

ve
nt

ID

m
yC

at
eg

or
y

D
sS

bE
ve

nt
()

R
eg

is
te

r(
)

U
nr

eg
is

te
r(

)

T
rig

ge
r(

G
lP

ar
am

et
er

Li
st

&
)

~
D

sS
bE

ve
nt

()

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

+

+

+

 :

G
lS

ta
tu

s

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
B

oo
le

an

-

 :
R

W
B

oo
le

an

+

+

+

 :

vo
id

+

 :

R
W

B
oo

le
an

+

 :

co
ns

t R
W

C
S

tr
in

g
&

+

 :

R
W

B
oo

le
an

+

 :

vo
id

+

 :

vo
id

+

+

+

+

 :

co
ns

t D
sS

bR
eq

ue
st

&

+

 :

vo
id

+

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
D

at
e

-

 :
R

W
C

S
tr

in
g

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

+

 :

R
W

B
oo

le
an

-

 :
R

W
C

S
tr

in
g

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

ol
ea

n

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

+

+

 :

R
W

B
oo

le
an

-

 :
flo

at

+

+

+

 :

R
W

B
oo

le
an

-

 :
G

lC
al

lb
ac

k

+

+

 :

R
W

B
oo

le
an

+

+

+

 :

R
W

B
oo

le
an

+

+

+

 :

R
W

B
oo

le
an

+

+

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
in

t

-

 :
R

W
C

S
tr

in
g

+

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

 :

R
W

B
oo

le
an

+

al
ar

m
s

m
an

ag
es

m
an

ag
es

no
tif

ie
s

ac
tiv

at
es

pr
oc

es
se

d
by

m
an

ag
ed

 b
y

F
ig

u
re

 4
.3

-1
7.

 D
sS

b
S

u
b

sc
ri

p
ti

o
n

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

4-23 305-CD-024-002

D
sS

rC
om

m
an

dB
as

e
D

sS
rC

os
tP

ol
ic

yB

D
sS

rC
os

tB

D
sS

rC
os

tT
ab

le
B

D
sS

rR
es

ou
rc

eB

D
sS

rD
is

kU
til

iz
at

io
nB

D
sS

rC
P

U
U

til
iz

at
io

nB
D

sS
rM

ed
ia

U
til

iz
at

io
nB

D
sS

rF
ix

ed
P

er
so

nn
el

C
os

tB

D
sS

rI
O

U
til

ili
za

tio
nB

D
sS

rA
rc

hi
ve

C
os

tB

na
m

e

un
its

ut
ili

za
tio

n

D
sS

rR
es

ou
rc

e(
)

~
D

sS
rR

es
ou

rc
e(

)

G
et

N
am

e(
)

G
et

U
ni

ts
()

G
et

U
til

iz
at

io
n(

)

op
er

at
or

+
(*

 D
sS

rR
es

ou
rc

e)

~
D

sS
rC

os
tT

ab
le

()

G
et

C
os

t(
co

ns
t *

 S
tr

in
g)

D
sS

rC
os

tT
ab

le
()

nu
m

R
es

ou
rc

es

D
sS

rC
os

t(
)

~
D

sS
rC

os
t(

)

F
irs

tR
es

ou
rc

e(
)

N
ex

tR
es

ou
rc

e(
)

N
um

R
es

ou
rc

es
()

F
in

dR
es

ou
rc

e(
*

S
tr

in
g)

op
er

at
or

+
(*

 D
sS

rR
es

ou
rc

e)

G
et

C
os

t(
)

~
D

sS
rC

os
tP

ol
ic

y(
)

D
sS

rC
os

tP
ol

ic
y(

)

-

 :
*

S
tr

in
g

-

 :
*

S
tr

in
g

-

 :
in

t

+

+

+

 :

co
ns

t *
 S

tr
in

g

+

 :

co
ns

t *
 S

tr
in

g

+

 :

co
ns

t *
 in

t

+

 :

*
D

sS
rR

es
ou

rc
e

+

 :

vo
id

+

 :

D
sS

rC
os

t

+

 :

vo
id

-

 :
in

t

+

+

+

 :

*
D

sS
rR

es
ou

rc
e

+

 :

*
D

sS
rR

es
ou

rc
e

+

 :

in
t

+

 :

*
D

sS
rR

es
ou

rc
e

+

 :

*
D

sS
rR

es
ou

rc
e

+

 :

co
ns

t D
sS

rC
os

t

+

 :

vo
id

+

 :

vo
id

co
st

ed
 b

y

F
ig

u
re

 4
.3

-1
8.

 D
sS

rC
o

st
in

g
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

4-24 305-CD-024-002

DsSrServer

DsSrSession

DsSrClient

DsSrRequest <RWVector>

DsSrCommandBase

DsSrRequestVector <RWVector>

DsSrWorkingCollection

DsSrConnection

DsSrCommand

DsSrRequestBase

DsSbSubscriptionInterface

DsSrQueuedConnection

DsSrSubmittedRequestVector <RWVector>

DsClSubmittedRequest

DsSrRequestInfo

DsFactory

DsSrCommandInfo

DsSbAction

MsBaCostIF

DsSrCostPolicyB

myServiceName

myParameterList

myCategory

DsFactory()

~DsFactory()

MakeConnection(MSS_UserProfile)

MakeSession(MSS_UserProfile, DsESrConnectionID = 0)

myPriority

myDomain

myCommands

DsSrSubmittedRequestVector()

~DsSrSubmittedRequestVector()

Find(DsClSubmittedRequestID)

mySubmittedRequest

myInfo

DsSrRequestBase(DsESrRequestPriority = NORMAL)

~DsSrRequest()

SetPriority(DsESrRequestPriority)

GetPriority()

GetStatus()

SetDomain(GlURVector &)

GetDomain()

GetInfo()

GetSRID()

EstimateB()

DsSrCommand(DsSrCommandInfo*)

~DsSrCommand()

myLog

myTimeOut

myStatus

myLoggingFlag

myTimeoutInterval

myConnectTimeB

DsSrConnection(prof: MSS_UserProfile, DsESrConnectionID = NULL)

~DsSrConnection()

Refresh()

Terminate()

GetStatus()

SetTimeOut(secs: unsigned int)

GetTimeOut()

StopLogging()

StartLogging()

Submit(rq: DsClSubmittedRequestID)

Execute(rq: DsSrRequest &)

Authorize(DsSrCommand)

myInfo

DsSrCommandBase()

DsSrCommandBase(svc: RWCString &, pl: GlParameterList *, DsESrCommandCategory)

~DsSrCommandBase()

SetParameters(pl: GlParameterList &)

GetParameters()

SetServiceName(svc: const RWCString &)

GetServiceName()

SetCategory(DsESrRequestCategory)

GetCategory()

GetInfo()

mySystemLog

myProfile

DsSrClient(MSS_UserProfile*)

~DsSrClient()

SufficientFundsB(rq: DsSrRequest &)

ConvertToDollarsB(rq: DsSrRequest &)

DebitB(amt: float)

GetBalanceB()

GetProfile()

myConnectionThreshold

mySystemLog

DsSrServer(cf: DsSrConfig)

~DsSrServer()

SetConnectionThreshold(int)

GetConnectionThreshold()

Connect(DsSrConnection &)

DeleteConnection(conn: DsSrConnection&)

ListConnections()

ReportStatus()

SuspendB()

ResumeB()

GetSRVector()

~DsSrSession()

Execute(DsSrRequest&)

Submit(DsClSubmittedRequestID)

DsSrSessionB(MSS_UserProfile, GlUR& session)

ResumeB()

SetStateB(DsESrState)

myStatus

myESDTs

DsSrWorkingCollection()

ExecuteCommand(DsSrCommand, res: GlParameterList &, GlStatus &)

ExecuteCommand(DsSrCommand, GlURVector, res: GlParameterList &, GlStatus &)

GetStatus()

Reset()

~DsSrWorkingCollection()

ListURsB()

DsSrWorkingCollectionB(GlUR& sessionID)

SuspendB()

GetResults()

Cancel()

SetStatus(GlStatus *)

~DsSrRequest()

GetStatus()

DsSrRequest(DsSrRequestInfo*)

DisconnectB()

DsSrRequestB(GlUR& sessionID)

~DsSrRequestVector()

DsSrRequestVector()

DsSrRequestVectorB(GlUR& sessionID)

SuspendB()

myStateB

DsSrQueuedConnectionB(prof: MSS_UserProfile, resume: GlUR& session)

~DsSrQueuedConnection()

SuspendB(ref: GlUR&)

CancelRequest(DsClSubmittedRequestID)

GetNextRequest()

Submit(DsClSubmittedRequestID)

[PERSISTENT CLASS]

<RWVector>

<RWVector>

[PERSISTENT CLASS]

[DISTR OBJ][PERSISTENT CLASS]

[PERSISTENT CLASS]

<RWVector>

[DISTR OBJ][PERSISTENT CLASS]

±

 : RWCString

±

 : GlParameterList

±

 : DsESrCommandCategory

 +

 +

 + : DsSrConnection*

 + : DsSrSession*

±

 : DsESrRequestPriority

±

 : GlURVector

±

 : RWTPtrOrderedVector<DsSrCommandInfo>

 +

 +

 + : DsClSubmittedRequest*

±

 : DsClSubmittedRequest * = NULL

±

 : DsSrRequestInfo*

 +

 +

 + : void

 + : DsESrRequestPriority

 + : const GlStatus &

 + : void

 + : GlURVector &

±

 : DsSrRequestInfo*

±

 : DsClSubmittedRequestID

 +

 +

±

 : GlLog

±

 : RWDate

±

 : GlStatus

±

 : RWBoolean

±

 : unsigned int

±

 : unsigned int

 +

 +

 + : void

 + : GlStatus

 + : GlStatus

 + : void

 + : RWTime

 + : void

 + : void

 + : GlStatus

 + : GlStatus

 + : GlStatus

 : DsSrCommandInfo*

 +

 +

 +

 + : void

 + : const GlParameterList &

 + : void

 + : const RWCString &

 + : void

 + : DsESrRequestCategory

 + : DsSrCommandInfo*

 - : GlLog

 - : MSS_UserProifle*

 +

 +

 + : RWBoolean

 + : RWBoolean

 + : void

 + : float

 + : MSS_UserProfile

 - : int

 - : GlLog

 +

 +

 + : void

 + : int

 + : GlStatus

 + : GlStatus

 + : const DsSrConnectionVector

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : DsSrSubmittedRequestVector &

 +

 + : GlStatus

 + : GlStatus

 +

 +

 + : GlStatus

 - : GlStatus

 - : DsSrESDTWrapperVector

 +

 +

 +

 + : GlStatus

 + : void

 +

 + : GlURVector

 +

 +

 + : GlParameterList &

 + : RWBoolean

 + : void

 +

 + : GlStatus&

 +

 + : GlStatus&

 +

 +

 +

 +

 + : GlStatus&

 - : DsESrState = Active

 +

 +

 + : GlStatus

 + : GlStatus

 + : DsSrRequest*

 + : GlStatus

registers

informs

routes

referenced by

inserts self

searches

accounts for

costed by

Figure 4.3-19. DsSrScienceServer Object Model Diagram

4-25 305-CD-024-002

GlParameter

GlParameterList <RWVector>

GlLongP GlStringP GlDateP GlDoubleP

GlBinaryP GlTimeP

myTimeBase

GlTimeP()

GlTimeP(RWTime, name: char* = NULL)

~GlTimeP()

operator=(val: RWTime)

Textify(RWCString&)

value()

myBinaryBase

myLength

GlBinaryP()

GlBinaryP(buffer: char*, length: unsigned long, name: char* = NULL)

~GlBinaryP()

Set(buffer: char*, length: unsigned long)

Textify(RWCString&)

value()

length()

myDoubleBase

GlDoubleP()

GlDoubleP(double, name: char* = NULL)

~GlDoubleP()

operator=(val: double)

Textify(RWCString&)

value()

myDateBase

GlDateP()

GlDateP(RWDate, name: char* = NULL)

~GlDateP()

operator=(val: RWDate)

Textify(RWCString&)

value()

myStringBase

GlStringP()

GlStringP(RWCString, name: char* = NULL)

~GlStringP()

operator=(val: RWCString)

Textify(RWCString&)

value()

myLongBase

GlLongP()

GlLongP(long, name: char * = NULL)

~GLongP()

operator =(val: long)

Textify(RWCString &)

value()

myParms

GlParameterList()

GlParameterList(GlParameter *, name: char * = 0)

GlParameterList(RWvistream &)

GlParameterList(name: char *)

~GlParameterList()

Flatten(filename: RWCString &)

Flatten(RWvostream &)

Flatten(buffer: void *, length: unsigned int)

Restore(filename: RWCString &)

Restore(RWvistream&)

Restore(buffer: void*, length: unsigned int)

FindParameter(name: const RWCString &)

myName

myDescription

GlParameter(name: char * = NULL)

~GlParameter()

Restore(RWvistream &)

Flatten(RWvostream &)

saveOn(ostream &)

Textify(RWCString &)

SetName(RWCString &)

GetName()

SetDescription(RWCString &)

GetDescription()

<RWVector>

 - : RWTIme

 +

 +

 +

 + : GlTimeP&

 + : void

 + : const RWTime&

 - : char*

 - : unsigned long

 +

 +

 +

 + : void

 + : void

 + : char*

 + : unsigned long

 - : double

 +

 +

 +

 + : GlDoubleP&

 + : void

 + : double

 - : RWDate

 +

 +

 +

 + : GlDateP&

 + : void

 + : RWDate

 - : RWCString

 +

 +

 +

 + : GlStringP&

 + : void

 + : const RWCString&

 - : long

 +

 +

 +

 + : GlLongP&

 + : void

 + : long

 - : RWOrdered

 +

 +

 +

 +

 +

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 +

 + : GlParameter *

±

 : RWCString

±

 : RWCString

 +

 +

 + : GlStatus {abstract}

 + : GlStatus {abstract}

 + : void

 + : void {abstract}

 + : void

 + : const RWCString &

 + : void

 + : const RWCString &

Figure 4.3-20. GlParameter Object Model Diagram

4-26 305-CD-024-002

4.3.1 DsAcACRIMB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the ACRIM Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsAcACRIMB class has associations with the following classes:
None

4.3.2 DsAdBaseInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class supports the basic functioning of the operator GUIs.

Attributes:

None

Operations:

CloseFile - This operation closes the specified file.
Arguments: fstream&
Return Type: const GlStatus &
Privilege: Public

DsAdBaseInterface - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Help - This operation provides the context-sensitive help to the operator GUI screens.
Arguments:

4-27 305-CD-024-002

Return Type: RWBoolean
Privilege: Public

OpenFile - This operation opens the specified file.
Arguments: RWCString filename
Return Type: fstream&
Privilege: Public

SaveFile - This operation saves the current buffer to the specified file, without closing the
file.
Arguments: fstream&
Return Type: const GlStatus &
Privilege: Public

~DsAdBaseInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdBaseInterface class has associations with the following classes:
None

4.3.3 DsAdConfigurationInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class provides the functioning to support the operator GUI screens for managing the
system configuration.

Attributes:

None

4-28 305-CD-024-002

Operations:

DsAdConfigurationInterface - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Edit - This operation allows read/write access to the provided information (which could be
either configuration file or configuration database information).
Arguments: fstream&
Return Type: Void
Privilege: Public

Save - This operation saves the current buffer to disk (without closing a file).
Arguments: fstream&
Return Type: Void
Privilege: Public

~DsAdConfigurationInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdConfigurationInterface class has associations with the following classes:
None

4.3.4 DsAdDatatypeInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class allows operators to maintain all the datatypes in the system.

Attributes:

None

4-29 305-CD-024-002

Operations:

AddDatatype - This operation allows operators to register new (approved) datatypes with the
system.
Arguments: DsTGeTypeID, RWCString descriptorFilename, RWCString DLLfilename
Return Type: const GlStatus&
Privilege: Public

DeleteDatatype - This operation allows operators to remove old (obsolete) datatypes from
the system.
Arguments: DsTGeTypeID
Return Type: Void
Privilege: Public

DsAdDatatypeInterface - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

DsAdDatatypeInterface - THis constructor creates a DsAdDatatypeInterface object on
the specified dataserver.
Arguments: GlUR& dataserver
Return Type: Void
Privilege: Public

EditDatatype - This operation allows operators to update existing datatypes.
Arguments: DsTGeTypeID
Return Type: Void
Privilege: Public

FindDatatype - This operation allows operators to find the specified datatype information.
Arguments: RWCString name, RWCString version, DsTGeTypeID
Return Type: DsDeDescriptor&
Privilege: Public

~DsAdDatatypeInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

4-30 305-CD-024-002

Associations:

The DsAdDatatypeInterface class has associations with the following classes:
None

4.3.5 DsAdDescriptor Class

Parent Class: DsClDescriptor
Public: No
Distributed Object: No
Purpose and Description:
Provides more functionality than the client descriptor with the ability to update descriptors
as an administrative interface to them.

Attributes:

All Attributes inherited from parent class

Operations:

DsAdDescriptor - Constructs an operations descriptor for a particular dataserver and stream.
Arguments: type: RWCString&, vsn: RWCString&, client: GlClient&, ds: GlUR&
Return Type: Void
Privilege: Public

DsAdDescriptor
Arguments: type: RWCString&, vsn: RWCString&, client: GlClient&, ds: GlUR&, strm:
iostream&
Return Type: Void
Privilege: Public

Update - Update the descriptors given a list of parameters.
Arguments: GlParameterList&
Return Type: Void
Privilege: Public

~DsAdDescriptor
Arguments:
Return Type: Void
Privilege: Public

4-31 305-CD-024-002

Associations:

The DsAdDescriptor class has associations with the following classes:
None

4.3.6 DsAdLog Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
Provides admnistrative logging functions as defined by the MSS object. This allows the
operations staff to categorize messages, reports,notify of errors, and view resources used/
allocated by the client.

Attributes:

None

Operations:

DsAdLog - Constructs DsAdLog class.
Arguments:
Return Type: Void
Privilege: Public

~DsAdLog
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdLog class has associations with the following classes:
None

4-32 305-CD-024-002

4.3.7 DsAdRequestInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
Provides administration/operations staff an interface to look at active and queued requests
as well as status information of requests.

Attributes:

None

Operations:

DsAdRequestInterface - Constructs the administration/operations request interface given a
particular dataserver and client.
Arguments: GlUR&, GlClient&
Return Type: Void
Privilege: Public

GetClientInfo - This operation returns full user information for the specified client.
Arguments: DsSrClient&
Return Type: MSS_UserProfile
Privilege: Public

GetHistory - This operation allows operators to look at all information in the system
associated with the past processing of the specified request.
Arguments: DsTSrRequestID
Return Type: istream &
Privilege: Public

GetRequest - This operation allows operators to access full information about the specified
request.
Arguments: DsTSrRequestID
Return Type: DsSrRequest&
Privilege: Public

GetRequests - This operation allows operators to monitor and manage requests by their
current processing state (active, queued, completed).
Arguments: DsESrState
Return Type: DsSrRequestVector&
Privilege: Public

4-33 305-CD-024-002

GetRequests - This operation allows operators to monitor and manage requests by priority.
Arguments: DsESrPriority
Return Type: DsSrRequestVector&
Privilege: Public

GetRequests - This operation allows operators to monitor and manage requests by CSCI.
Arguments: RWCString CSCI
Return Type: DsSrRequestVector&
Privilege: Public

GetRequests - This operation allows operators to monitor and manage requests associated
with the specified user.
Arguments: DsSrClient&
Return Type: DsSrRequestVector&
Privilege: Public

GetRequests - This operation allows operators to monitor and manage all requests in the
system.
Arguments:
Return Type: DsSrRequestVector&
Privilege: Public

GetRequests - This operation allows operators to monitor and manage all requests
associated with a specific system process.
Arguments: DsTSrProcess pid
Return Type: DsSrRequestVector&
Privilege: Public

GetResources - This operation allows operators to review the resource usage of the
specified request.
Arguments: DsTSrRequestID
Return Type: istream&
Privilege: Public

SetQueueSize - Allows the operations staff to set threshold for the number of service
requests to be queued for processing.
Arguments: threshold: int
Return Type: RWBoolean
Privilege: Public

~DsAdRequestInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

4-34 305-CD-024-002

Associations:

The DsAdRequestInterface class has associations with the following classes:
None

4.3.8 DsAdResourceInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class provides the functioning to support the operator GUI screen which allows
operators to manage resources.

Attributes:

None

Operations:

DsAdResourceInterface - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

GetResources - This operation returns all information about all resources in the system.
Arguments:
Return Type: RWVector(istream&)
Privilege: Public

GetResources - This operation provides access to all resources associated with the
specified client.
Arguments: DsSrClient&
Return Type: RWVector(istream&)
Privilege: Public

GetResources - This operation provides access to all the resources associated with the
specified CSCI.
Arguments: RWCString CSCI

4-35 305-CD-024-002

Return Type: RWVector(istream&)
Privilege: Public

GetResources - This operation provides access to all the information associated with the
specified resource.
Arguments: RWCString resource
Return Type: istream&
Privilege: Public

~DsAdResourceInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdResourceInterface class has associations with the following classes:
None

4.3.9 DsAdSubscriptionInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class allows operators to populate the Subscription Management screen.

Attributes:

None

Operations:

DsAdSubscriptionInterface - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

GetSubscriptionInfo - Gets all the information about the specified subscription.
Arguments: GlUR& subscription

4-36 305-CD-024-002

Return Type: DsSbSubscription&
Privilege: Public

GetSubscriptions - Gets a list of all the subscriptions in the system.
Arguments:
Return Type: RWVector<DsSbSubscription>
Privilege: Public

GetSubscriptions - This operation gets a list of all the subscriptions associated with the
specified action.
Arguments: DsESbAction action
Return Type: RWVector<DsSbSubscription>
Privilege: Public

GetSubscriptions - This operation gets a list of all the subscriptions associated with the
specified event.
Arguments: DsESbEvent event
Return Type: RWVector<DsSbSubscription>
Privilege: Public

GetSubscriptions - This operation gets a list of all the subscriptions associated with the
specified user.
Arguments: MSS_UserProfile
Return Type: RWVector<DsSbSubscription>
Privilege: Public

GetUserInfo - This operation returns all the user information about the specified client.
Arguments: DsSrClient&
Return Type: MSS_UserProfile
Privilege: Public

~DsAdSubscriptionInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdSubscriptionInterface class has associations with the following classes:
None

4-37 305-CD-024-002

4.3.10 DsAdSystemInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:

Attributes:

None

Operations:

DsAdSystemInterface - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Restart - This operation initiates, in turn, the shutdown and then the startup processes of
the specified subsystem dynamic architecture process.
Arguments: RWCString subsystem, DsEAdProcess process
Return Type: const GlStatus&
Privilege: Public

Shutdown - This operation initiates the shutdown operation of the specfied subsystem
dynamic architecture process.
Arguments: RWCString subsystem, DsEAdProcess process
Return Type: const GlStatus&
Privilege: Public

Startup - This operation initiates the startup operation of the specified subsystem dynamic
architecture process.
Arguments: RWCString subsystem, DsEAdProcess process
Return Type: const GlStatus&
Privilege: Public

~DsAdSystemInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

4-38 305-CD-024-002

Associations:

The DsAdSystemInterface class has associations with the following classes:
None

4.3.11 DsAsAsterB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the Aster Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsAsAsterB class has associations with the following classes:
Class: PlOnDemandPRNB submits

4.3.12 DsCeCERES Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the TRMM CERES Instrument data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-39 305-CD-024-002

Associations:

The DsCeCERES class has associations with the following classes:
None

4.3.13 DsClAction Class

Parent Class: DsSbActionBase
Public: Yes
Distributed Object: No
Purpose and Description:
A client interface object that represents the components of the action to be performed when
a subscription is triggered. The possibilities are that the client will receive a notification
(including all parameters that are returned by the object that triggers the subscription and
an optional piece of client-specified text) and/or a request that will be executed. The client
is required to specify an action for each subscription.

Attributes:

myRequest - The request that is currently associated with this action.
Data Type: DsClRequest
Privilege: Private
Default Value:

Operations:

ClearRequestB - Used to clear any request that has been set for the action.
Arguments:
Return Type: void
Privilege: Public

DsClAction - Constructs a default action.
Arguments:
Return Type: Void
Privilege: Public

DsClActionB - Used to construct an action from a piece of text and,
RELEASE B: optionally, a request. The notification flag is set.
Arguments: RWCString &text, DsClRequest * = NULL
Return Type: Void

4-40 305-CD-024-002

Privilege: Public

DsClActionB - Used to construct an action from a request and, optionally, a
value for the notification flag and a piece of text.
Arguments: DsClRequest &, RWBoolean = FALSE, RWCString * = NULL
Return Type: Void
Privilege: Public

GetRequestB - Returns the request currently set for the action.
Arguments:
Return Type: const DsClRequest&
Privilege: Public

SetRequestB - Sets the request to be executed when the subscription fires.
Arguments: DsClRequest &
Return Type: void
Privilege: Public

~DsClAction - Used to destroy an action.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClAction class has associations with the following classes:
Class: DsClSubscription actionof

4.3.14 DsClCollector Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
This is an abstract, distributed base class for the Collector distributed objects. This class is
the client portion of an IDL definition (the corresponding server portion is Connection).
This division of function relieves all classes in the DS public class library from having to
be knowledgeable of the dataserver object realm. This class inherits from the Rogue Wave
RWTPtrOrderedVector and provides all the normal vector behaviors to the specialized
classes. There are no attributes for this object.

4-41 305-CD-024-002

Attributes:

None

Operations:

DsClCollector - The default constructor for this class is private so that an object of this class
can not be created without providing enough information to establish a connection (i.e.,
either a dataserver ID or a session ID).
Arguments: GlUR &dataserver, MSS_UserProfile &
Return Type: Void
Privilege: Private

GetConnectionID - This public operation allows client software to retrieve the dataserver-
assigned session ID so that users can turn off their terminals during long-running request
processing, then log on later and reconnect to the session.
Arguments:
Return Type: DsESrConnectionID
Privilege: Public

SubmitToServer - This protected operation passes a request from a DsClRequest to the
dataserver after the DsClRequest has established the DsClSubmittedRequest to handle the
distributed callback. This operation is fully implemented on the server side (i.e. in either
DsSrConnection or the specialized connection object DsSrSession). All return values are
handled by the DsClRequest object, which contains imbedded return parameters for this
purpose.
Arguments: DsClRequest&
Return Type: const GlStatus &
Privilege: Protected

~DsClCollector
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClCollector class has associations with the following classes:
Class: DsClCollectorVector collectedby

4-42 305-CD-024-002

4.3.15 DsClCollectorVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This private class is maintained in static memory by DsCl items (DsClSubscription and
DsClESDTReference). Those items contain a DsClCollectorVector. This class supports
the "hidden construction" of collector objects (and hence, connections to a dataserver). It
is a RWTPtrOrderedVector, which is parameterized so that the item which is maintaining
it can decide what type of collector to store and track. This class represents a table of
available DsCl<item>Collectors which were created by item-level DsCl public classes
(i.e., DsClSubscription or DsClESDTReference). This table will contain a pointer to one
DsCl<item>Collector per dataserver. All item-level objects created in the client space
independently of a client-created DsCl<item>Collector will be assigned to the default
DsCl<item>Collector as defined by the entry in the DsClCollectorVector which
corresponds to the dataserver for which the client is creating the independent item. (phew!)

Attributes:

None

Operations:

DsClCollectorVector - This is the default constructor, for initial startup.
Arguments:
Return Type: Void
Privilege: Public

GetCollector - This operation finds the existing collector for the given dataserver (if any)
or creates one if none exists. It returns the reference to the chosen collector. Because the
class is a template, the return value will match (be the right kind of collector for) the object
which is calling this operation.
Arguments: const GlUr &dataserver
Return Type: T&
Privilege: Public

~DsClCollectorVector - The destructor should presumably be called only when the vector
is empty, but it might be a good idea to check for any collectors here and close them down.
Arguments:
Return Type: Void
Privilege: Public

4-43 305-CD-024-002

Associations:

The DsClCollectorVector class has associations with the following classes:
Class: DsClCollector collectedby

4.3.16 DsClCommand Class

Parent Class: DsSrCommandBase
Public: Yes
Distributed Object: No
Purpose and Description:
A specialization of the DsCommand class for client interfaces. Adds constructors that ease
building of commands based on advertisements, or special direct commands that are "built-
in" to the data server and do not correspond to advertisements.

Attributes:

All Attributes inherited from parent class

Operations:

DsClCommand - Used to construct "special" commands, i.e. commands that are not
advertised. For example, the command to reset the working collection.
Arguments: SpecialCommand
Return Type: Void
Privilege: Public

DsClCommand - Used to construcat a command from an advertisement. The
GlParameterList gives the parameters required by the chosen command.
Arguments: adv: Advertisement &, parms: GlParameterList &
Return Type: Void
Privilege: Public

DsClCommand - Constructs an empty command.
Arguments:
Return Type: Void
Privilege: Public

4-44 305-CD-024-002

DsClCommand - Used to construct a command from its basic parts: service name,
parameters, and category.
Arguments: svc: RWCString&, pl: GlParameterList&, cat: DsESrCommandCategory
Return Type: Void
Privilege: Public

Textify - Used to convert a command into a human-readable format.
Arguments:
Return Type: RWCString
Privilege: Public

~DsClCommand - Used to destroy a command.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClCommand class has associations with the following classes:
DsClRequest (Aggregation)

4.3.17 DsClDescriptor Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object provides access to services pertaining to the definition of a specific data type.
This includes access to metadata configuration information and queriable parameters. This
object validates metadata.

Attributes:

myStatus - The status attribute captures status information about activities that are performed
on this instance.
Data Type: GlStatus
Privilege: Private
Default Value:

4-45 305-CD-024-002

myTypeID - Reference to an object that uniquely identifies the specific type of this
descriptor.
Data Type: DsGeTypeID *
Privilege: Private
Default Value:

ourCollectorVector - Reference to a static vector of collectors. Each collector is
connected to a data server. Upon construction, the descriptor must check to see if there is
a collector connected to its data server. If so, the descriptor add itself to that collectors list
of items. If not, the descriptor creates a collector that talks to the desired data server and
adds it to the static vector collector set.
Data Type: RWVector *
Privilege: Private
Default Value:

Operations:

DsClDescriptor - Constructor for the descriptor. The arguments are references to a client
object, a dataserver, and a typeID object indicating the type of the descriptor to create.
Arguments: GlClient &, GlUR &,DsGeTypeID &
Return Type: Void
Privilege: Private

GetCollector - Returns a pointer to the DescriptorCollector that contains this descriptor.
Arguments:
Return Type: DsClDescriptorCollector*
Privilege: Private

GetMCF - Returns a stream containing the metadata configuration file (MCF) data.
Arguments: ostream &
Return Type: GlStatus
Privilege: Public

GetQueryableParameters - The service takes a reference to an empty GlParameterList
and fills that list in with the queriable parameters and their associated types for this data
type.
Arguments: GlParameterList &
Return Type: RWBoolean
Privilege: Public

GetTypeID - Returns a reference to the DsGeTypeID object which contains information
to uniquely identify the type of this descriptor.

4-46 305-CD-024-002

Arguments:
Return Type: DsGeTypeID &
Privilege: Public

SetTypeID - This is a private function to set the typeID for this object.
Arguments: DsGeTypeID &
Return Type: Void
Privilege: Public

ValidateB - This service takes a stream which contains metadata and
validates this metadata. The GlStatus object that is returns provides an
indication of whether the validation was successful.
Arguments: istream &metadata
Return Type: GlStatus
Privilege: Public

~DsClDescriptor - Destructor for the descriptor. If this is the last descriptor of the hidden
collector to be destroyed, then the collector is also destroyed.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClDescriptor class has associations with the following classes:
None

4.3.18 DsClESDTReference Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Purpose and Description:
This object is a reference to an ESDT that is within a DataServer's holdings. This object
provides services that are homogeneous for all ESDTs.

Attributes:

myCollector - A pointer to the collector that this reference is a member of. If this pointer is
null, then this reference is a member of one of the collectors in the static collector vector.

4-47 305-CD-024-002

Data Type: DsClESDTReferenceCollector *
Privilege: Private
Default Value: NULL

myCreateDate - The creation date of the ESDT that this reference represents.
Data Type: RWDate
Privilege: Private
Default Value:

myReferenceVector - The DsClESDTReferenceVector that this DsClESDTReference
belongs to.
Data Type: DsClESDTReferenceVector *
Privilege: Private
Default Value:

mySize - This number of MB that the underlying granule would occupy if the ESDT that
this reference points to was externalized.
Data Type: size_t
Privilege: Private
Default Value:

myStatus - Current status of the ESDT Reference object.
Data Type: GlStatus
Privilege: Private
Default Value:

myTypeInfo - A pointer to an object which contains information related to all ESDT
references of the same type.
Data Type: DsClTypeInfo *
Privilege: Private
Default Value:

myUR - The unique reference that is assigned to this ESDT reference.
Data Type: UR
Privilege: Private
Default Value:

ourCollectorVector - A static vector of ESDT collectors. Each ESDT reference is
collected by an ESDT collector. The collector vector is used to allow creation of an ESDT
reference without first establishing a collector.
Data Type: DsClCollectorVector<DsClESDTReferenceCollector>
Privilege: Private
Default Value:

4-48 305-CD-024-002

Operations:

DsClESDTReference - This constructor takes as arguments the UR of the Data Server, a
reference to the Reference collector that this ESDT Reference should be made a member of.
Arguments: theDSS:GlUR &, theBoss:DsClESDTReferenceCollector *= NULL
Return Type: Void
Privilege: Public

GetCollector - Returns a reference to the DsClESDTReferenceCollector that contains this
ESDTReference.
Arguments:
Return Type: const DsClESDTReferenceCollector &
Privilege: Public

GetCreateDate - Returns the date that the underlying ESDT granule was created.
Arguments:
Return Type: const RWDate &
Privilege: Public

GetQueryableParameters - This service is used to obtain the queryable parameters for
this ESDT type. The queryable parameters will be the same for all ESDT references of the
same type. For example, all CER03s have the same queryable parameters. The input
argument is a reference to an empty parameter list. The return value is a boolean indicating
success or failure of the request. If the request was successful, the parameter list will have
the names and types (but no values) of all queryable parameters for this TYPE.
Arguments: GlParameterList &
Return Type: const GlStatus &
Privilege: Public

GetReferenceVector - This private operation returns the pointer to this object's
DsClESDTReferenceVector.
Arguments:
Return Type: DsClESDTReferenceVector *
Privilege: Private

GetServiceAppletB - This operation will request the GUI applet which allows
the user to view the data produced by a given service.
Arguments: theSvc:RWCString &, svcUR:GlUR&, theVersion:RWCString
&=NULL
Return Type: const GlStatus &
Privilege: Public

GetServiceConfigurationB - This operation allows the user to get the
necessary configuration information for the service applet on the client

4-49 305-CD-024-002

desktop.
Arguments: theSvc:RWCString &, theConfig:GlParameterList &
Return Type: const GlStatus &
Privilege: Public

GetSize - Returns the size of data granule associated with this ESDT Reference. This is
the size of the granule if externalized.
Arguments:
Return Type: size_t
Privilege: Public

GetTypeID - Returns a reference to an object that contains all of the information that
uniquely identifies this type.
Arguments:
Return Type: const DsGeTypeID &
Privilege: Public

GetTypeInfo - Returns a reference to the DsClTypeInfo object for this ESDT Reference.
This DsClTypeInfo object contains information common to all ESDT References of the
same type (ESDT).
Arguments:
Return Type: const DsClTypeInfo &
Privilege: Private

GetUR - Returns the UR that is associated with this ESDT reference.
Arguments:
Return Type: const GlUR &
Privilege: Public

Inspect - This service returns values for given parameters. The parameter list has the
names of the parameters for which values are desired and this service returns the same
parameter list with the values and associated types filled in. A boolean is also returned to
indicate success or failure of the service request.
Arguments: GlParameterList &
Return Type: const GlStatus &
Privilege: Public
PDL:
DsClESDTReference::Inspect(GlParameterList &theParms)

This operation gets the values for the metadata attributes specified in the
given GlParameterList. This information is actually obtained from the real
ESDT in the corresponding DsSrWorkingCollection on the Data Server
Subsystem. A request is created and submitted to the DSS through the
DsClESDTReferenceCollector for this object.

4-50 305-CD-024-002

SEQUENCE
 Create DsClCommand with arguments ("INSPECT", theParms, ESDT)
 Create DsClRequest with arguments (Command, NORMAL)
 SetCallback of DsClRequest to ReturnResults
 Submit the request myCollector
 Retrieve results from request
 Return results to client
END SEQUENCE

SetCollector - This is a private service used internally to set the ESDTReferenceCollector
attribute.
Arguments: DsClESDTReferenceCollector *
Return Type: void
Privilege: Private

SetCreateDate - This is a private service used to set the myCreateDate attribute.
Arguments: RWDate &
Return Type: void
Privilege: Private

SetReferenceVector - This is a private service used to set the myReferenceVector
attribute.
Arguments: DsClESDTReferenceVector *
Return Type: void
Privilege: Private

SetSize - This is a private member function used to set the mySize attribute.
Arguments: size_t
Return Type: void
Privilege: Private

SetTypeInfo - This is a private service used to set the myTypeInfo attribute.
Arguments: DsClTypeInfo *
Return Type: void
Privilege: Private

SetUR - This is a private service used to set the myUR attribute.
Arguments: GlUR &
Return Type: void
Privilege: Private

SetVersionB - This operation allows the user to specify which version of a
product is being requested.

4-51 305-CD-024-002

Arguments: RWCString &
Return Type: void
Privilege: Private

Submit - This public operation is a convenience function to allow the client programmer
to submit requests to this object. This operation just calls the Submit method on the
provided DsClRequest.
Arguments: DsClRequest &
Return Type: const GlStatus &
Privilege: Public

~DsClESDTReference - Destructor for the ESDT Reference. If this descriptor is a
member of a collector in the static collector vector and this is the last descriptor to be
destroyed, then its collector is also destroyed.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClESDTReference class has associations with the following classes:
DsClESDTReferenceCollector (Aggregation)
DsClESDTReferenceVector (Aggregation)

4.3.19 DsClESDTReferenceCollector Class

Parent Class: DsClCollector
Public: Yes
Distributed Object: Yes
Purpose and Description:
This public, distributed class is a specialization of the Collector class which handles
DsClESDTReferences. This class is much more complex than the base class. This class
provides, in addition to the normal set operations for ESDTReferences, the ability to
handle requests, working-collection synchronization, and sessions. It also contains private
operations to hand the ESDTReference-level actions to the dataserver.

Attributes:

mySearchCallback - This attribute is for specifying the local callback for a query.
Data Type: GlCallback

4-52 305-CD-024-002

Privilege: Private
Default Value:

myStateB - This attribute records the current state of the object. This is used
to control whether or not the DsClESDTReferenceCollector will accept inputs
or not (i.e., when it is in "suspended" state, no inputs from client software are
allowed).
Data Type: DsEClState
Privilege: Private
Default Value: Active

myStatus - This attribute allows the object to maintain information on current status.
Data Type: GlStatus
Privilege: Private
Default Value:

Operations:

AddESDTReferenceB - This operation is used to instantiate a
DsClESDTReference when the (empty) object has already been allocated.
For example, if the client creates a DsClESDTReference with a UR (which
creates a DsClESDTReferenceCollector), this will turn into a request for the
given UR. However, once the ESDT has been found and instantiated on the
server side, and UpdateState will make the client side collection "match", the
DsClESDTReference object that the client created must be used to store the
reference, as the client software only knows about that actual memory
address. So the UpdateState method will use a "replace" command to "fill
in" the existing object which the client software has created. This is also
useful for subsetting, when a DsClESDTReference already exists, but the
metadata which describes it may change (become a smaller set) as a result
of the subsetting operation. The same DsClESDTReference object should
still be used, even though its contents have changed.
Arguments: const DsClESDTReference *ERef
Return Type: Void
Privilege: Public

BuildRequestVectorB - This private operation allows the
DsClESDTReferenceCollector object to reconstruct the state of a session in
the case that a user has "logged off" during a long-running request, and
reconnects to the session to find the results. This operation reestablishes
the client-side request structure (DsClSubmittedRequests) to check the
status of the actual requests on the server side.
Arguments: GlURVector &

4-53 305-CD-024-002

Return Type: const GlStatus &
Privilege: Protected

CreateESDTReference - This operation actually creates a DsClESDTReference object. It
is used by the UpdateState method when an "add" command is received (i.e., no
DsClESDTReference currently exists for the given UR).
Arguments: GlUR &
Return Type: DsClESDTReference*
Privilege: Protected
PDL:DsClESDTReferenceCollector::CreateESDTReference(GlUR &ESDT)

This operation is invoked in either of the following two cases:

 1) a user has created a DsClESDTReferenceCollector and invoked this method
 directly

 2) a user has created a DsClESDTReferenceCollector and submitted a Search
 request

In either case, the metadata for the ESDT identified by the provided GlUR is
retrieved from the dataserver, and added to both the working collection (on the
server side), and to the DsClESDTReferenceCollector (on the client side).

This operation returns the pointer to a DsClESDTReference. It is the
responsibility of the calling procedure to manage the DsClESDTReference from
that point onward.

SEQUENCE
 Create a request to retrieve the ESDT identified by the provided GlUR
 Submit the request
 Get new state information as a result of the request
 Update the state of the client-side collection to match the server-side
 working collection
 Return the pointer to the new object
END SEQUENCE

DeleteESDTReference - This operation is used during in the UpdateState method to
actually remove client DsClESDTReference objects when their corresponding server-side
objects have been removed from the DsSrWorkingCollection.
Arguments: DsClESDTReference*
Return Type: RWBoolean
Privilege: Protected

4-54 305-CD-024-002

DsClESDTReferenceCollector - This constructor is used by a data server client to
establish a session with the specified science data server. The client application supplies a
reference to the desired science data server as well as the user's MSS profile.
Arguments: GlUR &dataserver, MSS_UserProfile &, DsTSessionID = NULL
Return Type: Void
Privilege: Public

DsClESDTReferenceCollectorB - This version of the constructor allows the
user to supply the UR of a previously suspended session, in effect resuming
the session.
Arguments: MSS_UserProfile &, GlUR &session
Return Type: Void
Privilege: Public

GetRequestVector - This operation allows client software to get a reference to the set of
requests submitted during the current session, for whatever local processing (iteration)
desired.
Arguments:
Return Type: const DsClRequestVector &
Privilege: Public

GetRequestsB - This private operation allows the
DsClESDTReferenceCollector object to get a list of all the requests which
have been submitted for the current session. This feature is to support the
situation where a user has logged out while a long request is processing,
then makes a new connection to the same SessionID to get the results. The
collector object will use this operation in the "rebuilding" of the session
state.
Arguments: GlURVector &
Return Type: const GlStatus &
Privilege: Protected

GetSessionLogB - This operation allows the client software to declare an
output stream and have the dataserver send over the portion of the system
log which pertains to this particular session. All file-related programming is
expected to occur in the client software.
Arguments: ostream &outfile
Return Type: const GlStatus &
Privilege: Public

GetStateB - This operation provides access to the current state atrribute.
Arguments:
Return Type: DsEClState
Privilege: Public

4-55 305-CD-024-002

GetStatusB - This operation allows the user to check the status of the
DsClESDTReferenceCollector.
Arguments:
Return Type: const GlStatus &
Privilege: Public

ListURsB - This operation allows the client to get a list of the URs for all
granules which are currently in the working collection.
Arguments:
Return Type: GlURVector &
Privilege: Public

RemoveESDTReferenceB - This operation is used to allow a user to
"remove" a DsClESDTReference object from a collection and save it
elsewhere. Essentially, it will package the UR for the given
DsClESDTReference so that it can be stored elsewhere and re-instantiated
at a later time.
Arguments: DsClESDTReference &
Return Type: const GlStatus &
Privilege: Public

Reset - This operation removes all current state for the collection, i.e. removes all existing
ESDTReferences.
Arguments:
Return Type: const GlStatus &
Privilege: Public

ResumeSessionB - This private operation supports the resumption of a
previously suspended session. A session is "resumed" by constructing the
DsClESDTReferenceCollector with a session UR. This supporting operation
is used to indicate to the (rebuilt) server-side session that the client-side has
been reconstructed, and the state flags can now be set from "suspended" to
"active".
Arguments: GlUR &SuspendedSession
Return Type: const GlStatus &
Privilege: Protected

Search - This operation takes a DsClQuery object, which has been defined and filled in by
the client software, and creates a DsClRequest (and associated DsClSubmittedRequest) and
submits the request to the dataserver. The return values are included in the DsClRequest
object, as are whatever commands are necessary to update the client working collection
(this collection) to match the working collection on the server. The
DsClESDTReferenceCollector *callback* function, which gets called by DsClRequest
upon completion, will take the results of the DsClRequest, invoke UpdateState to make the

4-56 305-CD-024-002

client-side working collection match the server side one, then get the DsClQuery pointer
from the DsClRequest so that it can call the Query object's callback function.
Arguments: DsClQuery &
Return Type: const GlStatus &
Privilege: Public

SetDialogCallbackB - This operation allows the client software to declare a
callback for handling dialog-type notifications. It is not expected to be used
in Release A.
Arguments: GlCallback&
Return Type: void
Privilege: Public

SetSearchCallback - This operation allows the client software to set a local callback for a
query. This operation is private to the Search method.
Arguments: GlCallback&
Return Type: void
Privilege: Protected

SetStateB - This operation sets the current state.
Arguments: DsEClState
Return Type: RWBoolean
Privilege: Public

SetStatusCallback - This operation allows the client software to establish a callback
routine that will be the local callback function for all requests to report status to.
Arguments: GlCallback&
Return Type: void
Privilege: Public

Submit - This operation invokes the Submit of the DsClRequest object which establishes
a DsClSubmittedRequest to handle the callback stuff. The DsClRequest will call the
Collector (base class) SubmitToServer to actually send itself (request) across the network.
Arguments: DsClRequest &
Return Type: const GlStatus &
Privilege: Public

SuspendSessionB - This operation stores the state of the current session for
later resumption. The UR of the session may be created at this point or it may
be assigned when the session is first created.
Arguments: GlUR &SuspendedSession
Return Type: const GlStatus &
Privilege: Public

UpdateState - This private operation is used to make the client-space representation of the

4-57 305-CD-024-002

working collectino match that on the server side. It takes commands from the
GlParameterList and executes them in turn. Because of the possibility of multiple
simultaneous queries, this operation must be concurrency-safe. Commands take one of the
following *logical* forms. remove(existing_UR) add(new_UR, type(parameters), date,
size) replace(existing_UR, new_type(parameters), date, size) If the
ESDTReferenceVector (by type) is retained, the logic is as follows. add: if type doesn't
exist, create type insert new_UR remove: remove existing_UR if last UR in type,
remove type replace: if new_type doesn't exist, create type set parameters of
existing_UR to new values if last UR in old_type, remove old_type
Arguments: GlParameterList &
Return Type: const GlStatus &
Privilege: Protected
PDL:DsClESDTReferenceCollector::UpdateState(GlParameterList &ResultCommands)

This operation is invoked when results of a request have come back from the
dataserver indicating a change in state of the server side working collection.

The results are a set off commands. These are processed sequentially to change
the state of the client-side collection to match that of the server side
working collection.

This operation returns a GlStatus object.

DO WHILE (there are more results to process)
 Get the next command from the list of ResultCommands
 CASE (action portion of command)
 CASE_ADD:
 Create a DsClESDTReference from the data portion of the command
 Find the DsClESDTReferenceVector matching the type portion of the
 command
 Insert the DsClESDTReference into the DsClESDTReferenceVector
 Insert the DsClESDTReference into this DsClESDTReferenceCollector
 CASE_REPLACE:
 Find the DsClESDTReference matching the GlUR portion of the command
 Get the original DsClESDTReferenceVector from the DsClESDTReference
 Empty the DsClESDTReference of all information except its Collector
 Fill the DsClESDTReference from the data portion of the command
 IF (the original Type information differs from type portion of the
 command)
 Remove the DsClESDTReference from the original
 DsClESDTReferenceVector
 Find the DsClESDTReferenceVector matching the type portion of the
 command
 Insert the DsClESDTReference into the DsClESDTReferenceVector
 END IF

4-58 305-CD-024-002

 CASE_REMOVE:
 Remove the DsClESDTReference from its DsClESDTReferenceVector
 Delete the DsClESDTReferenceVector
 END CASE
END DO WHILE

~DsClESDTReferenceCollector - The DsClESDTReferenceCollector's destructor.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClESDTReferenceCollector class has associations with the following classes:
None

4.3.20 DsClESDTReferenceVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This private class is a vector of ESDTReferences organized by type. This vector is intended
to simplify management of ESDTs, which are presumed to be primarily accessed by type.
This arrangement also permits storing TypeInfo only once per occurence of the given type.

Attributes:

myTypeInfo - This attribute holds all the information specific to a given type of ESDT. "Type"
can mean product type, or newly-created type, as in the case of a subsetted ESDT.
Data Type: DsClTypeInfo*
Privilege: Private
Default Value:

Operations:

DsClESDTReferenceVector - This is the default constructor for this class. Creates an empty
object.

4-59 305-CD-024-002

Arguments:
Return Type: Void
Privilege: Public

DsClESDTReferenceVector - This version of the constructor creates a
DsClESDTReferenceVector for the provided ESDTReference type.
Arguments: DsClTypeInfo &
Return Type: Void
Privilege: Public

getTypeID - This operation returns the DsGeTypeID object for the given type. In the case
of newly created types (e.g. a subsetted ESDT), this information may not mean anything
(or even return anything).
Arguments:
Return Type: Void
Privilege: Public

getTypeInfo - This operation returns the DsClTypeInfo object for a set of
ESDTReferences.
Arguments:
Return Type: Void
Privilege: Public

setTypeInfo - This operation sets the object's attribute to the given DsClTypeInfo object.
Arguments: DsClTypeInfo*
Return Type: Void
Privilege: Public

~DsClESDTReferenceVector - Used to destroy an object of this class.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClESDTReferenceVector class has associations with the following classes:
DsClESDTReferenceCollector (Aggregation)

4-60 305-CD-024-002

4.3.21 DsClNotificationReceiver Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
Handles asynchronous notifications from the data server to the currently logged-on client.
Client will specify a callback point in his application code to receive these events (e.g.
subscription triggering notifications) for each data server that s/he connects to.

Attributes:

myCallback - The callback that will be used when a notification is received.
Data Type: GlCallback
Privilege: Private
Default Value:

myReceiveFlag - Indicates whether notifications should be passed to callback; initially
FALSE.
Data Type: RWBoolean
Privilege: Private
Default Value:

Operations:

DsClNotificationReceiver - Used to construct a notification receiver for a given server.
Notifications will be sent to the given callback.
Arguments: server: GlUR, callback: GlCallback
Return Type: Void
Privilege: Public

DsClNotificationReceiver - Constructs a default notification receiver.
Arguments:
Return Type: Void
Privilege: Public

GetOneNotification - Used to wait for a notification to arrive. Starts a thread to wait,
which can be stopped by StopReceiving().
Arguments:
Return Type: GlStatus
Privilege: Protected

4-61 305-CD-024-002

SetCallback - Used to change the callback that is used when a notification arrives.
Arguments: callback: GlCallback
Return Type: void
Privilege: Public

StartReceiving - Used by the client to control when notifications may be received. Must
be called after creation to enable reception of notifications.
Arguments:
Return Type: void
Privilege: Public

StopReceiving - Used to stop notifications from being sent to the callback. No
notifications can be received in this state.
Arguments:
Return Type: void
Privilege: Public

~DsClNotificationReceiver - Used to destroy a notification receiver.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClNotificationReceiver class has associations with the following classes:
None

4.3.22 DsClQuery Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Purpose and Description:
This public, local object simplifies the passing of query information from the client to the
dataserver. The object is created in client space. The contents of the object will be used to
create a Request object which will be passed to the dataserver. It is assumed that the "from"
clause of an SQL query is inherent in specification of the dataserver to which the query is
issued, that is, that the query is against "the inventory" of the dataserver. Any conversion
to actual table names which may be necessary is done transparently to the client software.

4-62 305-CD-024-002

Attributes:

Constraints - This attribute represents the constraints of a query (i.e. the "where" clause of an
SQL statement).
Data Type: GlParameterList
Privilege: Private
Default Value:

MaxHitsB - This attribute indicates the maximum number of granules to
return (regardless of the number of actual hits, i.e. the granules which satisfy
the search criteria). IN RELEASE B, this can be used to indicate the amount
to check "estimated hits" against.
Data Type: int
Privilege: Private
Default Value:

QueryTypeB - This attribute controls the scope of the query. DsTQueryType
is an enum, where the possible query types are Inventory and
WorkingCollection. Issuing a query against the inventory results in a search
of the Inventory object. Issuing a query against the WorkingCollection
results in a refinement of the existing collection. Issuing a query against an
empty WorkingCollection will return null.
Data Type: DsTQueryType
Privilege: Private
Default Value: Inventory

myLocalCallback - This attribute identifies the local callback routine to be invoked when
any status is returned relative to this query. This attribute is passed to the DsClRequest
object which is created from the DsClQuery object. The DsClRequest object will use this
information to relate status from the DsClSubmittedRequest to the DsClRequest object. As
far as the DsClQuery object is concerned, this is just a pass-through.
Data Type: GlCallback
Privilege: Private
Default Value:

myStatus - This attribute allows the object to maintain information on current status.
Data Type: GlStatus
Privilege: Private
Default Value:

4-63 305-CD-024-002

Operations:

ConvertToCommand - This operation converts the information in the Query object to a
command format that is interpretable by the dataserver. The command is then packaged
in a Request object prior to returning.
Arguments: DsClRequest &
Return Type: DsClRequest &
Privilege: Protected

DsClQuery - This version of the constructor takes the Constraints in the form of a
ParameterList and uses the default for the AttributesToReturn.
Arguments: GlParameterList &
Return Type: Void
Privilege: Public

DsClQuery - The default constructor creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

GetCallback - This operation allows the client software to get the current setting of the
query callback.
Arguments: GlCallback &
Return Type: GlStatus &
Privilege: Public

GetConstraints - This operation returns the currently set list of user-defined query
constraints.
Arguments: GlParameterList &
Return Type: GlStatus &
Privilege: Public

GetMaxHitsB - This operation returns the current setting of MaxHits. For
Release A, MaxHits indicates the maximum number of rows to return
(regardless of the actual number found by the query). This is in keeping with
the definition of MaxHits in V0. In RELEASE B, it may be used to indicate the
cutoff limit for running a query, i.e. if the estimated number of hits is greater
than MaxHits, then don't run the query.
Arguments: int &
Return Type: GlStatus &
Privilege: Public

GetQueryTypeB - This operation returns the current setting for the
QueryType.

4-64 305-CD-024-002

Arguments:
Return Type: DsTQueryType
Privilege: Public

SetCallback - This operation allows the client software to specify a local callback for
queries so that the DsClESDTReferenceCollector object (which is distributed) can return
interim status information to the client software.
Arguments: GlCallback &
Return Type: GlStatus &
Privilege: Public

SetConstraints - This operation allows the client software to pass a list of user- specified
query constraints.
Arguments: GlParameterList &
Return Type: GlStatus &
Privilege: Public

SetMaxHitsB - This operations allows the client software to specify the
number of rows to return in response to a query (this per the current
definition of MaxHits in V0). IN RELEASE B, it can be used to specify the
number of hits to compare to a query estimator; in that case the query will
not execute if the anticipated number of result objects is greater than the
value in MaxHits.
Arguments: int
Return Type: GlStatus &
Privilege: Public

SetQueryTypeB - This operation sets the scope of the query, i.e., run against
the Inventory or against the WorkingCollection.
Arguments: DsTQueryType
Return Type: GlStatus &
Privilege: Public

~DsClQuery - The DsCLQuery's destructor.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClQuery class has associations with the following classes:
None

4-65 305-CD-024-002

4.3.23 DsClRequest Class

Parent Class: DsSrRequestBase
Public: Yes
Distributed Object: No
Purpose and Description:
A specialization of DsRequest for client interfaces. Allows the client to compose a request
and submit it to the data server. Once submitted, the status may be polled, or a callback can
be provided that is triggered on every status change.

Attributes:

myCallback - Callback that will be made anytime the status changes.
Data Type: GlCallback
Privilege: Private
Default Value:

myCollector - Reference to the collector to which this request belongs.
Data Type: DsClESDTReferenceCollector *
Privilege: Private
Default Value:

myLastResultsB - This attribute stores the last set of results from the server
side. This is in support of suspending a session. This operation allows the
DsClRequest to respond to a GetResults request even after it has been
disconnected (normally the results information is stored on and retrieved
from the server-side).
Data Type: GlParameterList&
Privilege: Private
Default Value:

myLastStatusB - This attribute stores the last status received from the
server-side with respect to this request. This is to support the suspension
of a session. It allows a disconnected request to provide status information
to a user (normally this information would be stored on and retrieved from
the server side).
Data Type: GlStatus
Privilege: Private
Default Value:

4-66 305-CD-024-002

myQuery - This is the query object associated with this request. The query object is
needed during a search request because the collector needs to look up the callback for the
query after it is called-back by the request when the search status changes.
Data Type: DsClQuery *
Privilege: Private
Default Value:

myStateB - This attribute is maintained to support the ability to suspend and
resume sessions. When a session is suspended, this attribute is set to
"suspended" so that the DsClESDTReferenceCollector knows not to accept
any more requests.
Data Type: DsEClState
Privilege: Private
Default Value: Active

mySubmittedFlag - Indicates whether this request has been submitted.
Data Type: RWBoolean
Privilege: Private
Default Value:

Operations:

CancelB - Used to cancel a request. If the request is not executing (i.e. it's
queued), then it is removed from the queue. If it is executing, it will be
terminated after the current command completes.
Arguments:
Return Type: GlStatus
Privilege: Public

DsClRequest - Used to construct an "empty" request, which should be filled-in by calling
SetPriority (and other functions) and adding commands.
Arguments:
Return Type: Void
Privilege: Public

DsClRequest - Constructs a request with the given command and priority.
Arguments: cmd: DsClCommand *, pty: DsESrRequestPriority
Return Type: Void
Privilege: Public

EstimateB - This operation estimates the cost, in terms of resources needed,
to execute this request.

4-67 305-CD-024-002

Arguments:
Return Type: const DsSrCost
Privilege: Public

GetQuery - Returns the current query object associated with this request.
Arguments:
Return Type: DsClQuery *
Privilege: Public

GetResults - Returns the current results list from the associated DsClSubmittedRequest.
Arguments:
Return Type: const GlParameterList &
Privilege: Public

GetStateB - This operation returns the value of myState.
Arguments:
Return Type: DsEClState
Privilege: Public

SetLastStatusB - This operation is used to set the value of myLastStatus.
Arguments: GlStatus
Return Type: const GlStatus&
Privilege: Public

SetQuery - Used to set the query object associated with this request. The query object is
needed during a search request because the collector needs to look up the callback for the
query after it is called-back by the request when the search status changes.
Arguments: DsClQuery *
Return Type: Void
Privilege: Public

SetStateB - This operation assigns a value to the myState attribute.
Arguments: DsEClState
Return Type: Void
Privilege: Public

SetStatusCallback - Used to provide a client entry point to be called on every change of
the status of the request.
Arguments: GlCallback *
Return Type: Void
Privilege: Public

Submit - Used to submit a request to be executed by a single, specific ESDT. The request
is in turn submitted to the "implied" DsClESDTReferenceCollector, i.e. the one the
DsClESDTReference holds a pointer to.

4-68 305-CD-024-002

Arguments: DsClESDTReference &
Return Type: GlStatus
Privilege: Public
PDL:IF this request has already been submitted
RETURN code indicating request-already-submitted
ELSE
CALL DsClESDTReference::GetCollector to obtain the collector that contains it
CALL GlURVector to create a new domain vector
CALL DsClESDTReference::GetUR to obtain the ESDT's UR
CALL GlURVector::insert to add the ESDT's UR to the domain vector
CALL DsClRequest::Submit with the collector and domain vector
END IF

Textify - Used to convert a request into a human-readable format.
Arguments:
Return Type: RWCString
Privilege: Public

~DsClRequest - Used to destroy a request.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClRequest class has associations with the following classes:
Class: DsClSubmittedRequest
DsClAction (Aggregation)
DsClRequestVector (Aggregation)

4.3.24 DsClRequestVector Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Purpose and Description:
An instantiation of RWVector over DsClRequest. The operations and attributes of this
class are defined by the definition of RWVector.

4-69 305-CD-024-002

Attributes:

None

Operations:

None

Associations:

The DsClRequestVector class has associations with the following classes:
DsClESDTReferenceCollector (Aggregation)

4.3.25 DsClSubmittedRequest Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Persistent Class: True
Purpose and Description:
This class is used when a client request is submitted to the data server. It represents the
"distributedness" of a request, and manages communication between the real request on the
server and the client's request. It provides status to the DsClRequest when the client
inquires for it, or by using the callback. It also gives the client access to the results of the
request execution through DsClRequest.

Attributes:

myCallback - On the client side, this is the callback that is used every time the status changes
for this request.
Data Type: GlCallback
Privilege: Private
Default Value:

myConnection - The ID of the connection with which this request is associated.
Data Type: DsESrConnectionID
Privilege: Private
Default Value:

myFinishTime - The date and time on which this request finished.
Data Type: RWTime

4-70 305-CD-024-002

Privilege: Private
Default Value:

myIDB - The system-wide ID for this submitted request.
Data Type: DsClSubmittedRequestID
Privilege: Private
Default Value:

myInfo - This is the core information for this request.
Data Type: DsSrRequestInfo*
Privilege: Private
Default Value:

myResults - This is a list of results returned from the execution of a request. The
parameters in the list are really other GlParameterList's, one for each command in the
request. Each of these is composed of GlParameterList's, one for each ESDT in the
collection. It is filled in by the DsSrWorkingCollection.
Data Type: GlParameterList
Privilege: Private
Default Value:

myStatus - The current status of the request, updated as the request moves through the data
server and executes. A mirror of the status field in the real request.
Data Type: GlStatus
Privilege: Private
Default Value:

mySubmitTime - The date and time on which this request was submitted.
Data Type: RWTime
Privilege: Private
Default Value:

myUser - The user ID of the user who submitted the request.
Data Type: MSS_UserID
Privilege: Private
Default Value:

Operations:

DsClSubmittedRequest - Constructs a submitted request with the given connection ID and
user ID. The DsClRequest is used to fill-in myInfo. mySubmitTime and myUR are
automatically filled-in from information available from the system.
Arguments: DsESrConnectionID, MSS_UserID, DsClRequest&

4-71 305-CD-024-002

Return Type: Void
Privilege: Public

GetConnectionID - Used to retrieve the ID of the connection with which the request was
submitted.
Arguments:
Return Type: DsESrConnectionID
Privilege: Public

GetFinishTime - Used to obtain the date and time on which this request finished execution.
Arguments:
Return Type: RWTime
Privilege: Public

GetIDB - Returns the ID of this submitted request.
Arguments:
Return Type: DsClSubmittedRequestID
Privilege: Public

GetInfo - Used to retrieve a pointer to the core information for this request.
DsSrConnection (and its sub-classes) use this to construct each DsSrRequest.
Arguments:
Return Type: DsSrRequestInfo*
Privilege: Protected

GetResults - Returns a reference to the current results list. Results are updated on the
server side.
Arguments:
Return Type: GlParameterList &
Privilege: Public

GetStatus - Returns the current status of the request.
Arguments:
Return Type: const GlStatus &
Privilege: Public

GetSubmitTime - Used to obtain the date and time on which this request was submitted.
Arguments:
Return Type: RWTime
Privilege: Public

GetUser - Used to retrieve the ID of the user that submitted the request.
Arguments:
Return Type: MSS_UserID
Privilege: Public

4-72 305-CD-024-002

SetCallback - Sets the value of the callback that is called every time the status of the
request changes.
Arguments: GlCallback
Return Type: void
Privilege: Public

SetPriorityB - Used by client software to set the priority of a request that has
been submitted. On the server side, access the core request information
directly to set the priority.
Arguments: DsESrRequestPriority
Return Type: void
Privilege: Public

SetStatus - Used to set the status of the request. Used exclusively on the server side.
Arguments: GlStatus *
Return Type: void
Privilege: Public

WaitStatus - Used on the client side to initiate a thread that waits for a change in status in
the request. Whenever a change occurs (on the server side), this call will return and the
client may check its value.
Arguments:
Return Type: void
Privilege: Public

~DsClSubmittedRequest - Used to destroy a submitted request.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClSubmittedRequest class has associations with the following classes:
Class: DsClRequest
Class: DsSrRequestBase
Class: DsSrSubmittedRequestVector insertsself
DsSrSubmittedRequestVector (Aggregation)

4-73 305-CD-024-002

4.3.26 DsClSubscription Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Purpose and Description:
This class is the client side subscription which can either be created from advertisements or
from exisiting subscriptions from the server side (through a stream.)

Attributes:

myAction - The action to be performed when the subscription fires.
Data Type: DsClAction
Privilege: Protected
Default Value:

myCollector - A pointer to the collector that this reference is a member of. If this pointer
is null, then this reference is a member of one of the collectors in the static collector vector.
Data Type: DsClSubscriptionCollector&
Privilege: Protected
Default Value:

myDescription - String which contains service of the subscription.
Data Type: RWCString
Privilege: Protected
Default Value:

myDurationType - Time duration of subscriptions (i.e., can be done one time or forever
(outstanding).
Data Type: enum DsEClSubscriptionType
Privilege: Protected
Default Value: {ONCE, OUTSTANDING}

myExpirationDate - Identifies when this subscription will expire and be removed from the
system. The value may be "never" (i.e. the subscription is permanent)
Data Type: RWDate
Privilege: Protected
Default Value:

mySubmittedFlag - Flag which shows whether the subscription has been submitted or not.
Data Type: RWBoolean
Privilege: Protected
Default Value: RWTrue

4-74 305-CD-024-002

myUserInfo - Client information, provided by client software.
Data Type: DsClClient&
Privilege: Protected
Default Value:

ourCollectorvector - Static vector of pointers to DsClSubscriptionCollector objects, one
per dataserver.
Data Type: DsClSubscriptionCollectorVector&
Privilege: Protected
Default Value:

Operations:

DsClSubscription - Constructor for client software (therefore, public) which gets attribute
information from advertisements, such as service provider. If no collector has been
provided, it goes and finds one, based on the static nature of the collector.
Arguments: userinfo, Advertisement&, DsClSubscriptionCollector&
Return Type: Void
Privilege: Public

DsClSubscription - Constructor for already existing collector which gets already existing
subscriptions from the sever side through a stream.
Arguments: submittedflag, DsClSubscriptionCollector&, Stream
Return Type: Void
Privilege: Public

DsClSubscription - The default constructor creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

GetAction - Means of accessing myAction attribute (object), which will be communicated
to the server what this subscription should do when it fires.
Arguments: DsClAction &
Return Type: void
Privilege: Public

GetDescription - Returns description, containing the service, as a RogueWave string.
Arguments:
Return Type: RWCString
Privilege: Public

4-75 305-CD-024-002

GetDurationtype - Accesses myDurationType attribute as to whether subscriptions are
done one time or forever (outstanding).
Arguments:
Return Type: DsEClSubscriptionType
Privilege: Public

GetExpirationdate - Public access to myExpirationDate attribute, which provides the
expiration date of the subscription.
Arguments:
Return Type: RWDate
Privilege: Public

GetSubmittedflag - Public access to flag as to whether a subscription has been submitted.
Arguments:
Return Type: RWBoolean
Privilege: Public

GetUserinfo - Public access to user information which can be put into the DsSrClient
object.
Arguments: GLClient&
Return Type: Void
Privilege: Public

SetAction - Sets the myAction attribute for this particular subscription as determined by
the client software.
Arguments: DsClAction&
Return Type: void
Privilege: Public

SetDescription - Allows the client software to fill in the Description attribute with service
information.
Arguments: RWCString
Return Type: void
Privilege: Public

SetDurationType - Sets the attribute which determines the existence type of the
subscription.
Arguments: DsEClSubscriptionType
Return Type: void
Privilege: Public

SetExpirationDate - Sets the expiration date of the subscription itself.
Arguments: RWDate
Return Type: void

4-76 305-CD-024-002

Privilege: Public

SetSubmittedFlag - Sets the flag which indicates whether or not the DsClSubscription has
actually been submitted to the dataserver (i.e. the client software is finished with filling in
the information, and has invoked the Submit method).
Arguments: RWBoolean
Return Type: void
Privilege: Protected

Submit - Submits subscription to the subscription collector.
Arguments:
Return Type: GlStatus&
Privilege: Public

Withdraw - Deletes a subscription from the subscription collector.
Arguments:
Return Type: GlStatus&
Privilege: Public

~DsClSubscription - The DsClSubscription's destructor.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClSubscription class has associations with the following classes:
Class: DsClAction actionof
DsClSubscriptionCollector (Aggregation)

4.3.27 DsClSubscriptionCollector Class

Parent Class: DsClCollector
Public: Yes
Distributed Object: Yes
Purpose and Description:
This public, distributed class is a specialization of the Collector class which handles
DsClSubscriptions. This class provides, in addition to the normal vector operations, the
ability to create a list of all subscriptions for a given user or advertisement, and a means of
submitting and cancelling subscriptions. There are no attributes for this object.

4-77 305-CD-024-002

Attributes:

myStatus - This attribute allows the object to maintain information on current status.
Data Type: GlStatus
Privilege: Private
Default Value:

Operations:

BuildList - This operation creates a list of all subscriptions for a given event.
Arguments: Advertisement&
Return Type: const GlStatus &
Privilege: Public

BuildList - This operation creates a list of all subscriptions for a given user.
Arguments: MSS_UserProfile &
Return Type: const GlStatus &
Privilege: Public

BuildListB - This operation allows ops/admin staff to get a list of all subscriptions in
the system.
Arguments:
Return Type: const GlStatus &
Privilege: Public

CancelSubscription - This operation creates a request to cancel the specified subscription.
Arguments: DsClSubscription*
Return Type: const GlStatus &
Privilege: Private

CreateSubscription - This is a private service used to build the set of subscriptions
contained by the SubscriptionCollector.
Arguments: RWBoolean SubmittedFlag, istream &Stream, DsClSubscriptionCollector
*me
Return Type: DsClSubscription*
Privilege: Private

DsClSubscriptionCollector - The constructor for DsClSubscriptionCollector's. This
constructor establishes a set of Subscriptions for the user based on the provided science data
server and the user information.
Arguments: GlUR &dataserver, MSS_UserProfile &
Return Type: Void
Privilege: Public

4-78 305-CD-024-002

~DsClSubscriptionCollector - The DsClSubscriptionCollector's destructor.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClSubscriptionCollector class has associations with the following classes:
None

4.3.28 DsClTypeInfo Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This private, local object provides the place for information related to a type of ESDT to
be stored. This information all comes from the Descriptor. This information will be stored
only once per Descriptor (i.e. product type) and referenced by all the ESDTReferences of
that type. This object contains a DsGeTypeID, which provides the name and version for
this type.

Attributes:

myMetadata - This attribute holds the metadata attributes which apply to all objects of the
given type. This metadata is both the core and the product specific metadata for this
granule.
Data Type: GlParameterList
Privilege: Private
Default Value:

myQueryableParameters - This attribute contains the list of attribute names for ESDT's
of this type. This list allows the client software to determine which attributes to use in
certain services, such as Inspect.
Data Type: GlParameterList
Privilege: Private
Default Value:

4-79 305-CD-024-002

myScienceParametersB - This attribute holds the Science Parameters from
the Descriptor for the ESDTReferences of this type. These are available for
the client software to query and use in constructing parameter lists for
advertised services.
Data Type: GlParameterList
Privilege: Private
Default Value:

myStatus - This attribute allows the object to maintain information on current status.
Data Type: GlStatus
Privilege: Private
Default Value:

Operations:

GetMetadata - This operation returns the GlParameterList which represents all the metadata
attributes for this granule, both Core and Product Specific.
Arguments: GlParameterList &
Return Type: GlStatus &
Privilege: Public

GetName - This operation returns the name from the DsGlTypeID object embedded in this
DsClTypeInfo object.
Arguments: RWCString &
Return Type: GlStatus &
Privilege: Public

GetQueryableParameters - This operation allows the client software to retrieve the list of
queryable parameters which apply to a specific ESDTReference. The information is
applicable to all ESDT's of the same type.
Arguments: GlParameterList &
Return Type: GlStatus &
Privilege: Public

GetScienceParametersB - This operation returns the ParameterList which
represents the Science Parameters from the associated Descriptor.
Arguments: GlParameterList &
Return Type: GlStatus &
Privilege: Public

GetVersionB - This object returns the version from the DsGeTypeID object
embedded in this DsClTypeInfo object.

4-80 305-CD-024-002

Arguments: RWCString &
Return Type: GlStatus &
Privilege: Public

Associations:

The DsClTypeInfo class has associations with the following classes:
DsClESDTReferenceVector (Aggregation)

4.3.29 DsCnConfiguration Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Manages configuration parameters for various data server components in a token-value
style file. Often specialized where needed to provide higher level access to configuration
parameters.

Attributes:

myFile - The file with which this configuration object is associated.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

Add - Add a token value to a configuration file under any section.
Arguments: const RWCString&, const RWCString&
Return Type: RWBoolean
Privilege: Public

Add - Add a token value to a configuration file under a specific section.
Arguments: const RWCString&, const RWCString&, const RWCString&
Return Type: RWBoolean
Privilege: Public

4-81 305-CD-024-002

DsCnConfiguration - Constructor which initializes a configuration file name.
Arguments: const RWCString&
Return Type: Void
Privilege: Public

Get - Used to acquire a token value out of a file. Meant to be used as a general means to
get tokens out of files, but in this case is used for configuration-like files.
Arguments: const RWCString&
Return Type: const RWString
Privilege: Public

Get - Used to acquire a token value from any configuration-like file. This particular
function takes care of the case when a specific section is specified.
Arguments: const RWCString&, const RWCString&
Return Type: const RWString
Privilege: Public

GetSectionToken - This is a general section parser from a file. It can parse multiple
sections from a file line.
Arguments: const RWCString&, RWCString&
Return Type: RWBoolean
Privilege: Protected

ReDoFile - Rewrites a file at the system level after lines have been modified, added, or
deleted.
Arguments:
Return Type: const RWBoolean
Privilege: Protected

Remove - Removes a line matching an input token key under any section.
Arguments: const RWCString&
Return Type: RWBoolean
Privilege: Public

Remove - Remove a configuration file line matching an input token key under a specific
section.
Arguments: const RWCString&, const RWCString&
Return Type: RWBoolean
Privilege: Public

Update - Update a line in a configuration given an input key under a specific section.
Arguments: const RWCString&, const RWCString&, const RWCString&
Return Type: RWBoolean
Privilege: Public

4-82 305-CD-024-002

Update - Update a line in a configuration file given a specific key with which to update.
This occurs for any section.
Arguments: const RWCString&, const RWCString&
Return Type: RWBoolean
Privilege: Public

~DsCnConfiguration - Used to destroy an object of this type.
Arguments:
Return Type: Void
Privilege: Public
This is an abstract operation

Associations:

The DsCnConfiguration class has associations with the following classes:
None

4.3.30 DsCnDSSConfiguration Class

Parent Class: DsCnConfiguration
Public: No
Distributed Object: No
Purpose and Description:
This is a datserver configuration startup class that starts processes as defined in a
configuration file.

Attributes:

All Attributes inherited from parent class

Operations:

GetProcessesToStart - Uses the base configuration class to read processes from a file in order
to initiate processes in that file.
Arguments:
Return Type: Void
Privilege: Public

4-83 305-CD-024-002

Associations:

The DsCnDSSConfiguration class has associations with the following classes:
Class: DsCnDSSStartup enquires

4.3.31 DsCnDSSStartup Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This starts up all processes for a particular dataserver by enquiring a particular
configuration file and initializing/restarting ESDTs.

Attributes:

None

Operations:

DsCnDSSStartup - Constructs a DsCnDSSStartup class.
Arguments:
Return Type: Void
Privilege: Public

InitializeESDTs - Creates descriptors for each type in configuration.
Arguments:
Return Type: RWBoolean
Privilege: Public

RestartESDTs - If something should happen to the advertisement server, then redo the
initialize ESDTs and "re-advertise" them.
Arguments:
Return Type: RWBoolean
Privilege: Public

StartProcesses - This is the means to interface with an MSS object which takes care of
initiating startup and shutdown procedures from a system-level perspective.
Arguments:
Return Type: Void
Privilege: Public

4-84 305-CD-024-002

~DsCnDSSStartup
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCnDSSStartup class has associations with the following classes:
Class: DsCnDSSConfiguration enquires
Class: DsGeESDTConfiguration enquires
Class: DsDeESDTDescriptor initializedby
Class: DsDeESDTDescriptor initializes

4.3.32 DsCoColorB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the Color Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsCoColorB class has associations with the following classes:
None

4.3.33 DsCoCombination Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
The class represents 'combined' products, generated using data from more than one satellite
or ground based instrument. An example would be the TRMM 2B-31 Level 2B product
generated using data from the PR or/and VIRS TRMM instruments.

4-85 305-CD-024-002

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsCoCombination class has associations with the following classes:
None

4.3.34 DsCs24BitImage Class

Parent Class: DsCsImage
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of 24 bit images.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsCs24BitImage class has associations with the following classes:
None

4-86 305-CD-024-002

4.3.35 DsCs8BitImage Class

Parent Class: DsCsImage
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of 8 bit images.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsCs8BitImage class has associations with the following classes:
None

4.3.36 DsCsCSDT Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Computer Science Data Type. The CSDT is a data structure used by the data server
superclass that provides common services for the different types of CSDTs. The CSDT
provides the internal representation of data objects.

Attributes:

myCompressionType -
Data Type: typedef
Privilege: Private
Default Value: None

4-87 305-CD-024-002

myDate - The date when the CSDT was created.
Data Type: char
Privilege: Private
Default Value: yyyy/mmm/ddd

myFormat - Ths format of the CSDT.
Data Type: typedef
Privilege: Private
Default Value: Raw

myPermissions -
Data Type: char
Privilege: Private
Default Value: RW

mySize - The block size of the CSDT
Data Type: integer
Privilege: Private
Default Value: 0
Contraints:
Non Persisent Flag:

Operations:

DeleteCSDT
Arguments: void
Return Type: success/fail
Privilege: Public
This is an abstract operation

Extract
Arguments: char
Return Type: success/fail
Privilege: Public
This is an abstract operation

GetFormat
Arguments:
Return Type: typedef
Privilege: Public
This is an abstract operation

4-88 305-CD-024-002

GetLocation
Arguments: char
Return Type: Void
Privilege: Public

GetPermissions
Arguments: void
Return Type: typedef
Privilege: Public

GetSize
Arguments: void
Return Type: int
Privilege: Public

GetVersionNo
Arguments:
Return Type: RWCString version
Privilege: Public

GetView
Arguments:
Return Type: Void
Privilege: Public
This is an abstract operation

Insert
Arguments: char
Return Type: success/fail
Privilege: Public
This is an abstract operation

NewCSDT
Arguments: void
Return Type: success/fail
Privilege: Public
This is an abstract operation

SetPermissions
Arguments: char
Return Type: Void
Privilege: Public

4-89 305-CD-024-002

UpdateCSDT
Arguments: char
Return Type: Void
Privilege: Public
This is an abstract operation

Associations:

The DsCsCSDT class has associations with the following classes:
DsGeESDT (Aggregation)

4.3.37 DsCsGrid Class

Parent Class: DsCsCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of granules in the geolocated data
types.

Attributes:

myArrayLabels
Data Type:
Privilege: Private
Default Value:

myCompression
Data Type:
Privilege: Private
Default Value:

myDimension
Data Type:
Privilege: Private
Default Value:

4-90 305-CD-024-002

myGeophysicalParameters
Data Type:
Privilege: Private
Default Value:

myGridType
Data Type:
Privilege: Private
Default Value:

myName
Data Type:
Privilege: Private
Default Value:

myResolution
Data Type:
Privilege: Private
Default Value:

Operations:

ApplyProjection - To apply projection on the granules.
Arguments:
Return Type: Void
Privilege: Public

Compress
Arguments:
Return Type: Void
Privilege: Public

ExtractSlice - This service obtains one or more parameters (a slice) over the desired area
of interest.
Arguments:
Return Type: Void
Privilege: Public

GetOrbitModelName
Arguments:
Return Type: Void
Privilege: Public

4-91 305-CD-024-002

SubsampleB - To select representative measurements across rectangle from
data granules using a consistant sampling scheme.
Arguments: rectangle
Return Type: Void
Privilege: Public

SubsampleB - To select representative measurements across polygon from
data granules using a consistant sampling scheme.
Arguments: polygon
Return Type: Void
Privilege: Public

SubsetB - To obtain data from granules based on a given rectangle.
Arguments: rectangle
Return Type: Void
Privilege: Public

SubsetB - To obtain data from granules based on a given 3-D polygon.
Arguments: polygon
Return Type: Void
Privilege: Public

SubsetB - To obtain only specified parameters or parameter catagory from
granule.
Arguments: parameter
Return Type: Void
Privilege: Public

SubsetB - To obtain data based on given time(s) or time interval(s).
Arguments: time
Return Type: Void
Privilege: Public

Uncompress
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCsGrid class has associations with the following classes:
None

4-92 305-CD-024-002

4.3.38 DsCsImage Class

Parent Class: DsCsCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
 A computer science data type used for the representation of the 2D raster data type,
primarily for the storage of the pixels for image visualization.

Attributes:

myBitDepth
Data Type:
Privilege: Private
Default Value:

myImageType - The type (bitmap, rastermap etc.,) of the image.
Data Type:
Privilege: Private
Default Value:

myLength - The length of the image.
Data Type:
Privilege: Private
Default Value:

myName
Data Type:
Privilege: Private
Default Value:

myResolution - The pixel resolution of the image.
Data Type:
Privilege: Private
Default Value:

myWidth - The width of the image.
Data Type:
Privilege: Private
Default Value:

4-93 305-CD-024-002

Operations:

AnimateB
Arguments:
Return Type: Void
Privilege: Public

CompressB
Arguments:
Return Type: Void
Privilege: Public

OverlayB
Arguments:
Return Type: Void
Privilege: Public

SubsampleB - To select representative measurements across parameter
from data granules using consistent sampling scheme.
Arguments:
Return Type: Void
Privilege: Public

SubsetB
Arguments:
Return Type: Void
Privilege: Public

UncompressB
Arguments:
Return Type: Void
Privilege:

Associations:

The DsCsImage class has associations with the following classes:
None

4-94 305-CD-024-002

4.3.39 DsCsLookupTable Class

Parent Class: Not Applicable

Attributes:

myColorNames
Data Type:
Privilege: Private
Default Value:

myName
Data Type:
Privilege: Private
Default Value:

Operations:

SetColor
Arguments: id
Return Type: Void
Privilege: Public

SetContrast
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCsLookupTable class has associations with the following classes:
DsCs8BitImage (Aggregation)

4.3.40 DsCsPoint Class

Parent Class: DsCsCSDT
Public: No
Distributed Object: No
Persistent Class:

4-95 305-CD-024-002

Purpose and Description:
A computer science data type used for the representation of the point data.

Attributes:

myLabels
Data Type:
Privilege: Private
Default Value:

myLocation
Data Type:
Privilege: Private
Default Value:

myName
Data Type:
Privilege: Private
Default Value:

myResolution
Data Type:
Privilege: Private
Default Value:

mySize
Data Type:
Privilege: Private
Default Value:

myTime
Data Type:
Privilege: Private
Default Value:

myVector
Data Type:
Privilege: Private
Default Value:

4-96 305-CD-024-002

Operations:

GetLabels
Arguments:
Return Type: Void
Privilege: Public

GetRecordType
Arguments:
Return Type: Void
Privilege: Public

GetSize
Arguments:
Return Type: Void
Privilege: Public

ParameterSubsetB
Arguments:
Return Type: Void
Privilege: Public

SetLabels
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCsPoint class has associations with the following classes:
None

4.3.41 DsCsRaw Class

Parent Class: DsCsCSDT

Attributes:

mylocation
Data Type:

4-97 305-CD-024-002

Privilege: Private
Default Value:

myname
Data Type:
Privilege: Private
Default Value:

mysize
Data Type:
Privilege: Private
Default Value:

Operations:

GetSize
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCsRaw class has associations with the following classes:
None

4.3.42 DsCsSwath Class

Parent Class: DsCsCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of the swath of the images.

Attributes:

myCompression
Data Type:
Privilege: Private

4-98 305-CD-024-002

Default Value:

myDimensions
Data Type:
Privilege: Private
Default Value:

myLabels
Data Type:
Privilege: Private
Default Value:

myLocation
Data Type:
Privilege: Private
Default Value:

myName
Data Type:
Privilege: Private
Default Value:

myOrbitRepresentation
Data Type:
Privilege: Private
Default Value:

myResolution
Data Type:
Privilege: Private
Default Value:

mySize
Data Type:
Privilege: Private
Default Value:

mySwathType
Data Type:
Privilege: Private
Default Value:

myTime
Data Type:
Privilege: Private

4-99 305-CD-024-002

Default Value:

Operations:

Compress
Arguments:
Return Type: Void
Privilege: Public

CreateRows
Arguments:
Return Type: Void
Privilege: Public

DeleteRows
Arguments:
Return Type: Void
Privilege: Public

ExtractRows
Arguments:
Return Type: Void
Privilege: Public

GetRecordType
Arguments:
Return Type: Void
Privilege: Public

GetSize
Arguments:
Return Type: Void
Privilege: Public

SubsampleB - To select representative measurements across scanline from
data granules using a consistant sampling scheme.
Arguments: scanline
Return Type: Void
Privilege: Public

SubsampleB - To select representative masurements across time from data
granules using a consistant sampling scheme.
Arguments: time

4-100 305-CD-024-002

Return Type: Void
Privilege: Public

SubsampleB
Arguments: row
Return Type: Void
Privilege: Public

SubsetB - To obtain data based on given parameters or parameter catagory
from garnule.
Arguments: parameter
Return Type: Void
Privilege: Public

SubsetB - To obtain data from granules based on the given scan line.
Arguments: scanline
Return Type: Void
Privilege: Public

SubsetB - To obtain data based on given time(s) or time interval(s).
Arguments: time
Return Type: Void
Privilege: Public

Associations:

The DsCsSwath class has associations with the following classes:
None

4.3.43 DsCsTableB Class

Parent Class: DsCsCSDT
Public: No
Distributed Object: No
Purpose and Description:
A computer science data type used for the representation of a table of
values.
Attributes:
All Attributes inherited from parent class
Operations:
GetColumn

4-101 305-CD-024-002

Arguments:
Return Type: Void
Privilege: Public

GetLabel
Arguments:
Return Type: Void
Privilege: Public

GetRow
Arguments:
Return Type: Void
Privilege: Public

Associations:
The DsCsTableB class has associations with the following classes:
None

4.3.44 DsDbAccess Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This object provides a layer of database-technology-independence to the dataserver
objects. Each object type in the dataserver is defined in this object (i.e. a given instantiation
of this object will collect the appropriate information about the provided object type from
the database and use that information to extract the appropriate data from the database to
fill in the attributes of the given object).

Attributes:

myAssociations - This attribute contains a list of table names with which the given
CollectableObject is associated. This attribute is assumed to be a one-to-one mapping with
the values in myForeignKeys, and it is further assumed that the order in which the
associated tables appear corresponds with the order of column names contained in attribute
myForeignKeys.
Data Type: RWTPtrOrderedVector<RWCString>
Privilege: Private
Default Value:

4-102 305-CD-024-002

myDatabase - This is a derived attribute in that it is not stored anywhere. It is static
because all objects in the Dataserver will be stored in the same database. This attribute is
used to open the database after a connection (login) to the server has been established.
Data Type: RWCString & DBName
Privilege: Private
Default Value:
This is a Class Attribute.
This is a Derived Attribute.
Contraints:
Non Persisent Flag: True

myForeignKeys - This attribute contains a list of column names which are the primary
keys for the tables with which the given CollectableObject is associated. This attribute is
assumed to be a one-to-one mapping with the values in myAssociations, and it is further
assumed that the order in which the column names appear corresponds with the order of
associated tables contained in attribute myAssociations.
Data Type: RWTPtrOrderedVector<RWCString>
Privilege: Private
Default Value:

myIndexableColumns - This attribute contains a list of column names indicating which of
the attributes of the given CollectableObject type are stored separately from the rest of the
object. This allows indexes to be built on these fields. It also allows human perusal of the
values. It also allows joins on these fields. The fields in this list do not necessarily have
indexes built on them, as they may appear here for one of the latter two reasons.
Data Type: RWTPtrOrderedVector<RWCString>
Privilege: Private
Default Value:

myLocation - This attribute identifies either the table name (for objects which are stored
in a DBMS) or the file (?path) name (for objects which are stored as files).
Data Type: RWCString
Privilege: Private
Default Value:

myObjectIdentifier - This attribute is used for those accesses which require the storing or
retrieval of a specific object (i.e. a specific instantation of the given class). The value in
this object is used as a qualifier in selecting from the underlying database.
Data Type: int
Privilege: Private
Default Value:

myObjectType - This attribute indicates which of the dataserver objects is being handled
at this time. The object is known only by it's ancestor type CollectableObject at the time
that this object (DsDbAccess) is created. Each CollectableObject must be capable of

4-103 305-CD-024-002

identifying its type. The value of this attribute allows the DsDbAccess object to know the
values for the rest of the attributes. Based on the ObjectType, DsDbAccess can read the
corresponding control information (rest of attributes) from the underlying database.
Data Type: DsEDbObjectType
Privilege: Private
Default Value:

myPersistenceType - This attribute identifies whether the given CollectableObject is to be
stored in a DBMS or in a file.
Data Type: DsEDbPersistenceType
Privilege: Private
Default Value:

myPrimaryKey - This attribute identifies which of the given CollectableObject's attributes
is to be used as a Primary Key for selecting information about this type of object. This
attribute will store the DBMS column name of the PK column in table "myLocation".
Data Type: RWCString
Privilege: Private
Default Value: myObjectIdentifier

myResponseLevel - This attribute indicates whether or not the object can receive more
than one result row from the database.
Data Type: binary
Privilege: Private
Default Value: unit

ourDBConnections - This static attribute holds a set of database connections so that each
instantiation of the object can have immediate access to the database (i.e., without having
to login and open the database). This pool of database handles is established at dataserver
startup, and should have a configurable limit to be stored (that is, the actual number of
connections to create should be a configuration variable). This pool should be removed
(each connection closed) at destructor time. In case of a crash, Sybase will probably clean
up broken connections anyway, so this case can be ignored. If Sybase does NOT clean up
broken connections, then whatever process is the norm for doing so (manual or otherwise)
can be used.
Data Type: RWTPtrOrderedVector<DsDbInterface>
Privilege: Private
Default Value:
This is a Class Attribute.
This is a Derived Attribute.

4-104 305-CD-024-002

Operations:

CloseDatabase - This protected operation allows this object to close all database connections
on system shutdown. This is a class operation because the pool of database handles is
static.
Arguments:
Return Type: const GlStatus &
Privilege: Protected
This is a Class Operation.

DsDbAccess - The default constructor allows users of this object to create an empty one
in the case where specific values are to be found. An empty DsDbAccess object is created,
then the actual values in the CollectableObject which identify the data to be used can be
identified at a later time.
Arguments:
Return Type: Void
Privilege: Public

DsDbAccess - This version of the constructor takes the partially filled in CollectableObject
(which contains, at a minimum, the object type), and fills the object attributes prior to
returning.
Arguments: CollectableObject &
Return Type: Void
Privilege: Public

Fill - This operation supplies this object with the partially filled-in CollectableObject such
that this object (DsDbAccess) can find the data for the attributes of the CollectableObject.
For example, a given CollectableObject may contain an attribute called "name" which is
used to identify which instance is desired. The DsDbAccess object will find out what the
type of the Collectable Object is, get the definition information for that type of object,
identify that "name" is the primary key, and then construct a query using the supplied value
for "name" to get the rest of the data which corresponds to that name. This operation
returns the entire object in a binary stream. The calling object is responsible for interpreting
the stream according to its internal structure.
Arguments: const CollectableObject &, ostream &
Return Type: const GlStatus &
Privilege: Public
PDL:DsDbAccess::Fill(CollectableObject&, ostream &)

This operation is invoked when a previously-stored dataserver object is created.
The calling operation (which may be the constructor of the object) provides the
reference to the object. The calling operation has filled in those attributes
(from among the ones defined as "indexable") which will be used to identify
this object.

4-105 305-CD-024-002

This operation uses the configuration information for the given object type and
the values supplied for this instance of the object type to construct a database
query. The configuration information includes an indicator of whether or not
an object can receive more than one result from the database. The results of
the query are sent to the stream provided as an input parameter. The calling
operation must have an operation to reconstruct as necessary from a stream.

This operation puts the results of the query via the stream parameter and
returns a GlStatus object. If an object is defined as unit-level (that is,
"filling" the object involves finding a single entry in the database) and the
results of the query are not unit-level, the status will indicate an error.

SEQUENCE:
 Get the object's type
 Get the configuration information for that object type
 Construct the projection of the query from the configuration information,
 i.e., ("Select ", Config->myStuff)
 Construct the location of the query from the configuration information,
 i.e., ("from ", Config->Location)
 Construct the restriction of the query from the supplied attributes,
 i.e., ("where ")
 FOR (each of the type's indexable columns)
 IF (the supplied attribute is not null)
 IF (this is not the first constraint)
 Append a conjuctive to the query,
 i.e., (" AND ")
 END IF
 Append a constraint to the query
 EXAMPLE:
 (Config->myIndexables->thisColumn,
 Config->myIndexables->operator,
 //(" = ", or " > ", etc.)
 CollectableObject->(thisColumn))
 becomes
 (TypeCode, "=", Object->TypeID->myCode)
 becomes
 "TypeCode = 5"
 END EXAMPLE
 END IF
 END FOR
 Create a DsDbInterface object
 Submit the query to the DsDbInterface object
 IF (the configuration information indicates "set" level return values)
 Get the results from the DsDbInterface routine which returns a vector of

4-106 305-CD-024-002

 results
 Bind the return vector to the stream parameter supplied to this operation
 ELSE
 Get the results from the DsDbInterface routine which returns a single
 result
 Bind the return result to the stream parameter supplied to this operation
 END IF
 Set the GlStatus object to reflect the current status
 Return the GlStatus object
END SEQUENCE

GetDBHandle - This internal operation is used by the object on construction, to get the
next available DB handle from the static pool of handles. This handle is then used for all
the database operations performed by this instantiation.
Arguments:
Return Type: DsDbInterface
Privilege: Protected

NextTypeCode - This operation gets a unique code for a new (previously not existing)
TypeID.
Arguments:
Return Type: int
Privilege: Public

OpenDatabase - This protected operation allows this object to establish a pool of
connections to the database upon system startup. This is a class operation because the pool
of database handles is static.
Arguments:
Return Type: const GlStatus &
Privilege: Protected
This is a Class Operation.

ReturnDBHandle - This internal operation is used by the object on destruction, to return
the handle it used to the pool of available handles, so that another instantiation can use it.
Arguments: DsDbInterface
Return Type: const GlStatus &
Privilege: Protected

Store - This operation takes the data in the provided CollectableObject and inserts it to the
database according to the definition information which is recorded for the
CollectableObject's type. This operation returns the ObjectID which is assigned by the
DBMS.
Arguments: const CollectableObject &
Return Type: int

4-107 305-CD-024-002

Privilege: Public

UnStore - This operation removes the information of the current object from the
persistence store. It does *not* remove the object from existence, that is, it simply makes
the object volatile, that is, not persistent. The local object which has been "UnStore"d
should not use any persistence-related attributes (ObjectID) or make any assumptions that
previously associated objects will continue to "know" about this object. This bi-level
removal of an object from the persistent store is to provide greater control in the object
itself, that is, an object may have reason to be not-persistent at some point.
Arguments: CollectableObject &
Return Type: const GlStatus &
Privilege: Public

Update - This operation allows the object to change values of attributes without changing
the identity of the object itself. Attempting to change the attribute(s) which constitute the
primary key for the object is an error.
Arguments: const CollectableObject &, istream &
Return Type: const GlStatus &
Privilege: Public

~DsDbAccess - The destructor closes the database connection (returns the handle) and
anything else that is necessary.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDbAccess class has associations with the following classes:
Class: DsDbInterface

4.3.45 DsDbAttributeToTableVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This class contains the mappings of attributes to tables and columns within the database.
This class contains default locations for each attribute but also allows the table and column

4-108 305-CD-024-002

names for an attribute to be overloaded on a product basis.

Attributes:

myAttributeToTableVector - This vector holds the mappings of attributes to table and
column names.
Data Type: DsTMdAttributeTableXrefList
Privilege: Private
Default Value: null

Operations:

GetTableColumnName - This method takes a DsTMdAttributeXref structure with the
product and attribute name filled in and updates the structure adding the table and column
names.
Arguments: DsTMdAttributeTableXref& attribute, DsMdDbConnection& connection
Return Type: GlStatus
Privilege: Public

Initialize - This method queries the DsMdAttributeTableXref table and builds the
myAttributeToTableVector. This vector will hold all the mappings for the Catalog.
Arguments: DsMdDbConnection& connection
Return Type: GlStatus
Privilege: Public

PutTableColumnNames - This method adds a row to the DsMdAttributeTableXref table
using the information passed in through the DsTMdAttributeXref structure.
Arguments: DsTMdAttributeTableXref& newAttribute, DsMdDbConnection&
connection
Return Type: GlStatus
Privilege: Public

UpdateTableColumnName - This method uses the product and attribute values in the
DsTMdAttributeXref structure to identify a row in the DsMdAttributeTableXref table and
update it to the table and column names provided in the structure.
Arguments: DsTMdAttributeTableXref& attribute, DsMdDbConnection& connection
Return Type: GlStatus
Privilege: Public

4-109 305-CD-024-002

Associations:

The DsDbAttributeToTableVector class has associations with the following classes:
Class: DsMdCatalog

4.3.46 DsDbEngine Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class represents the Sybase SQL server COTS product.

Attributes:

None

Operations:

None

Associations:

The DsDbEngine class has associations with the following classes:
Class: DsDbInterface

4.3.47 DsDbGranuleToDbVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This class holds the mappings of granules to databases. The class allows for granules to be
partitioned based upon product type and temporal range.

4-110 305-CD-024-002

Attributes:

myGranuleToDBVector - This attribute holds the mappings of granules to database names.
Data Type: DsMdProductDbXrefList
Privilege: Private
Default Value: NULL

Operations:

GetProductDb - This method finds and returns the row from the DsMdProductDbXref table
which corresponds to the provided product information.
Arguments: DsTMdProductDbXref& product, DsTMdProductDbXrefList& result,
DsMdDbConnection&
Return Type: GlStatus
Privilege: Public

Initialize - This method queries the DsMdProductDbXref table and populates the
myGranuleToDbList with all the mappings for the catalog.
Arguments: DsMdConnection& connection
Return Type: GlStatus
Privilege: Public

PutProductDb - This method adds a new product-to-database row to the
DsMdProductDbXref table.
Arguments: DsTMdProductDbXrefList& productDbList, DsMdDbConnection&
connection
Return Type: GlStatus
Privilege: Public

UpdateProductDb - This method updates the rows fo the DsMdProductDbXref table
associated with the product names supplied in the DsTMdProductDbXref structures in the
supplied list. The database name columns are changed to the database names in the
structures. If a DsTMdProductXref item doesn't exist in the table, it is added. This method
operates on a list to assure that no overlap exists in the date ranges for a given product.
Arguments: DsTMdProductDbXrefList& productDbList, DsMdDbConnection&
connection
Return Type: GlStatus
Privilege: Public

4-111 305-CD-024-002

Associations:

The DsDbGranuleToDbVector class has associations with the following classes:
Class: DsDbInterface
Class: DsMdCatalog

4.3.48 DsDbInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:

Attributes:

myCommand - The database command (either query or utility) got executed. It is initilized
upon the ExecuteQuery() operation call and retained until the next ExecuteQuery() call.
Data Type: CS_COMMAND*
Privilege: Private
Default Value: null

myConnection - Database connection handle. It is constructed during the Connect()/
Reconnect() operation. It is retained throughout the connection until it's disconnected by
either user or the database server. In the later case, a ReConnect() will be involked for the
process.
Data Type: CS_CONNECTION*
Privilege: Private
Default Value: null

myContext - Database client-library programming context.
Data Type: CS_CONTEXT*
Privilege: Private
Default Value: null

myExecStatus - Query execution status. It retains the execution status from the last
QueryExecution() and FetchResult() operations.
Data Type: DsTDbExecStatus
Privilege: Private
Default Value: EXEC_NONE

4-112 305-CD-024-002

myPassWord - Password for database connection. It is set upon the Connect() operation
call.
Data Type: char*
Privilege: Private
Default Value: null

myServerName - Server name for database connection (e.g. 'SYBASE' for Sybase server).
It is set upon the Connect() operation call.
Data Type: char*
Privilege: Private
Default Value: null

myState - The database connection state. It is updated when Connect(), DisConnect() and
ReConnect() operations are invoked.
Data Type: DsTDbConnectionState
Privilege: Private
Default Value: NOT_CONNECTED

myUserName - User name for databse connection. It is set during the Connect() operation
call.
Data Type: char*
Privilege: Private
Default Value: null

Operations:

Connect - This operation establishes a database connection by logging to the specified dtabase
server and sets the appropriate parameters. An error condition will be sent if the connection
fails. It is expected that this operation is invoked only when a thread of database accesses
are to be started. COnnect/DisConnect for each individual database access is prohibitively
expensive.
Arguments: char* userName, char* password, char* serverName
Return Type: GlStatus
Privilege: Public

ConnectionState - This operation returns the current databse connection status.
Arguments:
Return Type: DsTDbConnectionState
Privilege: Public

Disconnect - This operation disconnects an established database connection, resets ths
state parameters and cleans up internal data structures if appropriate. It is expected that this

4-113 305-CD-024-002

operation to be invoked only when an application finishes all the databse access tasks.
Connect/DisConnect for each individual databse access can be prohibitively expensive.
Arguments:
Return Type: GlStatus
Privilege: Public

DsDbInterface - This constructor just sets up the default values for all the attributes.
Arguments:
Return Type: Void
Privilege: Public

Execute - This operation allows caller to send a SQL statement and executes the command
on their behalf. The execution status will be returned. It does not differentiate between
utility command (no result data, e.g. open db, begin transaction,...) and regular query. The
regular query upon return sets up an internal handle and the result can be retrieved through
FetchQueryResult() calls.
Arguments: char* SQLCmd
Return Type: DsTDbExecStatus
Privilege: Public

ExecutionStatus - This operation returns the query execution status for the last
ExecuteQuery() call.
Arguments:
Return Type: DsTDbExecStatus
Privilege: Public

FetchQueryResult - This operation is another interface to retrieve query result. It allows
direct binding from a result row to application variables. The pointers (void*) for those
application variables are contained the vector argument, and the binding will directly copy
values from a result row to those variable pointers. Note that the caller is responsible for
setting the pointers in the vector in the exact same order as what's described in the SQL
select statement. The binding occurred here is not responsible for checking the type and
length of each variables since no such descriptor information is available at this level.
Arguments: RWTPtrOrderedVector<void*>& result
Return Type: DsTDbExecStatus
Privilege: Public

FetchQueryResult - This operation fetches one row of query result and construct a
GlParameterList for it. Since more than one row may be contained in the result, caller is
expected to put this call into a loop and the loop tern]minates only when the return status
is EXEC_ENDOFRESULT. Note that it allocates memory space for each attribute value
field and store data in their native format (whatever is stored in the database). Caller is
responsible for cleaning up the allocated memory space in the GlParameterList.
Arguments: GlParameterList& result
Return Type: DsTDbExecStatus

4-114 305-CD-024-002

Privilege: Public

ReConnect - This operation reestablishes a databse connection if needed. ReConnect()
uses the state information saved internally for the connection.
Arguments:
Return Type: GlStatus
Privilege: Public

VerifyConnection - This operation checks the current connection and reconnects if
necessary. This is recommended before each ExecuteQuery() call to make sure the database
conenction is alive.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsDbInterface - This destructor deallocates internal data structures and disconnects the
databse connection if the conenction is still alive.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDbInterface class has associations with the following classes:
Class: DsDbAccess
Class: DsDbEngine
Class: DsDbGranuleToDbVector
Class: DsMdCatalog

4.3.49 DsDeCoreValid Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This class contains validation information for a core metadata attribute. This class is used
to perform the first level of validation of that core metadata attribute. The validation
criteria is not based on a specific data type. For example, an attribute might be
DSSBeginningDate. The validation criteria at this level will simply ensure that the value
for this attribute is a valid date. Further validation is performed by the ValidVector class

4-115 305-CD-024-002

based on the data type where the value of this attribute would be compared against the valid
starting date for this type. It is not necessary that each data type have validation criteria for
each attribute if the core validation criteria is sufficient.

Attributes:

myName - The name of the core metadata attribute for which this object has validation criteria.
Data Type: RWCString
Privilege: Private
Default Value:

myType - An enumerated value that identifies the type of this attribute. Valid types include
string, date, time, short, long, char, and double.
Data Type: DsTAttributeType
Privilege: Private
Default Value: STRING

myValid - Contains an object that has the criteria for validating this attribute.
Data Type: DsDeValid
Privilege: Private
Default Value:

Operations:

DsDeCoreValid - This constructor reads from the given stream to create an instance of this
class.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Validate - This service determines whether the given value is valid for this Core Valid
object. The return value indicates whether the value is valid or not.
Arguments: theValue:RWCString &
Return Type: RWBoolean
Privilege: Public

~DsDeCoreValid - There is no specific implementation for this destructor.
Arguments:
Return Type: Void
Privilege: Public

4-116 305-CD-024-002

Associations:

The DsDeCoreValid class has associations with the following classes:
DsDeCoreValidVector (Aggregation)

4.3.50 DsDeCoreValidVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains a collection of CoreValid objects. This class provides services that
operate over the collection. The DsDeCoreValidVector class is derived from a standard
Rogue Wave vector class.

Attributes:

None

Operations:

DsDeCoreValidVector - This constructor reads the section of the descriptor that contains core
valid entries until the end of that section is detected. Core Valid objects are created and
added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Find - This service finds a core valid entry with the given name. The implementation of
this method is inherent in the Rogue Wave class that this is derived from.
Arguments: myName: RWCString
Return Type: DsDeCoreValid *
Privilege: Public

Validate - This method takes a stream containing P=V metadata. It looks at each entry one
at a time and finds the associated CoreValid object in its vector. Then it uses the validate
service of that object. The GlStatus parameter is updated with errors during the process.
Arguments: myCoreMetadata:istream &, GlStatus &
Return Type: RWBoolean
Privilege: Public

4-117 305-CD-024-002

~DsDeCoreValidVector - This destructor call the destructor of each of its members and
then destroys itself.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeCoreValidVector class has associations with the following classes:
Class: DsDeESDTDescriptor hascoremetadatavalidsfor - The CoreValidVector class
contains metadata validation criteria for many data type level ESDT Descriptors. The
purpose of this relationship is to allow some validation that is the same for all data types to
be shared, thus reducing duplication of information within the descriptors.

4.3.51 DsDeDD Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains Data Dictionary information that are specific to this data type. This
information is exported to the Data Management Subsystem.

Attributes:

myDescription - Detailed information that is exported to the Data Management Subsystem
which describes contents, formats, valid values, etc.
Data Type: RWCString
Privilege: Private
Default Value: NULL

myName - The name of this data dictionary entry.
Data Type: RWCString
Privilege: Private
Default Value:

4-118 305-CD-024-002

Operations:

DsDeDD - This constructor reads from the given stream to construct itself. The stream has well
defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

ExportDD - This service is used to export this data dictionary entry to the Data
Management subsystem.
Arguments:
Return Type: GlStatus
Privilege: Public

GetName - This service returns the value in the myName private attribute.
Arguments:
Return Type: RWCString &
Privilege: Public

~DsDeDD - The destructor for this object has no special implementation.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeDD class has associations with the following classes:
DsDeDDVector (Aggregation)

4.3.52 DsDeDDVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains a collection of Data Dictionary objects that are specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeDDVector class is derived from a standard Rogue Wave vector class.

4-119 305-CD-024-002

Attributes:

None

Operations:

DsDeDDVector - This constructor reads the section of the descriptor that contains Data
Dictionary information until the end of that section is detected. DsDeDD objects are
created and added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

ExportDD - This service iterates over all of the objects in its contents and exports each one
to the Data Management Subsystem.
Arguments:
Return Type: GlStatus
Privilege: Public

Find - This service finds a DsDeDD instance that has the given name. A pointer to this
instance is returned. If a DsDeDD object with this name is not found, then the pointer is
NULL.
Arguments: theName: RWCString &
Return Type: DsDeDD
Privilege: Public

~DsDeDDVector - The destructor destroys all of the objects in its contents and then
destroys itself.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeDDVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4-120 305-CD-024-002

4.3.53 DsDeESDTDescriptor Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
To describe the content, structure and behavior of an ESDT. The schema provides a
software description of each ESDT that a data server provides. The description includes
the structure and services available for each ESDT.

Attributes:

myAdvertisedServices - Services that the associated ESDT provides that are advertised.
Data Type: DsDeServiceVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myCoreMetadataConfiguration - Contains the name and validation information for core
metadata attributes for this type.
Data Type: DsDeMetadataDefVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myDataDictionaryInfo - The description of the ESDT that this ESDT descriptor defines.
Data Type: DsDeDDVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myEvents - Services of this specific ESDT that can have subscriptions against their
invokation. For example, the insert service may be subscribable and the browse service
may not be subscribable for the CER07 ESDT.
Data Type: DsDeEventVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

4-121 305-CD-024-002

myProductMetadataConfiguration - Contains the name, validation information, and
type for product specific metadata attributes.
Data Type: DsDeMetadataDefVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myScienceParameters - Specification of the parameters within the data that each granule
of this type has. This includes information related to the parameter names, their types and
their locations in the granule.
Data Type: DsDeScienceParameterVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myStaticMetadata - Contains the values for those metadata attributes which are the same
for every instance of this type. For example, the attribute instrumet for each CER03
granule will be CERES.
Data Type: DsDeStaticMetadataVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myStatus - The current status of this object.
Data Type: GlStatus
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myType - The specific data type that this ESDT Descriptor defines.
Data Type: DsGeTypeID
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

myValids - Valid values for each parameter that will potentially be validated.
Data Type: RWVector<DsDeValid>
Privilege: Private
Default Value:
Contraints:

4-122 305-CD-024-002

Non Persisent Flag: False

ourCoreValids - Validation information that applies to the core metadata attributes. This
information is the same for all data types. For example, the valid range for
NorthBoundingCoordinate is -90 to +90 independent of the data type.
Data Type: DsDeCoreValidVector
Privilege: Private
Default Value:
Contraints:
Non Persisent Flag: False

Operations:

ConvertToPlist - This service converts the given metadata entries to a parameter list. The
given parameter list is filled in with this information.
Arguments: theMD:istream &, theList:GlParameterList &
Return Type: void
Privilege: Public

DsDeESDTDescriptor - The constructor for the descriptor. The TypeID argument must
specify the name of the ESDT and, optionally, its version. If the version is empty, then the
most recent version will be used.
Arguments: theType: DsGeTypeID &
Return Type: Void
Privilege: Public

Externalize - This service is used to create an external representation of the ESDT
Descriptor. This is most likely an ASCII file.
Arguments: ostream
Return Type: RWBoolean
Privilege: Public

GetCollectionGroup - This service creates a parameter list containing the static metadata
for this data type. The return value indicates whether the service completed successfully
or not. If it did not, then the GlStatus parameter will reflect the problems/errors.
Arguments: staticMD: GlParameterList&, status:GlStatus &
Return Type: RWBoolean
Privilege: Public

GetMCF - This service streams the Metadata Configuration information to the given
ostream. This is done by telling the MetadataDefVector to externalize itself to the stream.
Arguments: theMCF: ostream &
Return Type: void

4-123 305-CD-024-002

Privilege: Public

GetParameter - This service is used to get the name of a well-known parameter. The given
enumerated type can be FILENAME or CHECKSUM.
Arguments: name: DsTpname
Return Type: RWCString
Privilege: Public

GetQueryableParameters - This service is used to get the list of attributes that are
queryable for the data type. This is accomplished by getting the set of queryable parameters
from the MetadataDefVector.
Arguments: theParameters: GlParameterList &
Return Type: void
Privilege: Public

Initialize - This service performs the initialization of this data type. This includes creating
and registering events via the EventVector and creating and registering advertisements via
the ServiceVector. The expectation is that this service is only used upon startup or
configuration of a new data type.
Arguments:
Return Type: RWBoolean
Privilege: Public

Internalize - This service is used to add a new descriptor from a file in support of the
function of adding new data types. The file must have the appropriate format.
Arguments: theDef: istream &
Return Type: GlStatus
Privilege: Public

Validate - This service validates the given Command by finding the DsDeService vector
that matches the service in the command and then asking the service to validate the
parameters within the command. The return value indicates whether the command is valid
or not. If the command is invalid, the given GlStatus parameter indicates the reason that
the command failed validation.
Arguments: theCmd: DsSrCommand, status: GlStatus &
Return Type: RWBoolean
Privilege: Public

ValidateB - This service is used to validate a set of P=V metadata. This is
done by a 2 step validation process. First, the core metadata validation is
done to check that the given metadata at least meets that criteria. Then a
validation that is specific to this data type is done where the validation
criteria is more restrictive than the core validation.
Arguments: MetadataFile, GlStatus &
Return Type: RWBoolean

4-124 305-CD-024-002

Privilege: Public
PDL:

DsDeESDTDescriptor::Validate(istream &theMetadata, GlStatus &theStatus)

This operation takes the given metadata which is in a P=V format and
validates that 1)all attributes are valid and 2)all required attributes
are present. The GlStatus object is filled with any problems

SEQUENCE
 Validate theMetadata against the DsDeCoreValidVector
 Validate theMetadata against the DsDeValidVector
 Determine if all mandatory values are in theMetadata
 IF any of the above returned FALSE it means validation failed
 RETURN FALSE
 ELSE
 RETURN TRUE
END SEQUENCE

Withdraw - This service is used to remove this data type from the set of configured data
types for this DSS. This is the opposite of the initialization for an ESDT Descriptor. The
advertisements are withdrawn and the events are unregistered.
Arguments:
Return Type: RWBoolean
Privilege: Public

~DsDeESDTDescriptor - The destructor for this class has no specific implementation.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeESDTDescriptor class has associations with the following classes:
Class: DsGeESDT
Class: DsSbEvent
Class: DsGeESDTEventTable createdby
Class: DsGeESDTEventTable creates - The ESDTDescriptor creates the ESDTEventTable
upon startup. This table has events that the ESDT instances will notice and report their
occurrence so that subscriptions can be fulfilled. The ESDTDescriptor also uses the
ESDTEventTable when shutdown occurs. The events must be located in the table and
unregistered.

4-125 305-CD-024-002

Class: DsGeESDTConfiguration enquires
Class: DsDeCoreValidVector hascoremetadatavalidsfor - The CoreValidVector class
contains metadata validation criteria for many data type level ESDT Descriptors. The
purpose of this relationship is to allow some validation that is the same for all data types to
be shared, thus reducing duplication of information within the descriptors.
Class: DsCnDSSStartup initializedby
Class: DsCnDSSStartup initializes
Class: DsGeESDTConfiguration queriedby
Class: DsSbEvent registers - The ESDTDescriptor creates and registeres events with the
subscription server. These events are one of the mechanisms used for triggering
subscriptions.
DsDeESDTDescriptorSet (Aggregation)

4.3.54 DsDeESDTDescriptorSet Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a mechanism to contain multiple schema and provide a single reference to these
schema and their services. The SchemaSet is the collection of all the individual schemas
that a data server contains.

Attributes:

None

Operations:

Add - This service is used to add a new ESDT descriptor to this set of ESDT descriptors.
Arguments: theName: RWCString, theVersion: RWCString, theDef: istream &
Return Type: GlStatus
Privilege: Public

DsDeESDTDescriptorSet - The default constructor creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

4-126 305-CD-024-002

Externalize - This service is used to externalize each individual ESDT descriptor in this
set of ESDT descriptors.
Arguments:
Return Type: ostream &
Privilege: Public

Initialize - This service is used to initialize all of the ESDT Descriptors that are in this set.
Initialization is performed during startup of the DSS.
Arguments:
Return Type: GlStatus
Privilege: Public

Remove - This service removes the given data type from the set of ESDTs that this DSS is
configured for.
Arguments: theType: DsGeTypeID
Return Type: Void
Privilege: Public

Replace - This service provides the capability to replace an existing ESDT descriptor with
a new ESDT descriptor.
Arguments: theType:DsGeTypeID, newDefinition:istream &
Return Type: GlStatus
Privilege: Public

~DsDeESDTDescriptorSet - The destructor for this class destroys each of its members
and then destroys itself.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeESDTDescriptorSet class has associations with the following classes:
None

4.3.55 DsDeEvent Class

Parent Class: Not Applicable
Public: No
Distributed Object: No

4-127 305-CD-024-002

Purpose and Description:
This class contains events that any ESDT instance of this type detects the occurrence of and
provides notification of that occurrence.

Attributes:

myDescription - This is a description of the event that instances of this data type will detect.
For example, the description of the INSERT event for the CER02 data type might indicate
that the INSERT event occurs whenever a CER02 granule has been successfully archived
in this DSS. The description also would include information about what information is
made available when the event occurs. For example, in the case of INSERT, the UR of the
new granule would be provided.
Data Type: RWCString
Privilege: Private
Default Value:

myEventID - The identifier for this Event. This identifier along with the event name
uniquely identify an Event object.
Data Type: RWCString
Privilege: Private
Default Value:

myEventName - The name of the event. This name must be unique within the event id.
For example, there can only be one event named INSERT for the CER02 eventID.
However, there can be an INSERT for each unique eventID (i.e. CER02V1.0, CER02V1.1,
LIS01, etc.)
Data Type: RWCString
Privilege: Private
Default Value:

myReturnInformation - This GlParameterList contains the names and types of what data
will be provided when the event occurs. For example, an INSERT event's
myReturnInformation would include a GlParameter named UR that is of type RWCString.
This says that when the event occurs, the ESDT will provide a parameter list with a
GlParameter named UR that is of type RWCString and has a value of whatever the new UR
is for this new granule.
Data Type: GlParameterList
Privilege: Private
Default Value:

4-128 305-CD-024-002

Operations:

DsDeEvent - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

GetDescription - Returns the information in the myDescription attribute.
Arguments:
Return Type: RWCString &
Privilege: Public

GetName - Returns the information in the myEventName attribute.
Arguments:
Return Type: RWCString &
Privilege: Public

Register - This service creates a DsSbEvent which gets registered as a subscribable event
with the subscription server.
Arguments:
Return Type: GlStatus
Privilege: Public

Unregister - This service obtains the DsSbEvent associated with this name and ID and
unregisters it as a subscribable event with the subscription server.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsDeEvent - There is no special implementation for the destructor.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeEvent class has associations with the following classes:
DsDeEventVector (Aggregation)

4-129 305-CD-024-002

4.3.56 DsDeEventVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains a collection of DsDeEvent objects that are specific to this descriptors
type. This class provides services that operate over the collection. The DsDeEventVector
class is derived from a standard Rogue Wave vector class.

Attributes:

None

Operations:

DsDeEventVector - This constructor reads the section of the descriptor that contains event
entries until the end of that section is detected. Event objects are created and added to the
vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

FindEvent - This service searches for an event of the given name in its contents. A pointer
to the event is returned. If the event is not found, the pointer is NULL.
Arguments: theName: RWCString
Return Type: DsDeEvent *
Privilege: Public

Register - This service iterates over the members in its contents telling each one of them
to register themselves with the subscription server.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsDeEventVector - The destructor for this class destroys each of the objects in its
contents. The events are still known to the subscription server until the unregister service
for an event is invoked.
Arguments:
Return Type: Void
Privilege: Public

4-130 305-CD-024-002

Associations:

The DsDeEventVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.57 DsDeMathOp Class

Parent Class: DsDeValid
Public: No
Distributed Object: No
Purpose and Description:
This class has validation criteria that is mathematically based. This includes mathematical
functions such as "LT", "GT", "EQ", etc. The equivalent mathematical functions are used
to validate whether a given value satisfies the criteria.

Attributes:

myDomain - This attribute contains the domain for the mathematical operation. This domain
is used to evaluate the mathematical expression and determine whether a given value meets
the criteria. For example, the domain might be "CERES" and the MathOperation might be
"EQ".
Data Type: T
Privilege: Private
Default Value:

myMathOperation - This attribute contains the representation of the mathematical
operation. Valid math operations are "GT", "LT", "EQ", "GE", "LE", and "NE".
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

DsDeMath - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

4-131 305-CD-024-002

~DsDeMath - The destructor for this class has no special implementation.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeMathOp class has associations with the following classes:
None

4.3.58 DsDeMetadataDef Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains configuration information about a metadata entry. This class is used for
core as well as product specific metadata. DsDeMetadataDef entries are used to build the
metadata configuration file (MCF).

Attributes:

myAttributeName - The name of the metadata attribute as defined in the Core Metadata
Model. Valid names/attributes are either core or product specific.
Data Type: RWCString
Privilege: Private
Default Value:

myDataLocation - This attribute indicates the location where this attribute is expected to
be found when the metadata is being generated. This location is used by the processing
subsystem to flag whether the PGE generates the value, whether it is in the process control
file (PCF), etc.
Data Type: RWCString
Privilege: Private
Default Value:

myMandatoryFlag - This flag indicates whether or not this metadata attribute is
mandatory.
Data Type: RWBoolean

4-132 305-CD-024-002

Privilege: Private
Default Value: False

myType - This indicates the type of this metadata attribute. The valid values for this
attribute are enumerated with the default being a STRING.
Data Type: DsTAttributeType
Privilege: Private
Default Value: STRING

Operations:

DsDeMetadataDef - This constructor reads from the given stream to construct itself. The
stream has well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Externalize - This service streams this metadata definition instance to the given ostream.
The format of this is a well-defined ODL syntax that is agreed upon between the DSS,
Ingest, and Processing. This service is used in creation of the MCF for these external
customers.
Arguments: to: ostream &
Return Type: GlStatus
Privilege: Public

Parameterize - This service creates a Parameter whose name is myAttributeName, whose
type is myType, and whose value is myValue.
Arguments:
Return Type: GlParameter
Privilege: Public

~DsDeMetadataDef - The destructor for this class has no special implementation.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeMetadataDef class has associations with the following classes:
DsDeMetadataDefVector (Aggregation)

4-133 305-CD-024-002

4.3.59 DsDeMetadataDefVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains a collection of Metadata definition objects that is specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeMetadataDefVector class is derived from a standard Rogue Wave vector class.

Attributes:

None

Operations:

DsDeMetadataDefVector - This constructor reads the section of the descriptor that contains
metadata defintion entries until the end of that section is detected. Metadata definition
objects are created and added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Externalize - This service generates the MCF information for this metadata vector by
creating the appropriate section headers and writing them to the ostream and then telling
each one of its members to externalize itself to that same stream. Then it creates the section
footers in the same ostream to complete this service.
Arguments: theMCF: ostream &
Return Type: RWBoolean
Privilege: Public

FindEntry - This service finds a MetadataDef entry that has the same name as the given
string. The return value indicates whether the entry was found or not. If the entry was
found, the given MetadataDef reference will point to it.
Arguments: theName: RWCString, theEntry: DsDeMetadataDef &
Return Type: RWBoolean
Privilege: Public

GetQueryableParameters - This service fills in the names, types and values (if
applicable) of each of the metadata definition objects in its contents into the given
parameter list. This is done by using the parameterize service of the metadata definition
objects.
Arguments: theParameters:GlParameterList &

4-134 305-CD-024-002

Return Type: RWBoolean
Privilege: Public

HasMandatory - This service determines whether or not the given stream containing P=V
metadata has all of the metadata parameters that are defined as being mandatory. If the
return value indicates that all of the mandatory parameters are not present, then the given
GlStatus object provides details about which parameters were missing.
Arguments: theMet: istream &, status: GlStatus
Return Type: RWBoolean
Privilege: Public

Parameterize - This service parameterizes each of the objects in its contents into the given
parameterList.
Arguments: theParms:GlParameterList &
Return Type: Void
Privilege: Public

~DsDeMetadataDefVector - This destructor destroys all of the objects in its contents and
then destroys itself.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeMetadataDefVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.60 DsDeRange Class

Parent Class: DsDeValid
Public: No
Distributed Object: No
Purpose and Description:
This class has validation criteria that specifies a range of values in which any valid entry
must fall. This class is templatized so that it can operate over any type.

4-135 305-CD-024-002

Attributes:

myHigh - This is the upper limit for the range. Any value that is greater than this value is
outside of the valid range.
Data Type: T
Privilege: Private
Default Value:

myLow - This is the lower bound for the range. Any value that is less than this value is
outside of the valid range.
Data Type: T
Privilege: Private
Default Value:

Operations:

DsDeRange - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

~DsDeRange - The destructor removes objects of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeRange class has associations with the following classes:
None

4.3.61 DsDeScienceParameter Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains the science parameters of this data type. These parameters are features

4-136 305-CD-024-002

of the internal format of the science data.

Attributes:

myDescription - This attribute provides a detailed information describing this science
parameter, maybe its meaning and units. This information is whatever the data provider
deems is a useful description for this science parameter.
Data Type: RWCString
Privilege: Private
Default Value:

myInternalName - This is the name within the science data information that this parameter
is referred as. This allows there to be a name that the user community sees and can use to
identify the parameter and a name that the DSS uses. An example of an internal name for
"Sea Surface Temperature" might be "SST".
Data Type: RWCString
Privilege: Private
Default Value:

myName - The name of a science parameter within this data types structure. An example
of this might be "Sea Surface Temperature".
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

DsDeScienceParameter - This constructor reads from the given stream to construct itself. The
stream has well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

GetDescription - This service returns the myDescription private attribute of this science
parameter.
Arguments:
Return Type: RWCString &
Privilege: Public

GetInternalName - This service returns the internal name of this parameter.
Arguments:
Return Type: RWCString &
Privilege: Public

4-137 305-CD-024-002

~DsDeScienceParameter - The destructor for this class has no special implementation.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeScienceParameter class has associations with the following classes:
DsDeScienceParameterVector (Aggregation)

4.3.62 DsDeScienceParameterVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains a collection of ScienceParameter objects that are specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeScienceParameterVector class is derived from a standard RogueWave vector class.

Attributes:

None

Operations:

DsDeScienceParameterVector - This constructor reads the section of the descriptor that
contains Science Parameters until the end of that section is detected.
DsDeScienceParameter objects are created and added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

FindScienceParameter - This service finds a science parameter whose name matches the
given name. A pointer to the science parameter is returned. If the science parameter is not
found, the pointer is NULL.
Arguments: theName: RWCString
Return Type: DsDeScienceParameter *
Privilege: Public

4-138 305-CD-024-002

~DsDeScienceParameterVector - Used to destroy objects of this class.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeScienceParameterVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.63 DsDeSeries Class

Parent Class: DsDeValid
Public: No
Distributed Object: No
Purpose and Description:
This class has validation criteria that is a series of discrete entries, each of which is valid.
In order for something to be valid, the value must match one of the entries in exactly.

Attributes:

myDomainValues - This is a vector that contains an explicit list of valid values for this
attribute.
Data Type: RWVector<T>
Privilege: Private
Default Value:

Operations:

DsDeSeries - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

~DsDeSeries - The destructor for this class has no special implementation.
Arguments:
Return Type: Void

4-139 305-CD-024-002

Privilege: Public

Associations:

The DsDeSeries class has associations with the following classes:
None

4.3.64 DsDeService Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains the services of this data type. These services include a service name,
description and a parameter list which is a template to be filled in during service invocation.
Additionaly, this class indicates which of the parameters in the list are required. All of this
information is used to advertise a service that instances of this ESDT provide.

Attributes:

myDescription - This attribute provides a description of the Service and its parameters and
whether they are required or not. In addition, the return values are described.
Data Type: RWCString
Privilege: Private
Default Value:

myName - The name of a service that this type provides. An example of this is INSERT.
Data Type: RWCString
Privilege: Private
Default Value:

myParameterList - This parameterList contains the Parameters that are valid for this
service. The parameterList parameter names and their types but no values. An example of
a parameter for the INSERT service might have the name "METADATAFILE" and the
type GlStringP.
Data Type: GlParameterList
Privilege: Private
Default Value:

4-140 305-CD-024-002

myRequiredParameters - This vector contains the names of parameters that are required
for invocation of this Service. These names are a subset of the named parameters in
myParameterList.
Data Type: RWVector<RWCString>
Privilege: Private
Default Value:

Operations:

Advertise - Advertises this DsDeService so that it is publicly available. The advertisement
includes all of the information necessary for a client to create a command that this DSS can
fulfill.
Arguments:
Return Type: RWBoolean
Privilege: Public

DsDeService - This constructor reads from the given stream to construct itself.
Arguments: from: istream&
Return Type: Void
Privilege: Public

Validate - Validate takes a GlParameterList as input and validates it against the required
and valid parameters for this DsDeService. If there is a problem in the validation, the
provided GlStatus object will contain the nature of the problem
Arguments: parms:GlParameterList &, result:GlStatus &
Return Type: RWBoolean
Privilege: Public

Withdraw - This service withdraws an advertisement indicating that this previously
advertised service is no longer publicly available.
Arguments:
Return Type: RWBoolean
Privilege: Public

~DsDeService - The destructor for this service has no special functionality.
Arguments:
Return Type: Void
Privilege: Public

4-141 305-CD-024-002

Associations:

The DsDeService class has associations with the following classes:
DsDeServiceVector (Aggregation)

4.3.65 DsDeServiceVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This vector contains DsDeService objects. It is responsible for creating each and for
implementing services that operate over the collection of them.

Attributes:

None

Operations:

Advertise - This service iterates over all of its DsDeService objects and tells each one of them
to advertise themselves.
Arguments:
Return Type: RWBoolean
Privilege: Public

DsDeServiceVector - This service reads from the given istream and creates the
DsDeService objects. It is responsible for noticing when the end of the service information
is reached.
Arguments: from:istream &
Return Type: Void
Privilege: Public

Find - This service locates the service in its contents that has the same name as the given
argument. A pointer to a DsDeService object is returned. If the service is not found, this
pointer is NULL.
Arguments: svc:RWCString&
Return Type: DsDeService*
Privilege: Public

4-142 305-CD-024-002

Withdraw - This service iterates over all of the DsDeService objects in this vector and
invokes the withdraw service.
Arguments:
Return Type: RWBoolean
Privilege: Public

~DsDeServiceVector - This destructor invokes the destructor for each of the objects in its
contents and then destroys itself.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeServiceVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.66 DsDeStaticMetadata Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains metadata name, type, and value for each attribute that is static for the
collection of all granules of this type.

Attributes:

myName - The name of this static metadata attribute.
Data Type: RWCString
Privilege: Private
Default Value:

myType - This indicates the type of this metadata attribute. The valid values for this
attribute are enumerated with the default being a STRING.
Data Type: DsTAttributeType
Privilege: Private
Default Value: STRING

4-143 305-CD-024-002

myValue - This attribute contains the value of this static metadata entry. This value is by
definition the same for all granules of this data type.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

DsDeStaticMetadata - This constructor reads from the given stream to construct itself. The
stream has well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Externalize - This service is used to populate the given parameterlist with the contents of
this static metadata instance. If necessary, the given GlStatus is updated to reflect
problems/errors.
Arguments: to: GlParameterList &, status: GlStatus &
Return Type: RWBoolean
Privilege: Public

GetValue - This service returns a GlParameter containing the value of this static metadata
attribute.
Arguments:
Return Type: GlParameter &
Privilege: Public

~DsDeStaticMetadata - The destructor for this class has no specific implementation.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeStaticMetadata class has associations with the following classes:
DsDeStaticMetadataVector (Aggregation)

4-144 305-CD-024-002

4.3.67 DsDeStaticMetadataVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains a collection of Static Metadata objects that are specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeStaticMetadataVector class is derived from a standard Rogue Wave vector class.

Attributes:

None

Operations:

DsDeStaticMetadataVector - This constructor reads from the given stream to construct itself.
The stream has well defined attributes in an ODL format that this object knows how to
interpret.
Arguments: from:istream &
Return Type: Void
Privilege: Public

Externalize - This service is used to populate the given parameter list with the contents of
each StaticMetadata object that is in this vector's contents. In its implementation, this
vector simply passes this request to each of its members.
Arguments: to:GlParameterList &, status: GlStatus&
Return Type: RWBoolean
Privilege: Public

FindEntry - This service finds a StaticMetadata entry that has the same name as the given
string. The return value indicates whether or not the entry was found. If the entry was
found, the given StaticMetadata reference will point to it.
Arguments: theName: RWCString
Return Type: DsDeStaticMetadata *
Privilege: Public

~DsDeStaticMetadataVector - The destructor for this class first calls the destructor of
each of its members and then deletes itself.
Arguments:
Return Type: Void
Privilege: Public

4-145 305-CD-024-002

Associations:

The DsDeStaticMetadataVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.68 DsDeValid Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains the validation criteria for a metadata attribute. This is an abstract base
class. All of the classes derived from this class must implement the isValid method. This
class is templatized based on the type of attribute being validated.

Attributes:

myName - The name of the attribute that this object has validation criteria for.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

DsDeValid - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from:istream &
Return Type: Void
Privilege: Public

IsValid - This service is used to validate the given value. Because this is an abstract base
class, each of the subclasses must implement this service. The return of this service
indicates whether the value fell within the validation criteria.
Arguments: theValue: T&
Return Type: RWBoolean
Privilege: Public

4-146 305-CD-024-002

~DsDeValid - The destructor for this class has no special implementation.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeValid class has associations with the following classes:
DsDeValidVector (Aggregation)

4.3.69 DsDeValidVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class contains a collection of DsDeValid objects that are specific to this descriptors
type. This class provides services that operate over the collection. The DsDeValidVector
class is derived from a standard Rogue Wave vector class.

Attributes:

None

Operations:

DsDeValidVector - This constructor reads the section of the descriptor that contains
Validation criteria entries until the end of that section is detected. DsDeValid objects are
created and added to the vector.
Arguments: from:istream &
Return Type: Void
Privilege: Public

Find - This service finds a DsDeValid object in the vector that has the given name. If there
is no match, a null pointer is returned. Otherwise a pointer to the object is returned.
Arguments: what: RWCString &
Return Type: DsDeValid *
Privilege: Public

4-147 305-CD-024-002

Validate - This service is used to validate the given metadata file containing P=V metadata.
This is done by obtaining a metadata entry from the file, finding its validation criteria entry
in the vector, and then asking this entry if the value is valid.
Arguments: mdfile:istream &
Return Type: GlStatus
Privilege: Public
PDL:DsDeValidVector::Validate(istream &theMetadata, GlStatus &theStatus)

This operation takes the given metadata which is in a P=V format and
validates that the attributes are valid. Any problems are added to
theStatus, but validation continues until all attributes have been
validated.

SEQUENCE
 Set ReturnStatus to SUCCESS
 DO WHILE (there are more entries in theMetadata)
Get next entry from theMetadata
Find matching DsDeValid entry
IF not found THEN
 Add error to status
 Set ReturnStatus to FAILURE
ELSE
 check value against DsDeValid using IsValid service
 IF not valid THEN
 Set ReturnStatus to FAILURE
 ENDIF
 ENDIF
 END DO WHILE
 RETURN ReturnStatus
END SEQUENCE

~DsDeValidVector - Used to remove objects of this class.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeValidVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4-148 305-CD-024-002

4.3.70 DsDoReferencePaper Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
To provide an interface to services for reference documents. ReferencePapers are
documents that may be used in support of understanding more about a particular science
data product.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsDoReferencePaper class has associations with the following classes:
Class: DsGeScienceData isdescribedby - Each science data object class can be described
by zero or more instances of a reference paper. Note that this relationship is a the class level
for the science data object. For example, a set of reference papers describes all CER03
data objects. This means that each instance of a CER03 data object is described by the same
set of reference papers.

4.3.71 DsErERSB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the ERS Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:

4-149 305-CD-024-002

All Operations inherited from parent class
Associations:
The DsErERSB class has associations with the following classes:
None

4.3.72 DsEtETMB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the ETM Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsEtETMB class has associations with the following classes:
None

4.3.73 DsFactory Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
An object of this class is used to establish all client connections to a data server. When a
"collector" object is created by the client, it finds the DsFactory object on the desired data
server (there is exactly one per data server) and asks it to create a "connection" object on
the server to correspond with it. The DsFactory will create this server-side object and
return to the "collector" a reference to it, that the collector object can use to perform
requests.

Attributes:

None

4-150 305-CD-024-002

Operations:

DsFactory - Constructs a data server factory.
Arguments:
Return Type: Void
Privilege: Public

MakeConnection - Used to produce a new connection for the given profile.
Arguments: MSS_UserProfile
Return Type: DsSrConnection*
Privilege: Public

MakeSession - Used to produce a new session for the given profile and connection ID.
Arguments: MSS_UserProfile, DsESrConnectionID = 0
Return Type: DsSrSession*
Privilege: Public

~DsFactory - Destroys this data server factory.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsFactory class has associations with the following classes:
None

4.3.74 DsGeBrowseProduct Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Purpose and Description:

Attributes:

All Attributes inherited from parent class

4-151 305-CD-024-002

Operations:

All Operations inherited from parent class

Associations:

The DsGeBrowseProduct class has associations with the following classes:
Class: DsGeScienceData has - Each instance of a science data object has zero or more
browse products associated with it. A browse product is a representation of the associated
science data that can be used to determine whether a science data product should be
ordered. Each browse product can represent zero or more science data objects.

4.3.75 DsGeDynamicLibrary Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class implements the loading and unloading of a dynamically linked library. The
reason this class is in the General ESDT class category is that this class is only being used
in support of dynamic ESDT configurations. However, anyone who has a need for
supporting dynamically linked libraries could use this class.

Attributes:

myHandle - A handle to the library. This is the return value from the OS command to open
the library. This handle is used by all other services that operate on the library.
Data Type: void *
Privilege: Private
Default Value:

Operations:

DsGeDynamicLibrary - Constructor for dynamic library doesn't do too much. All of the work
is done with the load, unload, and get symbol functions.
Arguments:
Return Type: Void
Privilege: Public

4-152 305-CD-024-002

GetSymbol - This service is used to bind to the given symbol within the library. A pointer
to the symbol is returned. This service is used by the derived ESDTDynamicLibrary class
to obtain the function pointer for the newESDT service.
Arguments: theSymbol:RWCString
Return Type: void *
Privilege: Public

LoadLibrary - This service opens the library and loads it for further use. The handle for
the library is established during this process.
Arguments: libName: RWCString
Return Type: RWBoolean
Privilege: Public

Unload - This service unloads a previously loaded dynamic linked library and frees the
associated address space.
Arguments:
Return Type: Void
Privilege: Public

~DsGeDynamicLibrary - The destructor for this class unloads the dynamic linked library
that was previously loaded.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGeDynamicLibrary class has associations with the following classes:
None

4.3.76 DsGeECSDataProduct Class

Parent Class: DsGeScienceData
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a general interface for services provided by ECS Data Product objects.
ECSDataProducts are the ESDTs that are science data objects generated by ECS.

4-153 305-CD-024-002

Attributes:

myAlgorithmUR - UR of the delivered algorithm package that was used to generate this ECS
data product.
Data Type: GlUR
Privilege: Private
Default Value:

myPGE - UR of the science software delivery that was used to generate this ECS data
product.
Data Type: GlUR
Privilege: Private
Default Value:

mySSAP - The reference to the Delivered Algorithm Package (DAP) that was used to
generate this ECS data product.
Data Type: GlUR
Privilege: Private
Default Value:

mySummaryList - Reference to the list of URs that contain summary products for this
ECS data product.
Data Type: GlUR
Privilege: Private
Default Value:

Operations:

GetPGEInfo - This service is used to get information about the PGE that was used to generate
this ECS data product.
Arguments:
Return Type: GlUR
Privilege: Public

GetSSAP - This service obtains the science software archive package that was used to
generate this ECS data product.
Arguments:
Return Type: GlUR
Privilege: Public

GetSummaryStats - This service is used to obtain the summary statistics for this ECS data
product.
Arguments:

4-154 305-CD-024-002

Return Type: GlUR
Privilege: Public

HasSummaryStats - This service is used to determine whether or not this EDS data
product has summary statistics associated with it.
Arguments:
Return Type: RWBoolean
Privilege: Public

SubsampleB - This service provides the ability to obtain a representation of
the ECS data product by using a consistent sampling scheme to extract data.
This is a virtual function which is defined in the subclasses.
Arguments: pars:GlParameterList
Return Type: GlUR
Privilege: Public

SubsetB - This service provides the ability to extract a full-resolution portion
of the ECS data product. It is a virtual function which is defined in a derived
class.
Arguments: pars:GlParameterList
Return Type: GlUR
Privilege: Public

Associations:

The DsGeECSDataProduct class has associations with the following classes:
Class: DsNsScienceSoftwareArchivePackage isusedtocreate - An instance of a
SoftwareArchivePackage (SAP) is used to create zero or more ECS data products. The
SAP contains the software, executables, makefiles, etc. The processing subsystem uses the
DAP to generate ECS data products. Each ECS data product was created using one SAP.
Class: DsGeSummaryProduct summarizes - A summary product is an ECS data product
that can summarize zero or more ECS data products. Each ECS data product can be
summarized by zero or more summary products. For example, an ECS data product can
have daily, weekly, and monthly summaries.

4.3.77 DsGeESDT Class

Parent Class: DsGeESDTServiceProvider
Public: No
Distributed Object: No
Persistent Class:

4-155 305-CD-024-002

Purpose and Description:
The Earth Science Data Type (ESDT) is a superclass for the various specializations that
represent the specific data types. The ESDT organizes and provides an interface to the
external and internal services. Most probably this class will be an abstract base class. If
there are instances of this class it will be to support a generic type of ESDT that has no data
type services other than get, put, and search.

Attributes:

myArchive - A reference to the archive that this ESDT is stored in.
Data Type:
Privilege: Private
Default Value:

myInterfaceConfigList - The list of interface configurations for the publicly available
services of the ESDTs.
Data Type: DsCnESDTGUIConfiguration
Privilege: Private
Default Value:

myMetadata - This is a reference to a metadata object that contains all of the metadata for
this instance. This includes core and product specific metadata. This attribute's value gets
set by the Fill service. The inspect service uses the metadata object to obtain the values for
desired metadata attributes.
Data Type: DsMdMetadata
Privilege: Private
Default Value:

mySize - The size in bytes of this ESDT. This figure is based on the ESDT if it were
externalized.
Data Type: size_t
Privilege: Private
Default Value:

myType - Contains the type of the instance of an Earth Science Data Type object.
Data Type: DsGeTypeID
Privilege: Private
Default Value:

myUR - Universal reference for this ESDT. This is either given upon construction,
obtained from the given metadata, or generated during an insert.
Data Type: GlUR
Privilege: Private
Default Value:

4-156 305-CD-024-002

Operations:

Archive - This service provides the ability to permanently save this ESDT. This is a protected
service used by the ESDT when performing the publically advertised insert service.
Arguments:
Return Type: GlStatus
Privilege: Protected

Externalize - This service is used to create an external representation of an ESDT from its
internal representation. This typically means creating one or more files. This is a virtual
service which is defined in derived classes.
Arguments: toWhere: ostream &
Return Type: GlStatus
Privilege: Protected

Fill - The fill service uses the given metadata object to populate the attributes for this
object. For some of the attributes that are populates, the ESDT asks the metadata object for
the values. For example, the ESDT maintains the UR and the archive which it obtains from
the metadata object during this service.
Arguments: theMD: DsMdMetadata
Return Type: void
Privilege: Public

GetGUIConfigurationB - This service is used by the ESDT to obtain the GUI
configuration associated with the given service.
Arguments: svc: RWCString
Return Type: GlStatus
Privilege: Protected

GetQueryableParameters - This service fills in the contents of the given parameter list
with the names of the metadata attributes for this ESDT. One of the ways that this could
be done is through the ESDT descriptor.
Arguments: GlParameterList &
Return Type: RWBoolean
Privilege: Protected

GetServiceList - This service is used by the ESDT to create a list of the services that this
ESDT can perform. It is used to perform the IsServiceAvailable function.
Arguments:
Return Type: RWVector<RWCString>
Privilege: Protected

4-157 305-CD-024-002

GetSize - This service returns the size of this ESDT. This is the size in bytes that the file(s)
would consume if the ESDT were externalized.
Arguments:
Return Type: size_t
Privilege: Protected

Inspect - This service provides the capability to obtain the UR for this ESDT and to get any
optionally selected metadata values for this ESDT. The parameter list contains the name of
the metadata entries for which the values are desired. The resultant values are filled into
the given parameter list and a status is provided. The status indicates whether the call was
successful or not. If not, the reason for failure will be returned in the status.
Arguments: whatEntries:GlParameterList &
Return Type: GlStatus
Privilege: Protected

Internalize - This service is used to create an internal representation of an ESDT from an
external representation. This is typically a set of one or more files. This is a virtual service
which is defined in derived classes.
Arguments: theArgs: GlParameterList
Return Type: GlStatus
Privilege: Protected

Type - This service reports the type of the ESDT that this object is.
Arguments:
Return Type: RWCString
Privilege: Protected

Update - The update service is used to selectively modify portions of the metadata for this
ESDT. This service will restricted to users with the appropriate authorization. This is the
service that would be used to update QA information about a data object. This method is
protected and only accessible through the execute command service.
Arguments: newMDValues: GlParameterList &
Return Type: GlStatus
Privilege: Protected

Validate - This service checks that the metadata values for this ESDT are valid and that the
required metadata is present. This service is protected and is used by the ESDT during
insertion of a new granule to ensure that the metadata is valid. This service is performed
in cooperation with the ESDT descriptor.
Arguments: MetadataFile: RWCString &, Results: GlParameterList &
Return Type: GlStatus
Privilege: Protected

4-158 305-CD-024-002

Associations:

The DsGeESDT class has associations with the following classes:
Class: DsDeESDTDescriptor
Class: DsGeTypeID
Class: DsSbEvent
Class: DsGeESDTEventTable restoresfrom - Part of an ESDTs definition is that it notices
when specific activities occur. Events corresponding to each of these activities are created
and saved to an event table when the data server starts up. Later when one of the activities
occurs, the ESDT is responsible for restoring the corresponding event from the event table.
Class: DsSbEvent triggers - The ESDT is responsible for triggering events. This is done to
indicate that a previously registered action occurred. The event is responsible for
performing whatever action(s) are required upon the occurrence of that event. For
example, an insert event is registered. When a granule is inserted, that event is triggered.
This tells the event that an insert has occurred. The event can ignore this occurrence or
notify subscribers to that event or whatever is appropriate.
Class: DsGeESDTWrapper wraps - The ESDT Wrapper is used as a means to access the
services of the ESDT. The Wrapper is the recipient of all commands that are destined for
an ESDT. These commands are simply passed through to the ESDT.

4.3.78 DsGeESDTConfiguration Class

Parent Class: DsCnConfiguration
Public: No
Distributed Object: No
Purpose and Description:
This object contains the configuration for all of the ESDTs for which services exist for this
data server. The configuration for each ESDT consists of a descriptor, an event table, and
a dynamically linked library. The services that this class provides may be subsumed by a
database implementation of the needed information based on DsGeTypeID. In the
prototype, this classes persistence is maintained in a file.

Attributes:

myESDTTypes - The ESDTs that this data server is configured for. This set of types does not
imply that there exist granules for each type but that there are services for each type.
Data Type: RWTPtrOrderedVector<DsGeTypeID>
Privilege: Private
Default Value:

4-159 305-CD-024-002

Operations:

DsGeESDTConfiguration - The constructor takes the name of the file containing all of the
configuration information for the ESDTs for this data server.
Arguments: filename:RWCString &
Return Type: Void
Privilege: Public

GetAllDataTypes - Returns the list of all ESDTs that this data server is configured for.
This service is used during data server startup to initialize each of the ESDTs in the list.
Arguments:
Return Type: RWTPtrOrderedVector<DsGeTypeID>
Privilege: Public

GetDefinitionFileForType - Returns the name of the ESDT Descriptor file for the given
type.
Arguments: theType:DsGeTypeID &
Return Type: RWCString
Privilege: Public

GetESDTToken - Returns a string containing the token within the configuration file for
the given TypeID.
Arguments: theType:DsGeTypeID &
Return Type: RWCString
Privilege: Private

GetEventTableForType - Returns the name of the event table file for the given TypeID.
Arguments: theType:DsGeTypeID &
Return Type: RWCString
Privilege: Public

GetLibraryForType - Returns the name of the dynamically linked library that is the
implementation of the given TypeID.
Arguments: theType:DsGeTypeID &
Return Type: RWCString
Privilege: Public

~DsGeESDTConfiguration - The destructor for this class has no implementation other
than that derived from the base class.
Arguments:
Return Type: Void
Privilege: Public

4-160 305-CD-024-002

Associations:

The DsGeESDTConfiguration class has associations with the following classes:
Class: DsCnDSSStartup enquires
Class: DsDeESDTDescriptor enquires
Class: DsGeESDTServiceProvider isinformedby - The ESDT configuration is used by the
ESDT service provider's derived classes to access various portions of the ESDTs
configuration. The ESDT Wrapper obtains the DLL information from it and the ESDT
obtains the Descriptor and Event Table information from it.
Class: DsDeESDTDescriptor queriedby

4.3.79 DsGeESDTDynamicLibrary Class

Parent Class: DsGeDynamicLibrary
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This class provides the functionality needed to load dynamically linked libraries for an
ESDTs implementation. The specifics of loading the library are inherited from the
DsGeDynamicLibrary class. The library must include the implementation for 2 functions
that have C entry points. These functions are newESDT which returns a pointer to a new
object of the actual type and deleteESDT which destroys an object that was generated using
newESDT.

Attributes:

myDLLFileName - The file name of the dynamic linked library that contains the
implementation for this ESDT.
Data Type: RWCString
Privilege: Private
Default Value:

myNewFunction - This attribute is used when obtaining a pointer to the function that
performs the new operation for the ESDT in this dynamic library. This means that each
dynamic library must have a function called newESDT which returns a pointer to the
ESDT base class. This is a C function that has been declared with extern "C" ESDT
*newESDT() so that the name does not get mangled when compiled with CC.
Data Type: DsGeESDT *()
Privilege: Private
Default Value:

4-161 305-CD-024-002

myTypeID - The ESDT type information which is used to determine which dynamic
library to load. Each type has its own dynamic linked library implementation.
Data Type: DsGeTypeID
Privilege: Private
Default Value:

Operations:

DsGeESDTDynamicLibrary - The constructor loads the dynamic linked library for the given
TypeID. This requires that the DLL name be obtained based on the TypeID. This will most
likely be done using a DBAccess method which encapsulates access to a database to do a
find me the DLL name given the TypeID. If this is not the case, the ESDT configuration
will provide this information.
Arguments: DsGeTypeID &
Return Type: Void
Privilege: Public

newESDT - This service calls the newESDT service which each ESDT implementation
must provide. The newESDT service actually allocates an ESDT of the exact type. A
pointer of the base class type which references an object of the exact type is returned by this
call.
Arguments:
Return Type: DsGeESDT *
Privilege: Public

~DsGeESDTDynamicLibrary - The destructor for this class which has no
implementation beyond its base class destructor.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGeESDTDynamicLibrary class has associations with the following classes:
Class: DsGeESDTWrapper isloadedby - The ESDT Wrapper uses the ESDT Dynamic
Library to load the implementation for the desired data type and to return a pointer to a real
object of that type.

4-162 305-CD-024-002

4.3.80 DsGeESDTEventTable Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class is used to store ESDT events that are created during startup by the
DsDeESDTDescriptor. In addition, when an ESDT notices that an event has occurred, this
class is used to restore those events. This class is implemented as a Roguewave vector of
DsSbEvents.

Attributes:

None

Operations:

None

Associations:

The DsGeESDTEventTable class has associations with the following classes:
Class: DsDeESDTDescriptor createdby
Class: DsDeESDTDescriptor creates - The ESDTDescriptor creates the ESDTEventTable
upon startup. This table has events that the ESDT instances will notice and report their
occurrence so that subscriptions can be fulfilled. The ESDTDescriptor also uses the
ESDTEventTable when shutdown occurs. The events must be located in the table and
unregistered.
Class: DsGeESDT restoresfrom - Part of an ESDTs definition is that it notices when
specific activities occur. Events corresponding to each of these activities are created and
saved to an event table when the data server starts up. Later when one of the activities
occurs, the ESDT is responsible for restoring the corresponding event from the event table.

4.3.81 DsGeESDTServiceProvider Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This abstract base class is a generalization of the ESDT and ESDT Wrapper classes. It has

4-163 305-CD-024-002

virtual functions for all of the public services that are available for all ESDTs.

Attributes:

None

Operations:

DsGeESDTServiceProvider - The constructor for this abstract base class. There is really
nothing for this service to do.
Arguments:
Return Type: Void
Privilege: Public

ExecuteCommand - The service that provides a generic interface to the ESDTs. This
generic interface allows the services that this type can perform to be extended with no
changes to the base classes.
Arguments: theCmd: DsSrCommand &
Return Type: GlStatus
Privilege: Public

GetServiceList - This service is implemented by each subclass. Its purpose is to return a
list of strings containing the names of services that the class offers.
Arguments: theSvcs:RWTPtrOrderedVector<RWCString>
Return Type: RWBoolean
Privilege: Public

IsServiceAvailable - This service is implemented by each subclass and is used to
determine if a service with the given name is available for this instance.
Arguments: svcName: RWCString &
Return Type: RWBoolean
Privilege: Public

~DsGeESDTServiceProvider - The destructor for this abstract base class needs no
implementation.
Arguments:
Return Type: Void
Privilege: Public

4-164 305-CD-024-002

Associations:

The DsGeESDTServiceProvider class has associations with the following classes:
Class: DsGeESDTConfiguration isinformedby - The ESDT configuration is used by the
ESDT service provider's derived classes to access various portions of the ESDTs
configuration. The ESDT Wrapper obtains the DLL information from it and the ESDT
obtains the Descriptor and Event Table information from it.

4.3.82 DsGeESDTWrapper Class

Parent Class: DsGeESDTServiceProvider
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This class provides a wrapper around the ESDT classes. Its main purpose in life is to load
the ESDTs implementation and to create an actual ESDT of the proper type. It has a few
other functions that are common to all ESDTs.

Attributes:

myDll - This is a pointer to the dynamic library class that holds the implementation of the
actual ESDT that this instance wraps.
Data Type: DsGeESDTDynamicLibrary
Privilege: Private
Default Value: NULL
Contraints:
Non Persisent Flag: True

myESDT - This is a pointer to the actual ESDT that this instance wraps. This base class
pointer points to a real ESDT of the type that it is (i.e. CER03, LIS02, etc.).
Data Type: DsGeESDT *
Privilege: Private
Default Value: NULL
Contraints:
Non Persisent Flag: True

4-165 305-CD-024-002

Operations:

DsGeESDTWrapper - The constructor for the ESDT wrapper is given the TypeID for the
desired data type. It constructs an ESDT Dynamic Library and issues the newESDT
function to obtain a pointer to a real ESDT of the actual type.
Arguments: datatype: DsGeTypeID &
Return Type: Void
Privilege: Public

DsGeESDTWrapper - This constructor takes a metadata object and determines the
TypeID from that object to create an ESDT of the right type. After the right ESDT has been
created, it is given the metadata object to fill in its attributes.
Arguments: metadata: DsMdMetadata
Return Type: Void
Privilege: Public

~DsGeESDTWrapper - The destructor for the wrapper deletes the ESDT object allocated
during the creation of the ESDT dynamic library instance and then deletes the dynamic
library instance.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGeESDTWrapper class has associations with the following classes:
Class: DsGeESDTDynamicLibrary isloadedby - The ESDT Wrapper uses the ESDT
Dynamic Library to load the implementation for the desired data type and to return a
pointer to a real object of that type.
Class: DsGeESDT wraps - The ESDT Wrapper is used as a means to access the services of
the ESDT. The Wrapper is the recipient of all commands that are destined for an ESDT.
These commands are simply passed through to the ESDT.

4.3.83 DsGeScienceData Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Purpose and Description:
To provide an interface to services for data that directly supports the earth science
investigations and queries. ScienceData is an ESDT that directly supports the services

4-166 305-CD-024-002

provided on science data products as opposed to non-science data products such as
documents, product history, and the like.

Attributes:

myBrowseList - Reference to the URs that are browse products for this science data product.
Alternatively this may be a single UR for a collection which contains the browse products
for this science data product.
Data Type: GlUR
Privilege: Private
Default Value:

myProductHistory - Reference to the list of URs for the products that were used to
generate this product.
Data Type: GlUR
Privilege: Private
Default Value:

myQAStatistics - Reference to the UR that represents the QA statistics for this data object.
Data Type: GlUR
Privilege: Private
Default Value:

myReferencePapers - A list of URs for the Reference Papers that describe this science
data. Alternatively, this may be a UR for a collection that contains multiple reference
papers.
Data Type: GlUR
Privilege: Private
Default Value:

Operations:

AddReferencePaper - This service is used to add a reference paper to the set of reference
papers that describe this science data.
Arguments: thePaper:GlUR &
Return Type: Void
Privilege: Public

Browse - This service is used to obtain a browse product(s) that is related to a specific
instance of a science data object.
Arguments: pars:GlParameterList &
Return Type: Void
Privilege: Public

4-167 305-CD-024-002

GetProductionHistory - This service is used to get the production history for this instance
of a science data object.
Arguments:
Return Type: GlUR
Privilege: Public

GetQADataStatistics - This service is used to get QA statistics that this science data may
have.
Arguments:
Return Type: GlUR
Privilege: Public

GetReferencePapers - This service is used to get teh set of reference papers that describe
this science data. Note that the set of reference papers describing a class of science data is
the same for all instances of the class.
Arguments:
Return Type: GlUR
Privilege: Public

HasBrowse - This service reports on whether or not this instance of a science data object
has at least one browse product associated with it.
Arguments:
Return Type: RWBoolean
Privilege: Public

RemoveReferencePaper - This service is used to delete a reference paper from the list of
reference papers that describe this science data. Not that this is not the same as deleting the
reference paper.
Arguments:
Return Type: GlStatus
Privilege: Public

Associations:

The DsGeScienceData class has associations with the following classes:
Class: DsNsProductionHistory describesgenerationof - Science data is generated using
various algorithms on a variety of host machines and with various input data. Production
history is used to describe the specific inputs, processing, and environment related to the
generation of the associated science data object. Each instance of a science data object has
an instance of production history.
Class: DsGeBrowseProduct has - Each instance of a science data object has zero or more
browse products associated with it. A browse product is a representation of the associated

4-168 305-CD-024-002

science data that can be used to determine whether a science data product should be
ordered. Each browse product can represent zero or more science data objects.
Class: DsNsQAStatistics has - An instance of a science data product may or may not have
an instance of QA data statistics. An instance of QA data statistics indicates the quality of
the associated science data object.
Class: DsDoReferencePaper isdescribedby - Each science data object class can be
described by zero or more instances of a reference paper. Note that this relationship is a
the class level for the science data object. For example, a set of reference papers describes
all CER03 data objects. This means that each instance of a CER03 data object is described
by the same set of reference papers.

4.3.84 DsGeSummaryProduct Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
A summary product is an ECS data product that represents a summary of th einformatio
contained in another ECS data product. For example, a monthly product is an ECS data
product AND it may also be the summary product for a daily product.

Attributes:

myGranuleList - A list of URs that are summarized by this summary product.
Data Type: GlUR
Privilege: Private
Default Value:

Operations:

AddGranule - This service adds the given granule to the list of granules summarized by this
instance of a summary product.
Arguments: data:GlUR &
Return Type: Void
Privilege: Public

ListGranules - This service lists the granules that are summarized by this instance of a
summary product. The UR that is returned refers to a list containing the URs of these
products.
Arguments:

4-169 305-CD-024-002

Return Type: GlUR
Privilege: Public

RemoveGranule - This service is used to remove granules from the list of granules
summarized by this instance of a summary product.
Arguments:
Return Type: RWBoolean
Privilege: Public

Associations:

The DsGeSummaryProduct class has associations with the following classes:
Class: DsGeECSDataProduct summarizes - A summary product is an ECS data product
that can summarize zero or more ECS data products. Each ECS data product can be
summarized by zero or more summary products. For example, an ECS data product can
have daily, weekly, and monthly summaries.

4.3.85 DsGeTypeID Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Persistent Class: True
Purpose and Description:
This object uniquely identifies each ESDT's type. The type consists of a type name and a
version number. Each type-version number pair is assigned a unique code. The set of all
TypeIDs is stored persistently in a database.

Attributes:

myCode - A unique number assigned to this type/version combination. Presumably it will be
more efficient to use this number instead of the name and version to identify the type of an
ESDT.
Data Type: unsigned long
Privilege: Private
Default Value:

myName - The name of this type. This name along with the version number is enough to
uniquely identify this type. An example of a type name is CER03.
Data Type: RWCString

4-170 305-CD-024-002

Privilege: Private
Default Value:

myVersionB - The version number of this ESDT. Version numbers are
needed because an ESDT of the same name may have several
implementations.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

DsGeTypeID - This constructor creates a TypeID instance from the given code. This code
uniquely identifies a TypeID.
Arguments: RWCString &theCode
Return Type: Void
Privilege: Public

DsGeTypeID - This constructor takes the name of the type and an optional version number
which it uses to create a TypeID. If the version number is not given, then the TypeID is
created using the highest version for the given name.
Arguments: RWCString &theName, RWCString theVersion=NULL
Return Type: Void
Privilege: Public

DsGeTypeID - This constructor creates a TypeID instance from the given code. This code
uniquely identifies a TypeID.
Arguments: RWCString &theCode
Return Type: Void
Privilege: Public

DsGeTypeID - This constructor takes the name of the type and an optional version number
which it uses to create a TypeID. If the version number is not given, then the TypeID is
created using the highest version for the given name.
Arguments: RWCString &theName, RWCString theVersion=NULL
Return Type: Void
Privilege: Public

GetTypeCode - Returns the code for this TypeID.
Arguments:
Return Type: unsigned long &
Privilege: Public

4-171 305-CD-024-002

GetTypeName - Returns the myName attribute which is the type name of this instance.
Arguments:
Return Type: RWCString
Privilege: Public

GetTypeVersionB - Returns the string contained in the myVersion attribute.
This is the version of this TypeID.
Arguments:
Return Type: RWCString
Privilege: Public

SetTypeCode - This is a private member function used to set the value of the myCode
attribute.
Arguments: unsigned long
Return Type: Void
Privilege: Private

SetTypeName - This is a private member function used to set the value of the myName
attribute.
Arguments: RWCString &
Return Type: Void
Privilege: Private

SetTypeVersionB - This is a private member function used to set the value of
the myVersion attribute.
Arguments: RWCString &
Return Type: Void
Privilege: Private

~DsGeTypeID - The destructor for this type has no implementation at this time.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGeTypeID class has associations with the following classes:
Class: DsGeESDT
DsClDescriptor (Aggregation)
DsClTypeInfo (Aggregation)
DsDeESDTDescriptor (Aggregation)

4-172 305-CD-024-002

4.3.86 DsGuAdmin Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class is an abstract base class to provide the functions common to all ops/admin
screens.

Attributes:

None

Operations:

ClearFilter - This operation unsets any filter selections which may have been set previously.
Arguments:
Return Type: const GlStatus&
Privilege: Public

CloseFile - This operation closes the provided fstream and assigns the provided name.
Arguments: fstream, RWCString filename
Return Type: const GlStatus&
Privilege: Public

CloseFile - This operation verifies that the ifstream is the provided file and then closes it.
Arguments: ifstream, RWCString filename
Return Type: const GlStatus&
Privilege: Public

CloseFile - This operation closes the provided ofstream and assigns the provided filename.
Arguments: ofstream, RWCString filename
Return Type: const GlStatus&
Privilege: Public

DsGuAdmin - The constructor creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Exit - This function terminates the current screen.
Arguments:
Return Type: Void

4-173 305-CD-024-002

Privilege: Public

Help - This function provides context-sensitive help for the current screen.
Arguments:
Return Type: const GlStatus&
Privilege: Public

OpenFile - This service opens the provided file name and assigns it to the provided
ifstream.
Arguments: RWCString filename, ifstream&
Return Type: RWBoolean
Privilege: Public

OpenFile - This service opens the provided file name and assigns it to the provided
ofstream.
Arguments: RWCString filename, ofstream&
Return Type: RWBoolean
Privilege: Public

OpenFile
Arguments: RWCString filename, fstream&

SaveFile - This service saves the current buffer into the specified file and leaves the file
open.
Arguments: RWCString filename
Return Type: const GlStatus&
Privilege: Public

SetAction - This is the base class function which provides the underlying mechanisms for
setting any action button.
Arguments: DsEGuAction
Return Type: const GlStatus&
Privilege: Public

SetFilter - This is the base class function which supplies the basic mechanism for setting
any filter.
Arguments: DsEGuFilter
Return Type: const GlStatus&
Privilege: Public

SetMode - This is the base class function which supplies the mechanims for setting any
mode.
Arguments: DsEGuMode
Return Type: const GlStatus&
Privilege: Public

4-174 305-CD-024-002

~DsGuAdmin - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGuAdmin class has associations with the following classes:
None

4.3.87 DsGuConfigurationMgmt Class

Parent Class: DsGuAdmin
Public: No
Distributed Object: No
Purpose and Description:
This class provides the functioning to allow operators to maintain the various configuration
files and/or databases.

Attributes:

All Attributes inherited from parent class

Operations:

DsGuConfigurationMgmt - The constructor creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Edit - This operation provides the operators the ability to edit (as opposed to just review)
the configuration information.
Arguments:
Return Type: Void
Privilege: Public

Save - This operation allows the operators to save changes to the configuration
information.
Arguments:

4-175 305-CD-024-002

Return Type: Void
Privilege: Public

~DsGuConfigurationMgmt - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGuConfigurationMgmt class has associations with the following classes:
None

4.3.88 DsGuDatatypeMgmt Class

Parent Class: DsGuAdmin
Public: No
Distributed Object: No
Purpose and Description:
This class supplies the functioning to allow operators to maintain datatypes.

Attributes:

All Attributes inherited from parent class

Operations:

AddDatatype - This operation takes the supplied TypeID, descriptor file (name), and DLL
filename and adds the specified datatype to the system.
Arguments: DsGeTypeID, RWCString descriptorFile, RWCString DLLfileName
Return Type: const GlStatus&
Privilege: Public

DeleteDatatype - This operation removes the specified datatype from the system.
Arguments: DsGeTypeID
Return Type: const GlStatus&
Privilege: Public

DsGuDatatypeMgmt - Creates an empty object.
Arguments:

4-176 305-CD-024-002

Return Type: Void
Privilege: Public

EditDatatype - This operation allows the operators to edit the DsDeDscriptor for the
provided datatype.
Arguments: DsGeTypeID
Return Type: const GlStatus&
Privilege: Public

FindDatatype - This operation allows operators to find the DsDescriptor corresponding
to the supplied information.
Arguments: DsEGeTypeCode, RWCString name, RWCString version
Return Type: const GlStatus&
Privilege: Public

~DsGuDatatypeMgmt - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGuDatatypeMgmt class has associations with the following classes:
None

4.3.89 DsGuRequestMgmt Class

Parent Class: DsGuAdmin
Public: No
Distributed Object: No
Purpose and Description:
This class provides the functioning to allow operators to monitor and manage requests.

Attributes:

All Attributes inherited from parent class

4-177 305-CD-024-002

Operations:

DsGuRequestMgmt - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

GetClientInfo - This operation finds and returns the MSS_UserProfile for the userID
specified in the provided request.
Arguments: DsSrRequest&
Return Type: MSS_UserProfile
Privilege: Public

GetRequestHistory - This operation returns all the previously recorded state information
for the provided request.
Arguments: DsSrRequest&
Return Type: istream& history
Privilege: Public

GetRequestInfo - This operation returns information on the current state of the provided
request.
Arguments: DsSrRequest&
Return Type: istream& information
Privilege: Public

GetRequestResources - This operation returns information on the current resource usage
of the provided request.
Arguments: DsSrRequest&
Return Type: istream& resourceList
Privilege: Public

SetFilterCSCI - This operation allows the operator to select all requests for the provided
CSCI.
Arguments: RWCString CSCI
Return Type: RWBoolean
Privilege: Public

SetFilterClient - This operation allows the operator to select all requests for the provided
client.
Arguments: MSS_UserProfile
Return Type: RWBoolean
Privilege: Public

4-178 305-CD-024-002

SetFilterPriority - This operation allows the operators to select all requests of the given
priority.
Arguments: RWCString priority
Return Type: RWBoolean
Privilege: Public

SetFilterProcess - This operation allows the operators to select all the requests for the
provided process ID.
Arguments: RWCString pid
Return Type: RWBoolean
Privilege: Public

SetFilterState - This operation allows the operators to select all the requests for the
provided state (completed, active, queued).
Arguments: RWCString state
Return Type: RWBoolean
Privilege: Public

~DsGuRequestMgmt - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGuRequestMgmt class has associations with the following classes:
None

4.3.90 DsGuResourceMgmt Class

Parent Class: DsGuAdmin
Public: No
Distributed Object: No
Purpose and Description:
This class provides the functioning to allow operators to monitor and manage system
resources.

4-179 305-CD-024-002

Attributes:

All Attributes inherited from parent class

Operations:

DsGuResourceMgmt - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

SetFilterCI - This operation allows the operators to select the resources allocated to the
provided CSCI.
Arguments: RWCString CSCI
Return Type: RWBoolean
Privilege: Public

SetFilterClient - This operation allows the operators to select the resources allocated to the
provided client.
Arguments: MSS_UserProfile&
Return Type: RWBoolean
Privilege: Public

SetFilterResource - This operation allows the operators to view full information for the
requested resource.
Arguments: RWCString resource
Return Type: RWBoolean
Privilege: Public

~DsGuResourceMgmt - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGuResourceMgmt class has associations with the following classes:
None

4-180 305-CD-024-002

4.3.91 DsGuSubscriptionMgmt Class

Parent Class: DsGuAdmin
Public: No
Distributed Object: No
Purpose and Description:
This class provides the functioning to allow operators to monitor and maintain
subscriptions.

Attributes:

All Attributes inherited from parent class

Operations:

DsGuSubscriptionMgmt - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

GetSubscriptionInfo - This operation allows operators to access the full information
about the provided subscription.
Arguments: DsSbSubscription&
Return Type: istream& information
Privilege: Public

GetUserProfile - This operation allows the operators to access client information
associated with the provided subscriptions.
Arguments: DsSbSubscription&
Return Type: MSS_UserProfile
Privilege: Public

SetFilterAction - This operation allows operators to select all subscriptions that specify
the provided action.
Arguments: DsESbAction actionID
Return Type: RWBoolean
Privilege: Public

SetFilterClient
Arguments: MSS_UserProfile&
Return Type: RWBoolean
Privilege: Public

4-181 305-CD-024-002

SetFilterEvent - This operation allows operators to select all subscriptions associated with
the provided event.
Arguments: DsTSbEventID eventID
Return Type: RWBoolean
Privilege: Public

~DsGuSubscriptionMgmt - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGuSubscriptionMgmt class has associations with the following classes:
None

4.3.92 DsGuSystemMgmt Class

Parent Class: DsGuAdmin
Public: No
Distributed Object: No
Purpose and Description:
This class provides the functioning to allow operators to monitor and manage all the
different pieces of the subsystem dynamic architectures (i.e., all system pieces which can
run in distinct, independent processes).

Attributes:

All Attributes inherited from parent class

Operations:

DsGuSystemMgmt - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Restart - This operation allows operators to restart the specified process within the
specified subsystem (i.e., the process is currently running, it should be shutdown and
started again).

4-182 305-CD-024-002

Arguments: RWCString subsystem, DsEAdProcess process
Return Type: const GlStatus&
Privilege: Public

Shutdown - This operation allows the operators to stop the specified process within the
specified subsystem.
Arguments: RWCString subsystem, DsEAdProcess process
Return Type: const GlStatus&
Privilege: Public

Startup - This operation allows operators to start the specified process within the specified
subsystem.
Arguments: RWCString subsystem, DsEAdProcess process
Return Type: const GlStatus&
Privilege: Public

~DsGuSystemMgmt - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsGuSystemMgmt class has associations with the following classes:
None

4.3.93 DsGvRadar Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
Class represents data derived directly from the TRMM Ground Based Validation Radar
(GV) network. This network is supported by a network of rain gauges.

Attributes:

All Attributes inherited from parent class

4-183 305-CD-024-002

Operations:

All Operations inherited from parent class

Associations:

The DsGvRadar class has associations with the following classes:
None

4.3.94 DsJeJERSB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the TRMM CERES Instrument
data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsJeJERSB class has associations with the following classes:
None

4.3.95 DsLiLIS Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents data products derived from the TRMM Lightening Imaging Sensor
(LIS).

Attributes:

All Attributes inherited from parent class

4-184 305-CD-024-002

Operations:

All Operations inherited from parent class

Associations:

The DsLiLIS class has associations with the following classes:
None

4.3.96 DsMdCatalog Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class is used to provide access to the metadata database. It contains a single database
connection, thus a separate instance of this class is required for each thread of execution
requiring access to the database. This class represents the logical starting point for access
to the database. All Insert, Update, Add, Remove, and Delete methods are executed within
the bounds of a database transaction, thus consistency is gauranteed. This class interfaces
with the database in terms of Databases, Tables and SQL. It relies on the DsDbInterface
class for Sybase specific routines.

Attributes:

myResultVector - This vector is used to hold instances of DsMdMetadata objects. These
objects are created within the GranuleSearch method and represent the result set from the
query.
Data Type: RWPtrOrderedVector<DsMdMetadata>
Privilege: Private
Default Value: null

mySQLQuery - This is a simple character string buffer used to hold the sql command that
is derived from the Query request.
Data Type: char *
Privilege: Private
Default Value: null

4-185 305-CD-024-002

Operations:

AddGranuleToCollectionB - This service adds the specified granule to the
specified collection per the collectionId parameter.
Arguments: DsTMdIdentifier collectionId, DsTMdIdentifier granuleId
Return Type: GlStatus
Privilege: Public

AddGranuleToCollectionB - This operation provides an alternate signature
for adding a granule to a collection. This operation calls the other
AddGranuleToCollection operation, specifying the collectionId associated
with the provided collectionName of this operation.
Arguments: string collectionName, DsTMdIdentifier granuleId
Return Type: GlStatus
Privilege: Public

CollectionSearchB - This method searches the collection level metadata for
the given PVL constraints and returns a vector of DsMdMetadata objects
through the vector parameter.
Arguments: char *pvlString, RWTPtrOrderedVector<DsMdMetadata>&
collectionMetadata
Return Type: GlStatus
Privilege: Public

DeleteCollectionMetadata - This method removes the collection level metadata object
identified by collectionId.
Arguments: DsTMdIdentifier collectionId
Return Type: GlStatus
Privilege: Public

DeleteCollectionMetadata - This methoed retrieves the collectionId of the named
collection and calls the DeleteCollectionMetadata method with the collectionId.
Arguments: char *collectionName
Return Type: GlStatus
Privilege: Public

DeleteGranuleMetadata - This method deltes all the metadata attributes associated with
the granuleId parameter.
Arguments: DsTMdIdentifier granuleId
Return Type: GlStatus
Privilege: Public

DsMdCatalog - This constructor simply calls the Initialize method. Initialization is
separate so that it can be isolated if necessary to guarantee success of the constructor.

4-186 305-CD-024-002

Arguments: void
Return Type: void
Privilege: Public

GetCollectionMetadataB - This method retrieves the metadata attributes
associated with the collection identified by the collectionId parameter.
Arguments: DsTMdIdentifier collectionId, DsMdMetadata& metadata
Return Type: GlStatus
Privilege: Public

GetCollectionMetadataB - This method retrieves the metadata attributes
associated with the collection identified by the collectionName parameter.
Arguments: char *collectionName, DsMdMetadata& metadata
Return Type: GlStatus
Privilege: Public

GetDistributionMetadata - This method retrieves the metadata that is distributed with a
granule.
Arguments: DsTMdIdentifier id, DsMdMetadata &metadata
Return Type: GlStatus
Privilege: Public

GetEphemeris - This method retrieves the ephemeris DsMdMetadata object associated
with the given granuleId.
Arguments: DsTMdIdentifier id, DsMdMetadata &metadata
Return Type: Void
Privilege: Public

GetGranuleMetadata - THis method retrieves the metadata attributes associated with the
given granuleId.
Arguments: DsTMdIdentifier id, DsMdMetadata &metadata
Return Type: GlStatus
Privilege: Public

GetHouseKeeping - This method retrieves the DsMdMetadata object containing the
HouseKeeping attributes associated with the Granule Identifier parameter.
Arguments: DsTMdIdentifier id, DsMdMetadata &metadata
Return Type: GlStatus
Privilege: Public

GetProductionHistory - This method retrieves the DsMdMetadata object containing the
Production History attributes associated with a granule.
Arguments: DsTMdIdentifier collectionId, DsMdMetadata& metadata
Return Type: GlStatus
Privilege: Public

4-187 305-CD-024-002

GetUniqueID - This method retrieves a unique identifier of type DsTMdIdentifier from the
database. The idnetifier is unique within the scope of the Database Server instance.
Arguments: DsTMdIdentifier& id
Return Type: GlStatus
Privilege: Public

GranuleSearch - This method is responsible for parsing and executing database queries
for granules. The InvQuery object parameter contains a PVL based Query description.
This PVL is parsed, the databases to query are identified, and SQL is created for each
database. The SQL statments are exected using the DsDbInterface object. A
myResultVector is used to store results of the query. A new DsMdMetadata object is
created for each granule in the result set and inserted into the myResultVector. Finally a
new RWTPtrOrderedVector is created and myResultVector is copied to it and returned to
the calling routine. It is the responsibility of the calling routine to delete the returned
vector. Two options are being evaluated for processing the search: Option 1 basically
attempts to include all "single-valued" attributes (granuleId, name, boundingCooridinates,
etc) in the first SQL statement. The result set is then processed sequentially retrieving
"multi-valued" attributes (discipline keywords, geophysicalParameterKeywords,
temporalRange, etc.) by granuleId. This option offers the least complex programatic
interface but has questionable performance characteristics. Option 2 has two approaches.
Both attempt to retrieve as many attributes as possible in each SQL statement (thus
minimizing the number of SQL statements). Both approaches also feature a loop that
unloads results into one GlParameterList per unique granuleId. The variance is in the
approach to unloading the denormalized result sets: Approach 1 assumes a GlParameterList
with extentions for handling set logic. Thus all retrieved attributes can be inserted without
reqard to redundancy. The GlParameterList set features will handle the duplication of
attributes. The performance implications of this approach need to be evaluated. Approach
2 assumes that the unloading functions are responsible for determining when duplicate
values are possible and handling them using knowledge of result set context. This approach
will have the best performance but will require the most code and maintenance.
Arguments: InvQuery& query, RWPtrOrderedVector<DsMdMetadata>& metadata
Return Type: GlStatus
Privilege: Private

Initialize - This method creates a DsDbConnection object. The method then creates and
initializes a DsDbGranuleToDbVector object. Then a DsDbAttributeToTableVector is
created and initialized.
Arguments: void
Return Type: GlStatus
Privilege: Public

InsertCollectionMetadata - This method inserts a new collection level metadata object
and returns the assigned id in the collectionId parameter.
Arguments: DsTMdIdentifier collectionId, DsMdMetadata& metadata

4-188 305-CD-024-002

Return Type: GlStatus
Privilege: Public

InsertGranuleMetadata - This method assigns a unique identifier to the granule and
inserts its metadata atributes into the database. The identifier is returned in the granuleId
parameter.
Arguments: DsMdMetadata& metadata
Return Type: GlStatus
Privilege: Public

InsertGranuleMetadata - This method inserts a DsMdMetadata object. It is unique in the
fact that it allows the caller to specify the granuleId.
Arguments: DsTMdIdentifier granuleId, DsMdMetadata& granuleMetadata
Return Type: GlStatus
Privilege: Public

InsertGranuleMetadata - This method processes the vector of DsMdMetadata objects
and iteratively calls the single InsertGranuleMetadata method to insert each object.
Arguments: RWTPtrOrderedVector<DsMdMetadata>
Return Type: GlStatus
Privilege: Public

RemoveGranuleFromCollectionB - This operation removes the specified
granule from the specified collection per the collectionId parameter.
Arguments: DsTMdIdentifier collectionId, DsTMdIdentifier granuleId
Return Type: GlStatus
Privilege: Public

RemoveGranuleFromCollectonB - This operation removes the specificed
granule from the specified collection. This is a convenience function which
provides a different signature. This operation calls the other
RemoveGranuleFromCollection operation with the collectionId associated
with the collection specified in the collectionName parameter.
Arguments: string collectionName, DsTMdIdentifier granuleId
Return Type: GlStatus
Privilege: Public

Search - This method takes the search constraints which are provided within the
DsSrCommand parameter, finds all associated metadata, and constructs and returns a list
of DsMdMetadata objects.
Arguments: DsSrCommand&, RWTPtrOrderedVector<DsMdMetadata>*, GlStatus&
Return Type: GlStatus
Privilege: Public

4-189 305-CD-024-002

UpdateCollectionMetadataB - This method takes a DsMdMetadata object as
a parameter and updates the attributes associated with the collectionId
parameter. This method is equivalent to a delete and add in the case of multi-
valued attributes. An update is performed for single-valued attributes.
Arguments: DsTMdIdentifier collectionId, DsMdMetadata& newMetadata
Return Type: GlStatus
Privilege: Public

UpdateCollectionMetadataB - This method simply offers a different signature
for UpdateCollectionMetadata. The method first determines the collectionId
of the named collection and then calls the other UpdateCollectionMetadata
with the collectionId as a parameter.
Arguments: char *collectionName, DsMdMetadata& newMetadata
Return Type: GlStatus
Privilege: Public

UpdateGranuleMetadata - Thsi method updates the metadata attributes associated with
the granuleId parameter. For multi-valued attributes, this is equivalent to a delete and add;
an update is performed for single- valued attributes.
Arguments: DsTMdIdentifier granuleId, DsMdMetadata& newMetadata
Return Type: GlStatus
Privilege: Public

~DsMdCatalog - This is the destructor for the DsMdCatalog object. It disconnects from
the database by deleting the DsDbConnection object. It then deletes the
DsDbAttributeToTableVector and the DsDbGranuleToDbVector objects.
Arguments: void
Return Type: void
Privilege: Public

Associations:

The DsMdCatalog class has associations with the following classes:
Class: DsDbAttributeToTableVector
Class: DsDbGranuleToDbVector
Class: DsDbInterface

4-190 305-CD-024-002

4.3.97 DsMdMetadata Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
The DsMdMetadata class representes a metadata object in the data server subsystem. It
includes all the metadata attribute information and their lookup operations. The attributes
are stored in the format of a GlParameterList internally. It also supports operations like
importing and exporting metadata object from/to external sources such as PVL strings.
Metadata attribute update is also supported through this class. Note that any updates to the
metadata object only occurs in memory for this class. The update operation on the
DsMdCatalog has to be involked to make the change persistent.

Attributes:

myId - Object Id for a Metadata object.
Data Type: DsTMdIdentifier
Privilege: Private
Default Value: null

myNonScienceMetadata - The part of the metadata that is internal to the system. It
includes bookkeeping information on the scientific data object. (e.g. file archive name and
path for a granule)
Data Type: GlParameterList
Privilege: Private
Default Value:

myScienceMetadata - The part of the metadata that is visible to the end users. It is stored
as a list of GlParameters containing attribute names and values. Note that a multi-valued
attribute is a single entry (GlParameter) in the GlParameterList which points to a
GlParameterList for its values.
Data Type: GlParameterList
Privilege: Private
Default Value:

myType - Type of the metadata object. The metadata object can be for collection, granual
and document object. It helps to identify the associated type of the object.
Data Type: char*
Privilege: Private
Default Value: null

4-191 305-CD-024-002

myUpdatedAttributes - Updated attribute list of the metadata object. This is used for
performance enhancement in updating partial objects. It is constructed/expanded during
the update operation and used by the DsMdCatalog class to figure out which attributes got
updated and issue command to update only those attribute in the database.
Data Type: GlParameterList
Privilege: Private
Default Value:

Operations:

DsMdMetadata - Constructor to set up default values for state variables.
Arguments:
Return Type: Void
Privilege: Public

GetAttribute - This operation provides a way for caller to query any one attribute value
for the metadata object. It takes the name of the attribute of interest, and gets the value of
the attribute and store the value in the GlParameter. Note that for performance reason, the
the GlParameter returned is a shallow copy of the metadata attribute.
Arguments: char* attributeName, GlParameter& attribute
Return Type: GlStatus
Privilege: Public

GetAttributes - This operation allows caller to get a list of attribute values from the
metadata object. It takes a list of GlParamters that containing the attribute names and fills
rest of the value fields (even types). The values will be in their native format. Note that for
performance reason, the values are shallow copies of the GlParameters of the metadata
object, the data value pointers are shared. This is a multi-scalar version of the
GetAttribute() operation.
Arguments: GlParameterList& attributes
Return Type: GlStatus
Privilege: Public

GetUpdatedAttributes - This operation returns a list of the metadata attributes that have
been updated by user (via either UpdateAttribute or UpdateAttributes). It is useful for the
DsMdCatalog class for making the updates persistent in the databse. The DsMdCatalog
update operation can take the return list and only issue databse update command on the
corresponding attributes.
Arguments: GlParameterList& modifiedAttributes
Return Type: GlStatus
Privilege: Public

4-192 305-CD-024-002

LoadFromExternal - This operation imports the metadata object from its external format
(e.g. PVL string) to the in-memory format. It is responsible for parsing the PVL string and
storing attributes (in their native format) in the GlParameterList. Multi-valued attribute is
represented as a single GlParameter with its value being a GlParameter for the values. This
operation is useful for the ingest process.
Arguments: char* externalForm
Return Type: GlStatus
Privilege: Public

MyId - Return the Metadata object Id. (Identity function)
Arguments:
Return Type: DsTMdIdentifier
Privilege: Public

MyType - This operation reurns the type of the metadata object.
Arguments:
Return Type: char*
Privilege: Public

PutAttribute - This operation allows caller to add an attribute to the metadata object. It
takes an attribute (represented as a GlParameter) and insert a copy of it to the
GlParameterList.
Arguments: const GlParameter& attribute
Return Type: GlStatus
Privilege: Public

PutAttributes - This operation allows caller to add a list of attributes into the metadata
object. The input attributes are expected to be in the format of a list of GlParameterList and
the operation will create a deep copy of the list and append to its attribute list. This is a
multi-scalar version of the PutAttribute() operation.
Arguments: const GlParameterList& attributes
Return Type: GlStatus
Privilege: Public

SaveToExternal - This operation exports the in-memory format of the metadata object to
its external format(e.g. PVL string). It is useful for the distribution process.
Arguments: char*& externalForm
Return Type: GlStatus
Privilege: Public

SetMyId - This operation sets the Id for the metadata object. This is useful for applications
that need to access the metadata object through OID handles (e.g. UR).
Arguments: DsTMdIdentifier& Id
Return Type: Void
Privilege: Public

4-193 305-CD-024-002

SetMyType - This operation sets the type of the object.
Arguments: char* type
Return Type: Void
Privilege: Public

UpdateAttribute - This operation updates the specified attribute in the metadata object.
The attribute to be updated is represented in the format of GlParameter containing both the
attribute name and its value. Note the update only occurrs in memory, an update operation
to the DsMdCatalog is required to make the change persistent.
Arguments: const GlParameter& attribute
Return Type: GlStatus
Privilege: Public

UpdateAttributes - This operation updates a list of attributes of the metadata object. This
is a multi-scalar version of the UpdateAttribute() operation. Note that it only updates the
in-memory part of the object, to make the change persistent, a DsMdCatalog update
operation is needed.
Arguments: const GlParameterList& attributes
Return Type: GlStatus
Privilege: Public

~DsMdMetadata - Destructor to deallocate any in-memory data structures for the objects.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsMdMetadata class has associations with the following classes:
DsMdCatalog (Aggregation)

4.3.98 DsMoMODISB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the MODIS Instrument data.
Attributes:
All Attributes inherited from parent class

4-194 305-CD-024-002

Operations:
All Operations inherited from parent class
Associations:
The DsMoMODISB class has associations with the following classes:
None

4.3.99 DsMpMOPPITB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the MOPPIT Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsMpMOPPITB class has associations with the following classes:
None

4.3.100DsMsMISRB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the TRMM CERES Instrument
data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsMsMISRB class has associations with the following classes:
None

4-195 305-CD-024-002

4.3.101DsNmNMC Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
National Meteorological Center data

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNmNMC class has associations with the following classes:
None

4.3.102DsNpAncillary Class

Parent Class: DsNsNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class contains ancillary data products which were input in the generation of standard
data products. The type attribute inherited from the DsGeESDT is used to indicate which
of the ancillary data types an instance of this class is.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-196 305-CD-024-002

Associations:

The DsNpAncillary class has associations with the following classes:
None

4.3.103DsNpCalibration Class

Parent Class: DsNsNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class contains instrument and scientific calibration data. The contents and format of
this data are not relevant from the DSS perspective. The DSS must receive, store and
distribute this data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpCalibration class has associations with the following classes:
None

4.3.104DsNpCorrelative Class

Parent Class: DsNsNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class contains data products that are used as correlative data to evaluate and validate
EOS data products.

4-197 305-CD-024-002

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpCorrelative class has associations with the following classes:
None

4.3.105DsNpNonECSDataProduct Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class represents science data that was not produced within ECS. This includes data
that is in non-standard formats as well as data that has been produced to recommendations/
specifications provided by ECS to the data producer.

Attributes:

None

Operations:

None

Associations:

The DsNpNonECSDataProduct class has associations with the following classes:
None

4-198 305-CD-024-002

4.3.106DsNpOA Class

Parent Class: DsNsNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This data type contains orbit and attitude data. From the data type perspective of the DSS,
the internal format and contents are irrelevant. The DSS services include receive, archive,
and distribute for this type.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpOA class has associations with the following classes:
None

4.3.107DsNpPlatform Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents Satellite Housekeeping Data. The format need not be know to the Data
Server.

Attributes:

All Attributes inherited from parent class

4-199 305-CD-024-002

Operations:

All Operations inherited from parent class

Associations:

The DsNpPlatform class has associations with the following classes:
None

4.3.108DsNpVersion0 Class

Parent Class: DsNsNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class is the base class for all Version 0 data products. At this level, the DSS has no
knowledge of the contents and structure of the individual data types. Subclasses derived
from this class would be specific Version 0 data types and would require an
ESDTDescriptor that defines the type, its services, its metadata, etc.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpVersion0 class has associations with the following classes:
None

4.3.109DsNsHistoricalDataB Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No

4-200 305-CD-024-002

Purpose and Description:
Historical data that the DSS archives and provides access to. This includes
instrument historical data and spacecraft historical data. These contain
commands sent and indications of success or failure of these commands.
From the DSS perspective, the contents of this data type are n ot interpreted
but merely archived and made available for distribution.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsNsHistoricalDataB class has associations with the following classes:
None

4.3.110DsNsMPRB Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
The Metadata Problem Report (MPR) is an ESDT that has information
submitted by users related to problems with metadata. This information
could be supplied to the QA staff via a subscription.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsNsMPRB class has associations with the following classes:
None

4.3.111DsNsNonECSDataProduct Class

Parent Class: DsGeScienceData
Public: No
Distributed Object: No
Purpose and Description:
This class represents science data that was not produced within ECS. This includes data
that is in non-standard formats as well as data that has been produced to recommendations/

4-201 305-CD-024-002

specifications provided by ECS to the data producer.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNsNonECSDataProduct class has associations with the following classes:
None

4.3.112DsNsProdPlans Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Purpose and Description:
This class contains production plans from the planning subsystem. These plans include
candidate plans and active plans. From the DSS perspective the format and content of these
plans is not relevant.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNsProdPlans class has associations with the following classes:
None

4-202 305-CD-024-002

4.3.113DsNsProductionHistory Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Purpose and Description:
To provide the heritage of an ECS data granule. Product History is an ESDT that denotes
the steps that have been taken in the production of a particular ESDT object.

Attributes:

myGranuleUR - The UR for the granule that this production history describes.
Data Type:
Privilege: Private
Default Value:

Operations:

GetGranule - This service provides the ability to obtain the granule that this production history
refers to.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsNsProductionHistory class has associations with the following classes:
Class: DsGeScienceData describesgenerationof - Science data is generated using various
algorithms on a variety of host machines and with various input data. Production history
is used to describe the specific inputs, processing, and environment related to the
generation of the associated science data object. Each instance of a science data object has
an instance of production history.

4.3.114DsNsQAStatistics Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Purpose and Description:

4-203 305-CD-024-002

To provide an interface to services for the quality data for a data object. QAStatistics are
a type of ESDT that indicates the quality of a particular ESDT object.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNsQAStatistics class has associations with the following classes:
Class: DsGeScienceData has - An instance of a science data product may or may not have
an instance of QA data statistics. An instance of QA data statistics indicates the quality of
the associated science data object.

4.3.115DsNsScienceSoftwareArchivePackage Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Purpose and Description:
To provide a single interface to the full content of data and information delivered by data
producer standard product Algorithm Integration and Test. This class is a specialization of
the ESDT class. It provides services that are specific to the given (software archive
package) data type. This class is also referred to as a Delivered Algorithm Package.

Attributes:

myBinaryList - The set of binary executables that have been compiled for this specific archive
package.
Data Type: RWVector<istream>
Privilege: Private
Default Value:

myGranuleList - A list of all the granules that were generated using this science software
archive package.
Data Type: RWVector<GlUR>

4-204 305-CD-024-002

Privilege: Private
Default Value:

myHostList - The set of hosts that th executable software will run on.
Data Type: RWVector<RWCString>
Privilege: Private
Default Value:

mySourceCode - The source code (ASCII text) of the science software archive package.
This will include the programs, header files, and make files.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

AddGranule - This service adds a granule to the list of granules generated using this software
package.
Arguments: theUR: GlUR
Return Type: RWBoolean
Privilege: Public

DsNsScienceSoftwareArchivePackage - The default constructor creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

GetBinary - This service provides this software package's executable program that has
been compiled for the given host.
Arguments: hostType
Return Type: ostream &
Privilege: Public

GetSource - This service provides the source code for this software package.
Arguments:
Return Type: RWCString
Privilege: Public

HasBinary - This service indicates whether or not the software package has an executable
program that runs on the given host type.
Arguments: hostType
Return Type: RWBoolean
Privilege: Public

4-205 305-CD-024-002

ListGranules - This service provides a list of all the granules that were generated using
this software package.
Arguments:
Return Type: RWVector<GlUR>
Privilege: Public

ListHosts - This service lists all the host types that this software package has been
compiled for.
Arguments: hostType
Return Type: RWVector<RWCString>
Privilege: Public

RemoveGranule - This service removes a granule from the list of granules that were
generated using this software package.
Arguments: theUR: GlUR
Return Type: RWBoolean
Privilege: Public

~DsNsScienceSoftwareArchivePackage - Removes an object of this class.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsNsScienceSoftwareArchivePackage class has associations with the following classes:
Class: DsGeECSDataProduct isusedtocreate - An instance of a SoftwareArchivePackage
(SAP) is used to create zero or more ECS data products. The SAP contains the software,
executables, makefiles, etc. The processing subsystem uses the DAP to generate ECS data
products. Each ECS data product was created using one SAP.

4.3.116DsPrRadar Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
The class represents data specifically from the TRMM platform Precipitation Radar (PR)
instrument.

4-206 305-CD-024-002

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsPrRadar class has associations with the following classes:
None

4.3.117DsRaRadarsatB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the Radarsat Instrument
data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsRaRadarsatB class has associations with the following classes:
None

4.3.118DsSaSageB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the Sage Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:

4-207 305-CD-024-002

All Operations inherited from parent class
Associations:
The DsSaSageB class has associations with the following classes:
None

4.3.119DsSbAction Class

Parent Class: DsSbActionBase
Public: No
Distributed Object: No
Purpose and Description:
This defines an activity to be performed on behalf of a server when a previously defined
and advertised event occurs. Currently, notifications and requests are valid actions.

Attributes:

All Attributes inherited from parent class

Operations:

DsSbAction - Constructor allowing the attributes in the base class to be set.
Arguments: RWCString &text, DsSbRequest * = NULL
Return Type: Void
Privilege: Public

DsSbActionB - Constructor allowing attributes in the base class to be set.
Arguments: DsSbRequest &, RWBoolean = TRUE, RWCString * = NULL
Return Type: Void
Privilege: Public

GetRequestB - Returns a subscription request.
Arguments:
Return Type: const DsSbRequest&
Privilege: Public

SetRequestB - Sets a request object.
Arguments: const DsSbRequest&
Return Type: void
Privilege: Public

4-208 305-CD-024-002

~DsSbAction - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbAction class has associations with the following classes:
DsSbSubscription (Aggregation)

4.3.120DsSbActionBase Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
Encapsulates all of the commonality of an action between the client-side class
(DsClAction) and the server-side class (DsSbAction).

Attributes:

myNotifyFlag - Flag which determines if this action is a notification.
Data Type: RWBoolean
Privilege: Private
Default Value:

myRequestFlagB - Flag which determines if this action is a request.
Data Type: RWBoolean
Privilege: Private
Default Value:

myText - Defines text of an action.
Data Type: RWCString
Privilege: Private
Default Value:

4-209 305-CD-024-002

Operations:

ClearRequestB - Provides the action base class the ability to have requests
cleared.
Arguments:
Return Type: void
Privilege: Public

DsSbActionBase - Constructs an Action base class setting the notification flag and text
attribute.
Arguments: RWBoolean notify = FALSE, const RWCString *text = 0
Return Type: Void
Privilege: Public

DsSbActionBase - Constructs a DsSbActionBase.
Arguments:
Return Type: Void
Privilege: Public

GetNotify - Accesses the notification flag.
Arguments:
Return Type: RWBoolean
Privilege: Public

GetText - Accesses the text attribute.
Arguments:
Return Type: const RWCString &
Privilege: Public

HasRequestB - Checks whether the action contains requests.
Arguments:
Return Type: RWBoolean
Privilege: Public

SetNotify - Sets notification flag.
Arguments: RWBoolean
Return Type: void
Privilege: Public

SetText - Sets the text attribute.
Arguments: RWCString &
Return Type: void
Privilege: Public

4-210 305-CD-024-002

~DsSbActionBase - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbActionBase class has associations with the following classes:
None

4.3.121DsSbCallBackTimer Class

Parent Class: DsSbTimer
Public: No
Distributed Object: No
Purpose and Description:
To generate calls to another object after a specified interval.

Attributes:

myCallbackFunction - The (member) function that should be called every time the interval
occurs.
Data Type: GlCallback
Privilege: Private
Default Value:

Operations:

DsSbCallBackTimer - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

SetCallback - Used by the managing object to register its callback function.
Arguments:
Return Type: RWBoolean
Privilege: Public

4-211 305-CD-024-002

~DsSbCallBackTimer - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbCallBackTimer class has associations with the following classes:
Class: DsSbSubscriptionInterface alarms

4.3.122DsSbEvent Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Persistent Class: True
Purpose and Description:
Defines events used by the server.

Attributes:

myCategory - This is a category which allows events of the same name to be distinguished
from each other.
Data Type: RWCString
Privilege: Private
Default Value:

myDescription - This is the description of the event.
Data Type: RWCString
Privilege: Private
Default Value:

myEventID - This is the event identification number.
Data Type: int
Privilege: Private
Default Value:

myName - This is the name of the event.
Data Type: RWCString

4-212 305-CD-024-002

Privilege: Private
Default Value:

Operations:

DsSbEvent - Constructs an event.
Arguments:
Return Type: Void
Privilege: Public

Register - Used to register a new event in the subscription server.
Arguments:
Return Type: RWBoolean
Privilege: Public

Trigger - Implements the triggering of an event.
Arguments: GlParameterList&
Return Type: RWBoolean
Privilege: Public
PDL:CALL DsSbEventHandler::DsSbEventHandler to create an event handler for this
event.

CALL DsSbEventHandler::EventOccured to indicate event has occured and parameters
containing information about the event is passed along.

Returns a success or failure status.

Unregister - Used to remove the registration information about this event from the
subscription server.
Arguments:
Return Type: RWBoolean
Privilege: Public

~DsSbEvent - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

4-213 305-CD-024-002

Associations:

The DsSbEvent class has associations with the following classes:
Class: DsDeESDTDescriptor
Class: DsGeESDT
Class: DsSbEventHandler processedby
Class: DsDeESDTDescriptor registers - The ESDTDescriptor creates and registeres events
with the subscription server. These events are one of the mechanisms used for triggering
subscriptions.
Class: DsGeESDT triggers - The ESDT is responsible for triggering events. This is done
to indicate that a previously registered action occurred. The event is responsible for
performing whatever action(s) are required upon the occurrence of that event. For
example, an insert event is registered. When a granule is inserted, that event is triggered.
This tells the event that an insert has occurred. The event can ignore this occurrence or
notify subscribers to that event or whatever is appropriate.
DsGeESDTEventTable (Aggregation)
DsSbEventTimer (Aggregation)

4.3.123DsSbEventHandler Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Handles incoming asynchronous events as they occur. It activates the corresponding
DsSbRegisteredEvent when DsSbEvents are given to it.

Attributes:

None

Operations:

DsSbEventHandler - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

EventOccurred - Indicates that an event has occured and eventually subscriptions against
the events are processed.

4-214 305-CD-024-002

Arguments: GlParameterList&
Return Type: RWBoolean
Privilege: Public

ReportStatus - Used to return status of execution to the calling object.
Arguments:
Return Type: Void
Privilege: Public

~DsSbEventHandler - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbEventHandler class has associations with the following classes:
Class: DsSbRegisteredEvent notifies - The event handler finds and calls the registered
event corresponding to an event that just occurred to execute subscriptions.
Class: DsSbEvent processedby

4.3.124DsSbEventTimer Class

Parent Class: DsSbTimer
Public: No
Distributed Object: No
Purpose and Description:
To maintain and generate time events to be submitted to the DsSbEventHandler at regular
intervals.

Attributes:

All Attributes inherited from parent class

Operations:

DsSbEventTimer - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

4-215 305-CD-024-002

RegisterEvent - Used by the managing object to tell DsSbEventTimer to register its event.
Arguments:
Return Type: RWBoolean
Privilege: Public
PDL:CALL DsSbEvent::DsSbEvent to create a new event and fill in event attributes.

CALL DsSbEvent::Register to advertise an event and record it into the subscription system.

Returns a success or failure status.

~DsSbEventTimer - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbEventTimer class has associations with the following classes:
Class: DsSbSubscriptionInterface managedby - DsSbEventTimers are created and
configured by the DsSbSubscriptionInterface to perform regular subscription activities.

4.3.125DsSbFactory Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class is instantiated on the server side of an OODCE distributed object pair to create
server-side object of the distributed type. In this case, server-side DsSbEvent objects are
created when needed, i.e. when clients create new client side DsSbEvent objects.

Attributes:

None

4-216 305-CD-024-002

Operations:

DsSbFactory - Constructs a subscription server factory.
Arguments:
Return Type: Void
Privilege: Public

MakeEvent - Used to construct a server-side event to be distributed with a new client-side
proxy event.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsSbFactory - Destroys this subscription server factory.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbFactory class has associations with the following classes:
None

4.3.126DsSbRegisteredEvent Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
Associates subscriptions with subscribable events. It executes all subscriptions that have
been registered for an event when that event happens.

Attributes:

myEventId - Associates this DsSbRegisteredEvent with a DsSbEvent, so that the
DsSbEventHandler can find the right DsSbRegisteredEvent when an event is triggered.
Data Type: RWCString
Privilege: Private
Default Value:

4-217 305-CD-024-002

Operations:

AddSubscription - Adds a subscrption to be executed each time the event associated with this
DsSbRegisteredEvent is triggered.
Arguments:
Return Type: RWBoolean
Privilege: Public

CancelSubscription - Used to remove a specific subscription from the list associated with
this DsSbRegisteredEvent.
Arguments:
Return Type: RWBoolean
Privilege: Public

CancelSubscriptions - Used to remove all subscriptions from the list of subscriptions
associated with this DsSbRegisteredEvent.
Arguments:
Return Type: RWBoolean
Privilege: Public

DsSbRegisteredEvent - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

ExecuteSubscriptions - This operation iterates over all the subscriptions associated with
a given event, and performs the action associated with each subscription.
Arguments: GlParameterList
Return Type: RWBoolean
Privilege: Public

GetSubscriptions - Creates a list of all subscriptions associated with this
DsSbRegisteredEvent.
Arguments:
Return Type: RWBoolean
Privilege: Public

~DsSbRegisteredEvent - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

4-218 305-CD-024-002

Associations:

The DsSbRegisteredEvent class has associations with the following classes:
Class: DsSbSubscription activates - Each DsSbRegisteredEvent maintains a list of
subscriptions that have been associated with its event, organized by event. The
subscription list is managed and subscriptions are executed via this association.
Class: DsSbSubscriptionInterface manages - DsSbSubscriptionInterface maintains a list of
all DsSbRegisteredEvents and passes on all subscription requests to the appropriate one.
Class: DsSbEventHandler notifies - The event handler finds and calls the registered event
corresponding to an event that just occurred to execute subscriptions.

4.3.127DsSbSubscription Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Records all characteristics of a single subscription. It is responsible for executing the
requested action when the associated event occurs.

Attributes:

myExpirationDate - Identifies when this subscription will expire and be removed from the
system. The value may be "never" (i.e., the subscription is permanent).
Data Type: RWDate
Privilege: Private
Default Value:

myType - Stores the type of this subscription, i.e. whether it is a one-time only or repeating
subscription.
Data Type: RWCString
Privilege: Private
Default Value:

myUserId - Identifies the user who submitted the subscription.
Data Type: RWCString
Privilege: Private
Default Value:

4-219 305-CD-024-002

Operations:

DsSbSubscription - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Execute - Implements execution of the server side subscription.
Arguments: GlParameterList
Return Type: RWBoolean
Privilege: Public

NotifyCancel - Used to notify the client that the server side subscription has been
cancelled.
Arguments:
Return Type: RWBoolean
Privilege: Public

NotifyExpiration - Used to notify the client that the server side subscription is about to
expire.
Arguments:
Return Type: RWBoolean
Privilege: Public

SetExpiration - Sets the expiration of the server side subscription.
Arguments: Date
Return Type: RWBoolean
Privilege: Public

~DsSbSubscription - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbSubscription class has associations with the following classes:
Class: DsSbRegisteredEvent activates - Each DsSbRegisteredEvent maintains a list of
subscriptions that have been associated with its event, organized by event. The
subscription list is managed and subscriptions are executed via this association.
Class: DsSbSubscriptionInterface manages - DsSbSubscriptionInterface maintains a list of

4-220 305-CD-024-002

all DsSbSubscriptions organized by expiration date and user ID.

4.3.128DsSbSubscriptionInterface Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
Provides an interface to subscription services. Other objects can use it to access all
administrative functions that are necessary for creating, removing, and managing
subscriptions. It also handles event registration, and returns a handle to the
DsSbEventHandler to registering events.

Attributes:

None

Operations:

AddSubscription - Creates a new DsSbSubscription object for the client and adds it to the
appropriate DsSbRegisterEvent (to be used when the correponding event is triggered).
Arguments:
Return Type: RWBoolean
Privilege: Public

CancelSubscription - Notifies the appropriate DsSbRegisteredEvent to remove the
subscription from its list (and destroy the DsSbSubscription object).
Arguments:
Return Type: RWBoolean
Privilege: Public

CheckExpirations - Cycles through the entire list of DsSbSubscriptions, and cancels any
subscriptions that have expired (with notification to the owner). Also, sends owners
notification of subscriptions that will soon expire.
Arguments:
Return Type: RWBoolean
Privilege: Public

DsSbSubscriptionInterface - Creates an empty object.
Arguments:
Return Type: Void

4-221 305-CD-024-002

Privilege: Public

ExecuteCommand - Used to cause DsSbSubscriptionInterface to execute a
DsSbCommand.
Arguments:
Return Type: RWBooolean
Privilege: Public

GetAllEvents - Creates (and returns) a list of all subscribable events.
Arguments:
Return Type: RWBoolean
Privilege: Public

GetAllSubscriptions - Creates (and returns) a list of all subscriptions that exist for a given
user.
Arguments:
Return Type: RWBoolean
Privilege: Public

RegisterEvent - Creates a DsSbRegisteredEvent object for the given event, and returns to
the calling object a handle to the DsSbEventHandler to be used when triggering the event.
Arguments:
Return Type: RWBoolean
Privilege: Public

UnregisterEvent - Removes a DsSbRegisteredEvent from the system, and thereby all of
the subscriptions associated with it.
Arguments:
Return Type: RWBoolean
Privilege: Public

UpdateSubscription - Modifies any/all attributes of an existing subscription.
Arguments:
Return Type: RWBoolean
Privilege: Public

~DsSbSubscriptionInterface - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

4-222 305-CD-024-002

Associations:

The DsSbSubscriptionInterface class has associations with the following classes:
Class: DsSrConnection -
Class: DsSbCallBackTimer alarms
Class: DsSbEventTimer managedby - DsSbEventTimers are created and configured by the
DsSbSubscriptionInterface to perform regular subscription activities.
Class: DsSbRegisteredEvent manages - DsSbSubscriptionInterface maintains a list of all
DsSbRegisteredEvents and passes on all subscription requests to the appropriate one.
Class: DsSbSubscription manages - DsSbSubscriptionInterface maintains a list of all
DsSbSubscriptions organized by expiration date and user ID.

4.3.129DsSbTimer Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
To generate time events to be submitted to the subscription system. A timer will monitor
the system clock and generate the specified time events.

Attributes:

myInterval - Identifies how much time the timer should wait before generating the next
trigger.
Data Type: float
Privilege: Private
Default Value:

Operations:

DsSbTimer - Creates an empty object.
Arguments:
Return Type: Void
Privilege: Public

Reset - Used to tell the timer to start measuring the interval as if it had just been triggered.
Arguments:
Return Type: RWBoolean
Privilege: Public

4-223 305-CD-024-002

~DsSbTimer - Removes an object of this type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbTimer class has associations with the following classes:
None

4.3.130DsSrArchiveCostB Class

Parent Class: DsSrResourceB
Public: No
Distributed Object: No
Purpose and Description:
This class represents the cost to put the requested data into or remove the
requested data from the storage archive.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsSrArchiveCostB class has associations with the following classes:
None

4.3.131DsSrCPUUtilizationB Class

Parent Class: DsSrResourceB
Public: No
Distributed Object: No
Purpose and Description:
This class represents the cost in CPU cycles to perform the requested
service.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class

4-224 305-CD-024-002

Associations:
The DsSrCPUUtilizationB class has associations with the following classes:
None

4.3.132DsSrClient Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
Acts as an interface class to the CSMS subsystem to use the accounting and user profiling
capabilities.

Attributes:

myProfile - A pointer to the profile for this client, obtained from MSS.
Data Type: MSS_UserProifle*
Privilege: Private
Default Value:

mySystemLog - Identifies the log that is used by DsSrClient to log all activity by the
object.
Data Type: GlLog
Privilege: Private
Default Value:

Operations:

ConvertToDollarsB - Used to convert the resource usage of a request to its cost.
Arguments: rq: DsSrRequest &
Return Type: RWBoolean
Privilege: Public

DebitB - Used to subtract the given cost from the user's balance.
Arguments: amt: float
Return Type: void
Privilege: Public

DsSrClient - Constructs a client from the given profile.
Arguments: MSS_UserProfile*

4-225 305-CD-024-002

Return Type: Void
Privilege: Public

GetBalanceB - Retrieves the current account balance for this user.
Arguments:
Return Type: float
Privilege: Public

GetProfile - Retrieves the contents of the profile for the user.
Arguments:
Return Type: MSS_UserProfile
Privilege: Public

SufficientFundsB - Used to determine if the user has enough money to
perform the request.
Arguments: rq: DsSrRequest &
Return Type: RWBoolean
Privilege: Public

~DsSrClient - Destroys this client.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrClient class has associations with the following classes:
Class: DsSrConnection informs

4.3.133DsSrCommand Class

Parent Class: DsSrCommandBase
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
An implementation of the DsCommand abstract base class that provides services necessary
for data server creation and storage of command objects.

4-226 305-CD-024-002

Attributes:

All Attributes inherited from parent class

Operations:

DsSrCommand - Used to construct a command from a command info object.
DsSrConnection uses this constructor to rebuild a command that has been submitted from
a client.
Arguments: DsSrCommandInfo*
Return Type: Void
Privilege: Public

~DsSrCommand - Used to destroy a command.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrCommand class has associations with the following classes:
DsSrRequest (Aggregation)

4.3.134DsSrCommandBase Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This class provides a common interface to the core information of a command in the
system. It is inherited by both the client-side and server-side command classes.

Attributes:

myInfo - A pointer to the core command information for this command. (Which is, In OO
terms, the implementation for this interface).
Data Type: DsSrCommandInfo*
Privilege:
Default Value:

4-227 305-CD-024-002

Operations:

DsSrCommandBase - Used to construct an empty command.
Arguments:
Return Type: Void
Privilege: Public

DsSrCommandBase - Used to construct a command with the given service, parameters,
and category.
Arguments: svc: RWCString &, pl: GlParameterList *, DsESrCommandCategory
Return Type: Void
Privilege: Public

GetCategory - Used to retrieve the current category for this command.
Arguments:
Return Type: DsESrRequestCategory
Privilege: Public

GetInfo - Returns a pointer to the underlying data (DsSrRequestInfo) for this request.
Arguments:
Return Type: DsSrCommandInfo*
Privilege: Public

GetParameters - Returns the parameters for this command.
Arguments:
Return Type: const GlParameterList &
Privilege: Public

GetServiceName - Returns the current service name for this command.
Arguments:
Return Type: const RWCString &
Privilege: Public

SetCategory - Used to set the category for the command.
Arguments: DsESrRequestCategory
Return Type: void
Privilege: Public

SetParameters - Used to set the parameters for this command.
Arguments: pl: GlParameterList &
Return Type: void
Privilege: Public

4-228 305-CD-024-002

SetServiceName - Used to set the service name for this command.
Arguments: svc: const RWCString &
Return Type: void
Privilege: Public

~DsSrCommandBase - Used to destroy a command.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrCommandBase class has associations with the following classes:
Class: DsSrCostPolicyB costedby
Class: DsSrCommandInfo referencedby

4.3.135DsSrCommandInfo Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class represents the lowest-level core of a command that is shared by client-side and
server-side classes. It is contained by the DsSrCommandBase class, which serves as its
primary interface. (In standard OO terms, this is the implementation to
DsSrCommandBase's interface). This relationship ensures that command objects can be
transferred between the client environment and the server environment.

Attributes:

myCategory - The category of the command indicates to the receiving connection object how
the command should be routed.
Data Type: DsESrCommandCategory
Privilege: Protected
Default Value:

myParameterList - Designates the parameters values for the service requested.
Data Type: GlParameterList
Privilege: Protected

4-229 305-CD-024-002

Default Value:

myServiceName - Indicates the name of the desired service.
Data Type: RWCString
Privilege: Protected
Default Value:

Operations:

None

Associations:

The DsSrCommandInfo class has associations with the following classes:
Class: DsSrCommandBase referencedby
DsSrRequestInfo (Aggregation)

4.3.136DsSrConnection Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Persistent Class: True
Purpose and Description:
Manages all interaction between clients and the data server. Provides all necessary server-
side housekeeping activities (logging, accounting, authorizing) as well as executing client
requests.

Attributes:

myConnectTimeB - The time that the user established this connection.
Data Type: unsigned int
Privilege: Protected
Default Value:

myLog - The log used to record all activity for this connection.
Data Type: GlLog
Privilege: Protected
Default Value:

4-230 305-CD-024-002

myLoggingFlag - Indicates whether activity is currently being logged for this connection.
Data Type: RWBoolean
Privilege: Protected
Default Value:

myStatus - The current status of this connection.
Data Type: GlStatus
Privilege: Protected
Default Value:

myTimeOut - The time when this connection will automatically expire unless activity is
detected.
Data Type: RWDate
Privilege: Protected
Default Value:

myTimeoutInterval - The amount of time (in seconds) after which this connection will
terminate if no activity is detected.
Data Type: unsigned int
Privilege: Protected
Default Value:

Operations:

Authorize - Used to verify that the user attempting to establish a connection is an authorized
user.
Arguments: DsSrCommand
Return Type: GlStatus
Privilege: Public

DsSrConnection - Constructs this connection for the given user profile. If the connection
ID is not 0, restores the previously suspended connection.
Arguments: prof: MSS_UserProfile, DsESrConnectionID = NULL
Return Type: Void
Privilege: Public

Execute - A pure-virtual function that is expected to be implemented by derived classes to
execute a request.
Arguments: rq: DsSrRequest &
Return Type: GlStatus
Privilege: Public

4-231 305-CD-024-002

GetStatus - Returns the status of this connection.
Arguments:
Return Type: GlStatus
Privilege: Public

GetTimeOut - Returns the time at which this connection will automatically terminate
without activity.
Arguments:
Return Type: RWTime
Privilege: Public

Refresh - Used to tell the connection to reload any configuration parameters that it uses,
usually so that it notices a change. myTimeoutInterval is a parameter that is loaded from
configuration.
Arguments:
Return Type: void
Privilege: Public

SetTimeOut - Used to set the interval when this connection will automatically terminate if
no activity is detected.
Arguments: secs: unsigned int
Return Type: void
Privilege: Public

StartLogging - Used to make this connection start logging all activity.
Arguments:
Return Type: void
Privilege: Public

StopLogging - Used to make this connection stop logging all activity.
Arguments:
Return Type: void
Privilege: Public

Submit - Used to submit a request to this connection. The request is evaluated to determine
its destination (within the data server), and its commands are passed to the appropriate
object.
Arguments: rq: DsClSubmittedRequestID
Return Type: GlStatus
Privilege: Public
PDL:CALL DsSrServer::GetSRVector to obtain a reference to the vector of submitted
requests
CALL DsSrSubmittedRequestVector::Find to find the DsClSubmittedRequest for the
given ID

4-232 305-CD-024-002

IF the DsClSubmittedRequest is found
CALL DsClSubmittedRequest::GetInfo to get a reference to the core request information
Construct a new DsSrRequest with the core request information
CALL DsSrRequestVector::insert to add the new request to the vector of requests
ELSE
Set return code to indicate "Invalid request ID"
END IF

Terminate - Used to terminate this connection.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsSrConnection - Used to destory the connection.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrConnection class has associations with the following classes:
Class: DsSbSubscriptionInterface -
Class: DsSrClient informs
Class: DsSrServer registers
Class: DsSrRequest routes
Class: DsSrSubmittedRequestVector searches

4.3.137DsSrCostB Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class represents the collection of resource usage information which is
provided to ascertain the cost of executing a given service.
Attributes:
numResources - The number of resources included in this cost.
Data Type: int
Privilege: Private
Default Value:

4-233 305-CD-024-002

Operations:
DsSrCost - Constructor for DsSrCost objects.
Arguments:
Return Type: Void
Privilege: Public

FindResource - This returns a pointer to a resource which matches the
supplied resource identified as a string.
Arguments: * String
Return Type: * DsSrResource
Privilege: Public

FirstResource - This returns a pointer to the first resource in the cost.
Arguments:
Return Type: * DsSrResource
Privilege: Public

NextResource - This returns a pointer to the next resource in the cost.
Arguments:
Return Type: * DsSrResource
Privilege: Public

NumResources - This returns the number of resources in the cost.
Arguments:
Return Type: int
Privilege: Public

operator+ - This is the overloading of the "+" operator. This is provided so
Cost objects may be added together.
Arguments: * DsSrResource
Return Type: * DsSrResource
Privilege: Public

~DsSrCost - Destructor for DsSrCost objects.
Arguments:
Return Type: Void
Privilege: Public

Associations:
The DsSrCostB class has associations with the following classes:
Class: DsSrCostPolicyB
DsSrCostTableB (Aggregation)

4-234 305-CD-024-002

4.3.138DsSrCostPolicyB Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class provides the interface to the SDSRV costing mechanism. This
abstract class exists in order to support extensions to the types of costing
policies that might be used in the Data Server.
Attributes:
None
Operations:
DsSrCostPolicy - The DsSrCostPolicy constructor.
Arguments:
Return Type: void
Privilege: Public

GetCost - This virtual member function returns a Cost object based on the
provided service.
Arguments:
Return Type: const DsSrCost
Privilege: Public

~DsSrCostPolicy - CostPolicy destructor.
Arguments:
Return Type: void
Privilege: Public

Associations:
The DsSrCostPolicyB class has associations with the following classes:
Class: DsSrCostB
Class: DsSrCommandBase costedby

4.3.139DsSrCostTableB Class

Parent Class: DsSrCostPolicyB
Public: No
Distributed Object: No
Purpose and Description:
This class maintains the information about the costs of services in terms of
resource usage. This type of CostPolicy provides a mechanism to provide
static costs based on services.

4-235 305-CD-024-002

Attributes:
All Attributes inherited from parent class
Operations:
DsSrCostTable - Constructs a CostTable object.
Arguments:
Return Type: void
Privilege: Public

GetCost - This member function returns a Cost object based upon the
identified service (provided as a string parameter).
Arguments: const * String
Return Type: DsSrCost
Privilege: Public

~DsSrCostTable - Destructor for DsSrCostTable.
Arguments:
Return Type: void
Privilege: Public

Associations:
The DsSrCostTableB class has associations with the following classes:
None

4.3.140DsSrDiskUtilizationB Class

Parent Class: DsSrResourceB
Public: No
Distributed Object: No
Purpose and Description:
This class represents the amount of disk space is required for the requested
data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsSrDiskUtilizationB class has associations with the following classes:
None

4-236 305-CD-024-002

4.3.141DsSrFixedPersonnelCostB Class

Parent Class: DsSrResourceB
Public: No
Distributed Object: No
Purpose and Description:
This class represents the portion of fixed personnel costs that can be
assigned to a unit of work.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsSrFixedPersonnelCostB class has associations with the following
classes:
None

4.3.142DsSrIOUtililizationB Class

Parent Class: DsSrResourceB
Public: No
Distributed Object: No
Purpose and Description:
This class represents the amount of IO usage which is required to perform
the requested service.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsSrIOUtililizationB class has associations with the following classes:
None

4.3.143DsSrMediaUtilizationB Class

Parent Class: DsSrResourceB
Public: No
Distributed Object: No
Purpose and Description:
This class represents the amount of media utilization other than disk which

4-237 305-CD-024-002

is required for the requested service.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsSrMediaUtilizationB class has associations with the following
classes:
None

4.3.144DsSrQueuedConnection Class

Parent Class: DsSrConnection
Public: No
Distributed Object: No
Purpose and Description:
Manages all interaction between clients and the data server. Provides all necessary server-
side housekeeping activities (logging, accounting, authorizing) as well as managing a
priority queue of client requests. Requests are retrieved by priority, so that all HIGH-
priority requests are executed before any NORMAL-priority requests, and all NORMAL-
priority requests are executed before any LOW-priority requests. Within a priority, the
requests are executed in the order that they were received.

Attributes:

myStateB - This attribute allows the DsSrQueuedConnection to be "suspended"
while clean-up of the server-side of a "suspend session" occurs.
Data Type: DsESrState
Privilege: Private
Default Value: Active

Operations:

CancelRequest - Cancels a request that is currently queued.
Arguments: DsClSubmittedRequestID
Return Type: GlStatus
Privilege: Public

DsSrQueuedConnectionB - Constructs this connection for the given user
profile, and creates a request vector to queue future requests. If the

4-238 305-CD-024-002

connection ID is not 0, restores the previously suspended connection.
Arguments: prof: MSS_UserProfile, resume: GlUR& session
Return Type: Void
Privilege: Public

GetNextRequest - Returns the next request to be executed from the request vector. The
vector is searched for the first HIGH-priority request, and if none is found then the first
NORMAL-priority request is returned. If the vector contains only LOW-priority requests,
the first one is returned.
Arguments:
Return Type: DsSrRequest*
Privilege: Public

Submit - Overrides function inherited from DsSrConnection to add new request to the
vector of requests.
Arguments: DsClSubmittedRequestID
Return Type: GlStatus
Privilege: Public

SuspendB - Used to suspend this connection, saving the current state and
returning an ID that can be used to resume the connection.
Arguments: ref: GlUR&
Return Type: GlStatus
Privilege: Public

~DsSrQueuedConnection - Destroys this connection.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrQueuedConnection class has associations with the following classes:
None

4.3.145DsSrRequest Class

Parent Class: DsSrRequestBase
Public: No
Distributed Object: No
Persistent Class: True

4-239 305-CD-024-002

Purpose and Description:
This class presents the interface needed by other server objects to the core request
information. It also acts as a vector of DsSrCommand objects that compose this request,
and maintains a connection to the client-side request via a DsClSubmittedRequest.

Attributes:

All Attributes inherited from parent class

Operations:

Cancel - Used to cancel a request. If the request is in the request vector, it is removed from the
vector. A TBD policy will be used to terminate a currently executing request.
Arguments:
Return Type: RWBoolean
Privilege: Public

DisconnectB - This operation is used to support the suspension of a session.
It is part of the clean-up of the server-side of the distributed request objects.
Arguments:
Return Type: GlStatus&
Privilege: Public

DsSrRequest - This class presents the interface needed by other server objects to the core
request information. It also acts as a vector of DsSrCommand objects that compose this
request, and maintains a connection to the client-side request via a DsClSubmittedRequest.
Arguments: DsSrRequestInfo*
Return Type: Void
Privilege: Public

DsSrRequestB - This version of the constructor will ensure that requests
associated with the session ID will be reconstructed from the persistent
store.
Arguments: GlUR& sessionID
Return Type: Void
Privilege: Public

GetResults - Returns the current results for this request (from the
DsCLSubmittedRequest).
Arguments:
Return Type: GlParameterList &
Privilege: Public

4-240 305-CD-024-002

GetStatus - Used to retrieve the current status of this request (from the
DsClSubmittedRequest).
Arguments:
Return Type: GlStatus&
Privilege: Public

SetStatus - Used to set the status of the request. This status is also updated in the
DsClSubmittedRequest that corresponds to this request.
Arguments: GlStatus *
Return Type: void
Privilege: Public

~DsSrRequest - Used to destory a request.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrRequest class has associations with the following classes:
Class: DsSrConnection routes
DsSbAction (Aggregation)
DsSrRequestVector (Aggregation)

4.3.146DsSrRequestBase Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
An abstract base class that represents a prioritized set of commands to be executed on the
data server. Inherits an instantiation of an RWVector.

Attributes:

myInfo - A pointer to the core request information for this request. (In OO terms, the
implementation for this interface).
Data Type: DsSrRequestInfo*
Privilege: Protected

4-241 305-CD-024-002

Default Value:

mySubmittedRequest - The DsClSubmittedRequest that is associated with this request.
Value is NULL until one is created/found.
Data Type: DsClSubmittedRequest *
Privilege: Protected
Default Value: NULL

Operations:

DsSrRequestBase - Constructs a request with the given priority (LOW, NORMAL, HIGH).
Arguments: DsESrRequestPriority = NORMAL
Return Type: Void
Privilege: Public

EstimateB - This operation provides infomration about the anticipated
resources consumed by the request.
Arguments:
Return Type: Void
Privilege:

GetDomain - Returns the current UR vector of this request.
Arguments:
Return Type: GlURVector &
Privilege: Public

GetInfo - Returns a pointer to the underlying data (DsSrRequestInfo) for this request.
Arguments:
Return Type: DsSrRequestInfo*
Privilege: Protected

GetPriority - Returns the current priority of the request.
Arguments:
Return Type: DsESrRequestPriority
Privilege: Public

GetSRID - Used to obtain the ID of the submitted request associated with this request.
Arguments:
Return Type: DsClSubmittedRequestID
Privilege: Protected

GetStatus - Returns a reference to the current status of the request.
Arguments:

4-242 305-CD-024-002

Return Type: const GlStatus &
Privilege: Public

SetDomain - Used to set the UR vector for this request.
Arguments: GlURVector &
Return Type: void
Privilege: Public

SetPriority - Used to set the priority of the request.
Arguments: DsESrRequestPriority
Return Type: void
Privilege: Public

~DsSrRequest - Destroys a request.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrRequestBase class has associations with the following classes:
Class: DsClSubmittedRequest
Class: MsBaCostIF accountsfor

4.3.147DsSrRequestInfo Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class represents the lowest-level core of a request that is shared by client-side and
server-side classes. It is contained by the DsSrRequestBase class, which serves as its
primary interface. (In standard OO terms, this is the implementation to DsSrRequestBase's
interface). This relationship ensures that request objects can be transferred between the
client environment and the server environment.

Attributes:

myCommands - A list of commands which comprise this request.
Data Type: RWTPtrOrderedVector<DsSrCommandInfo>

4-243 305-CD-024-002

Privilege: Protected
Default Value:

myDomain - A list of URs (of ESDTs currently in the working collection) to which this
request should be applied. If this list is empty, the request will be applied to all ESDTs in
the collection.
Data Type: GlURVector
Privilege: Protected
Default Value:

myPriority - The priority of this request: LOW, NORMAL, HIGH
Data Type: DsESrRequestPriority
Privilege: Protected
Default Value:

Operations:

None

Associations:

The DsSrRequestInfo class has associations with the following classes:
DsSrRequestBase (Aggregation)

4.3.148DsSrRequestVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Manages multiple DsSrRequests for a DsSrQueuedConnection objects. Provides ordering
based on priority of DsSrRequests and order of receipt (FIFO).

Attributes:

None

4-244 305-CD-024-002

Operations:

DsSrRequestVector - Constructs an empty request vector.
Arguments:
Return Type: Void
Privilege: Public

DsSrRequestVectorB - This version of the constructor restores a previously
suspended session (identified by the GlUR sessionID parameter).
Arguments: GlUR& sessionID
Return Type: Void
Privilege: Public

SuspendB - This operation iterates over the requests in the queue, disconnecting each
in turn.
Arguments:
Return Type: GlStatus&
Privilege: Public

~DsSrRequestVector - Destroys this request vector.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrRequestVector class has associations with the following classes:
DsSrQueuedConnection (Aggregation)

4.3.149DsSrResourceB Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This base class provides the common information about and operations on
system resources.
Attributes:
name
Data Type: * String
Privilege: Private

4-245 305-CD-024-002

Default Value:

units
Data Type: * String
Privilege: Private
Default Value:

utilization
Data Type: int
Privilege: Private
Default Value:

Operations:
DsSrResource - The constructor for DsSrResource objects.
Arguments:
Return Type: Void
Privilege: Public

GetName - This service returns the name of the resource.
Arguments:
Return Type: const * String
Privilege: Public

GetUnits - This method returns the units used by this resource.
Arguments:
Return Type: const * String
Privilege: Public

GetUtilization - This method returns the actual amount of resource used.
Arguments:
Return Type: const * int
Privilege: Public

operator+ - This overloading of the "+" operator is provided to enable
specific types of resources to be added together.
Arguments: * DsSrResource
Return Type: * DsSrResource
Privilege: Public

~DsSrResource - The destructor for DsSrResource objects.
Arguments:
Return Type: Void
Privilege: Public

4-246 305-CD-024-002

Associations:
The DsSrResourceB class has associations with the following classes:
DsSrCostB (Aggregation)

4.3.150DsSrServer Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
A single DsSrServer object is instantiated in each data server. Its main job is to register and
keep track of connections. It also maintains a vector of current submitted requests.

Attributes:

myConnectionThreshold - The maximum number of connections that can be started by this
server.
Data Type: int
Privilege: Private
Default Value:

mySystemLog - Used to log general system activities.
Data Type: GlLog
Privilege: Private
Default Value:

Operations:

Connect - Used to register a connection for this server.
Arguments: DsSrConnection &
Return Type: GlStatus
Privilege: Public

DeleteConnection - Used to terminate and delete an existing connection.
Arguments: conn: DsSrConnection&
Return Type: GlStatus
Privilege: Public

4-247 305-CD-024-002

DsSrServer - Used to construct the DsSrServer object using the given configuration.
Arguments: cf: DsSrConfig
Return Type: Void
Privilege: Public

GetConnectionThreshold - Used to retrieve the current connection threshold.
Arguments:
Return Type: int
Privilege: Public

GetSRVector - Used to obtain a reference to the vector of all active submitted requests.
The vector can be modified or searched by the caller.
Arguments:
Return Type: DsSrSubmittedRequestVector &
Privilege: Public

ListConnections - Returns a list of all (currently active) connections known by the server.
Arguments:
Return Type: const DsSrConnectionVector
Privilege: Public

ReportStatus - Returns the current status of the server.
Arguments:
Return Type: GlStatus
Privilege: Public

ResumeB - This operation sets the newly created (from a previously
suspended) session to "active" state, so that it will begin to accept new
requests.
Arguments:
Return Type: GlStatus
Privilege: Public

SetConnectionThreshold - Used to set the maximum number of connections that can be
active for this server.
Arguments: int
Return Type: void
Privilege: Public

SuspendB - This operation manages the suspension of the server-side of a
user session.
Arguments:
Return Type: GlStatus
Privilege: Public

4-248 305-CD-024-002

~DsSrServer - Used to destroy the server object.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrServer class has associations with the following classes:
Class: DsSrConnection registers

4.3.151DsSrSession Class

Parent Class: DsSrQueuedConnection
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
To manage ESDT-oriented interaction between the external client and the data server. It
provides an interface for the other objects in the system to communicate with the client and
manages a DsSrWorkingCollection on behalf of the client. Adds request queueing and
DsSrWorkingCollection handling functionality to DsSrConnection (its super class).

Attributes:

All Attributes inherited from parent class

Operations:

DsSrSessionB - Constructs this connection for the given user profile, and
creates an empty working collection. If the connection ID is not 0, restores
the previously suspended connection.
Arguments: MSS_UserProfile, GlUR& session
Return Type: Void
Privilege: Public

Execute - Executes a request (from the request vector) by passing each command from the
request to the working collection. Results and status are accumulated from each command,
and returned to the client through the request. Each request may be executed in a separate
thread, as long as the domains of the executing requests do not intersect. When a request
is found with a domain that intersects with an executing request, it is held until the

4-249 305-CD-024-002

conflicting request finishes execution.
Arguments: DsSrRequest&
Return Type: GlStatus
Privilege: Public
PDL:CALL GetNextRequest to obtain the next highest-priority request from the request
vector
DO WHILE the request has at least one command in it
CALL DsSrRequest::removeFirst to get the first command from the request
CALL Authorize to ensure that the execution of the command is authorized
IF authorization succeeds
Create a results GlParameterList to store the results of the command's execution
CALL DsSrCommand::GetCategory to obtain the category of the request
DO CASE (command category)
CASE INVENTORY:
CASE ESDT:
CASE DISTRIBUTION:
CASE WC:
CALL DsSrWorkingCollection::ExecuteCommand to handle the command

CASE CONNECTION:
Parse the command to determine what function is requested
Execute the function
END DO CASE
CALL DsSrRequest::GetResults to obtain a reference to the results list for the request
CALL GlParameterList::insert to insert the command's results into the request results list
CALL DsSrRequest::SetStatus to indicate that the execution of the command is done
ELSE
RETURN an indication that "Command authorization failed"
END IF
END DO WHILE
CALL DsSrRequest::SetStatus to indicate that the execution of the request is done
Delete the request

ResumeB - This operation tells the DsSrSession to move from a state of
"suspended" (in which no new requests are accepted and queued requests
are not executed) to "active" (the normal processing state).
Arguments:
Return Type: Void
Privilege: Public

SetStateB - This operation allows the DsSrSession to alter its state (e.g.,
from "active" to "suspended").
Arguments: DsESrState
Return Type: GlStatus

4-250 305-CD-024-002

Privilege: Public

Submit - Overrides the function inherited from DsSrQueuedConnection to handle
submission of new requests to a session. As requests are added to the request vector, the
execution thread is notified of the presence of the new request.
Arguments: DsClSubmittedRequestID
Return Type: GlStatus
Privilege: Public

~DsSrSession - Used to destroy this session.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrSession class has associations with the following classes:
None

4.3.152DsSrSubmittedRequestVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class is instantiated by the DsSrServer object to maintain a vector of all
DsClSubmittedRequests objects that currently exist for this data server. This list can be
searched to restore a client's state information after a client shutdown and restart.

Attributes:

None

Operations:

DsSrSubmittedRequestVector - Constructs an empty vector.
Arguments:
Return Type: Void
Privilege: Public

4-251 305-CD-024-002

Find - Used to find a specific submitted request in the vector. If none is found, return value
will be NULL.
Arguments: DsClSubmittedRequestID
Return Type: DsClSubmittedRequest*
Privilege: Public

~DsSrSubmittedRequestVector - Destroys this vector.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrSubmittedRequestVector class has associations with the following classes:
Class: DsClSubmittedRequest insertsself
Class: DsSrConnection searches
DsSrServer (Aggregation)

4.3.153DsSrWorkingCollection Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
To provide an interface to the current set of ESDT objects. The working collection
provides the ability to iterate over this set to perform the requested service. This object
facilitates use of a results set as the input domain for further service requests.

Attributes:

myESDTs - The list of ESDTs which are currently part of this working collection.
Data Type: DsSrESDTWrapperVector
Privilege: Private
Default Value:

myStatus - The current status of this collection.
Data Type: GlStatus
Privilege: Private
Default Value:

4-252 305-CD-024-002

Operations:

DsSrWorkingCollection - Constructs an empty working collection.
Arguments:
Return Type: Void
Privilege: Public

DsSrWorkingCollectionB - This version of the constructor reconstructs the
working collection associated with the supplied sessionID from the
persistent store.
Arguments: GlUR& sessionID
Return Type: Void
Privilege: Public

ExecuteCommand - Executes the given command over the entire collection, returning
results (in the parameter list) and status.
Arguments: DsSrCommand, res: GlParameterList &, GlStatus &
Return Type: Void
Privilege: Public
PDL:CALL DsSrCommand::GetCategory to obtain the category of the command
DO CASE (command category)
CASE WC:
Parse the command to determine what function is requested
Execute the function

CASE ESDT:
DO WHILE (not every ESDT in the collection has executed the command)
Create a GlParameterList to hold the results of the execution for this ESDT
CALL DsGeESDTWrapper::ExecuteCommand to make the ESDT execute the command
CALL GlParamterList::insert to add the ESDT's results to the command results
END WHILE

CASE DISTRIBUTION:
Create a DsDdDistributionList object
Add the data file names for all ESDTs in the collection to the distribution list
CALL DsDdDistributionList::Distribute

CASE INVENTORY:
Create a DsMdCatalog object
CALL DsMdCatalog::Search to search the inventory for ESDTs matchine the criteria
DO WHILE (there are matches in the list returned from Search)
Create a DsGeESDTWrapper object for the corresponding match

4-253 305-CD-024-002

END DO WHILE
END DO CASE

ExecuteCommand - Executes the given command over the domain given by the
GlURVector, returning results (in the parameter list) and status. The domain must specify
URs of ESDTs that are currently contained in the collection.
Arguments: DsSrCommand, GlURVector, res: GlParameterList &, GlStatus &
Return Type: Void
Privilege: Public

GetStatus - Returns the current status of the collection.
Arguments:
Return Type: GlStatus
Privilege: Public

ListURsB - This operation returns a list of the URs currently in the collection.
Arguments:
Return Type: GlURVector
Privilege: Public

Reset - Used to discard all ESDTs currently held in the collection and return it to the
"empty" state.
Arguments:
Return Type: void
Privilege: Public

SuspendB - This operation waits until all current processing by any ESDTs
is completed, then removes the DsGeESDTWrappers from memory (this
leaves them in persistent store).
Arguments:
Return Type: Void
Privilege: Public

~DsSrWorkingCollection - Destroys this working collection.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSrWorkingCollection class has associations with the following classes:
DsSrSession (Aggregation)

4-254 305-CD-024-002

4.3.154DsSsSSAB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the SSA Instrument data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsSsSSAB class has associations with the following classes:
None

4.3.155DsSsSSMI Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
The class represents science data generated from the Sea Surface Microwave Imaging
instrument (SSMI), this data is primarily used as ancilliary data for the generation of certain
TSDIS products.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSsSSMI class has associations with the following classes:
None

4-255 305-CD-024-002

4.3.156DsSwSeaWindsB Class

Parent Class: DsGeECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents products generated from the SeaWinds Instrument
data.
Attributes:
All Attributes inherited from parent class
Operations:
All Operations inherited from parent class
Associations:
The DsSwSeaWindsB class has associations with the following classes:
None

4.3.157DsTmTMI Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
This class represents all data derived directly from the TRMM platform Microwave Imager
(TMI) instrument.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsTmTMI class has associations with the following classes:
None

4-256 305-CD-024-002

4.3.158DsViVIRS Class

Parent Class: DsNpNonECSDataProduct
Public: No
Distributed Object: No
Purpose and Description:
 Represents all science data products derived directly from the TRMM platform Visible and
Infrared Scanner (VIRS).

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsViVIRS class has associations with the following classes:
None

4.3.159EosHdf24BitImage Class

Parent Class: DsCs24BitImage

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-257 305-CD-024-002

Associations:

The EosHdf24BitImage class has associations with the following classes:
None

4.3.160EosHdf8BitImage Class

Parent Class: DsCs8BitImage

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdf8BitImage class has associations with the following classes:
None

4.3.161EosHdfGrid Class

Parent Class: DsCsGrid

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-258 305-CD-024-002

Associations:

The EosHdfGrid class has associations with the following classes:
None

4.3.162EosHdfLUT Class

Parent Class: DsCsLookupTable

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdfLUT class has associations with the following classes:
None

4.3.163EosHdfPoint Class

Parent Class: DsCsPoint

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-259 305-CD-024-002

Associations:

The EosHdfPoint class has associations with the following classes:
None

4.3.164EosHdfSwath Class

Parent Class: DsCsSwath

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdfSwath class has associations with the following classes:
None

4.3.165GlBinaryP Class

Parent Class: GlParameter
Public: No
Distributed Object: No
Purpose and Description:
This class represents parameters that contain a sequence of binary bytes. It records the
binary data and its length.

Attributes:

myBinaryBase - This is a pointer to the actual bytes which comprise this binary parameter.
Data Type: char*
Privilege: Private
Default Value:

4-260 305-CD-024-002

myLength - This is the length (in bytes) of the data value of this binary parameter.
Data Type: unsigned long
Privilege: Private
Default Value:

Operations:

GlBinaryP - Constructs an empty binary parameter.
Arguments:
Return Type: Void
Privilege: Public

GlBinaryP - Constructs a binary parameter using the given buffer, length, and name.
Arguments: buffer: char*, length: unsigned long, name: char* = NULL
Return Type: Void
Privilege: Public

Set - Used to set the value of this binary parameter to the given buffer and length.
Arguments: buffer: char*, length: unsigned long
Return Type: void
Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.
Arguments: RWCString&
Return Type: void
Privilege: Public

length - Used to retrieve the length (in bytes) of the binary data that is the value of this
parameter.
Arguments:
Return Type: unsigned long
Privilege: Public

value - Used to retrieve the buffer that holds the binary data for this paraemter.
Arguments:
Return Type: char*
Privilege: Public

~GlBinaryP - Used to destroy this binary parameter.
Arguments:
Return Type: Void
Privilege: Public

4-261 305-CD-024-002

Associations:

The GlBinaryP class has associations with the following classes:
None

4.3.166GlDateP Class

Parent Class: GlParameter
Public: No
Distributed Object: No
Purpose and Description:
This class of parameters holds a single RWDate object.

Attributes:

myDateBase - This is the current value of this date parameter.
Data Type: RWDate
Privilege: Private
Default Value:

Operations:

GlDateP - Constructs a data parameter with a default value and no name.
Arguments:
Return Type: Void
Privilege: Public

GlDateP - Constructs a date parameter with the given name and date.
Arguments: RWDate, name: char* = NULL
Return Type: Void
Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.
Arguments: RWCString&
Return Type: void
Privilege: Public

4-262 305-CD-024-002

operator= - Used to set the value of this date parameter.
Arguments: val: RWDate
Return Type: GlDateP&
Privilege: Public

value - Used to retrieve the current value of this date parameter.
Arguments:
Return Type: RWDate
Privilege: Public

~GlDateP - Used to destroy this date parameter.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The GlDateP class has associations with the following classes:
None

4.3.167GlDoubleP Class

Parent Class: GlParameter
Public: No
Distributed Object: No
Purpose and Description:
This class of parameters holds a single double value.

Attributes:

myDoubleBase - This is the value of this double parameter.
Data Type: double
Privilege: Private
Default Value:

4-263 305-CD-024-002

Operations:

GlDoubleP - Constructs a double parameter with a default value (0) and no name.
Arguments:
Return Type: Void
Privilege: Public

GlDoubleP - Creates a double parameter with the given value and name.
Arguments: double, name: char* = NULL
Return Type: Void
Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.
Arguments: RWCString&
Return Type: void
Privilege: Public

operator= - Used to set a new value for this double parameter.
Arguments: val: double
Return Type: GlDoubleP&
Privilege: Public

value - Used to retrieve the current value of this double parameter.
Arguments:
Return Type: double
Privilege: Public

~GlDoubleP - Used to destroy this double parameter.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The GlDoubleP class has associations with the following classes:
None

4.3.168GlLongP Class

Parent Class: GlParameter
Public: No

4-264 305-CD-024-002

Distributed Object: No
Purpose and Description:
This class of parameters holds a single long value.

Attributes:

myLongBase - Holds the value for this parameter.
Data Type: long
Privilege: Private
Default Value:

Operations:

GlLongP - Constructs an empty, unnamed long parameter.
Arguments:
Return Type: Void
Privilege: Public

GlLongP - Constructs a long parameter with the given value and name.
Arguments: long, name: char * = NULL
Return Type: Void
Privilege: Public

Textify - Returns a human-readable form of this parameter.
Arguments: RWCString &
Return Type: void
Privilege: Public

operator = - Used to assign a value to a long parameter.
Arguments: val: long
Return Type: GlLongP&
Privilege: Public

value - Returns the current value for this parameter.
Arguments:
Return Type: long
Privilege: Public

~GLongP - Used to destroy a long parameter.
Arguments:
Return Type: Void
Privilege: Public

4-265 305-CD-024-002

Associations:

The GlLongP class has associations with the following classes:
None

4.3.169GlParameter Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This is an abstract base class that represents a single parameter that can be passed to many
ECS objects. A parameter has a name and an optional description, as well as a value which
depends upon its type. Parameters are usually collected together (GlParameterList), and
used to dynamically specify values for service calls, result lists, etc. There are several types
derived from GlParameter, which implement the value() member function to return an
appropriately typed value.

Attributes:

myDescription - The description of this parameter (optional).
Data Type: RWCString
Privilege: Protected
Default Value:

myName - The name of this parameter.
Data Type: RWCString
Privilege: Protected
Default Value:

Operations:

Flatten - Saves an image of this parameter to a binary stream.
Arguments: RWvostream &
Return Type: GlStatus
Privilege: Public
This is an abstract operation

4-266 305-CD-024-002

GetDescription - Returns the current description of this parameter as a string.
Arguments:
Return Type: const RWCString &
Privilege: Public

GetName - Returns the name of this parameter as a string.
Arguments:
Return Type: const RWCString &
Privilege: Public

GlParameter - Constructs a parameter with the given name.
Arguments: name: char * = NULL
Return Type: Void
Privilege: Public

Restore - Constructs a parameter from an image stored in a binary stream.
Arguments: RWvistream &
Return Type: GlStatus
Privilege: Public
This is an abstract operation

SetDescription - Sets the description of this parameter.
Arguments: RWCString &
Return Type: void
Privilege: Public

SetName - Sets the name of this parameter.
Arguments: RWCString &
Return Type: void
Privilege: Public

Textify - Returns a human-readable form of the current value of this parameter.
Arguments: RWCString &
Return Type: void
Privilege: Public
This is an abstract operation

saveOn - Used to support the overloaded << operation for easy printing of objects in human
readable form.
Arguments: ostream &
Return Type: void
Privilege: Public

~GlParameter - Destroys the parameter.
Arguments:

4-267 305-CD-024-002

Return Type: Void
Privilege: Public

Associations:

The GlParameter class has associations with the following classes:
GlParameterList (Aggregation)

4.3.170GlParameterList Class

Parent Class: GlParameter
Public: No
Distributed Object: No
Purpose and Description:
This class represents a collection of parameters, and is itself derived from GlParameter.
Therefore, GlParameterLists can be embedded in themselves to any depth.

Attributes:

myParms - The actual list of parameters that comprise this GlParameterList.
Data Type: RWOrdered
Privilege: Private
Default Value:

Operations:

FindParameter - Used to search for a parameter in the list with the given name.
Arguments: name: const RWCString &
Return Type: GlParameter *
Privilege: Public

Flatten - Used to save a machine-independent binary image of a parameter list in the given
file.
Arguments: filename: RWCString &
Return Type: GlStatus
Privilege: Public

Flatten - Used to save a machine-independent binary image of a parameter list on the given
stream.

4-268 305-CD-024-002

Arguments: RWvostream &
Return Type: GlStatus
Privilege: Public

Flatten - Used to save a machine-independent binary image of the parameter list into the
given memory buffer.
Arguments: buffer: void *, length: unsigned int
Return Type: GlStatus
Privilege: Public

GlParameterList - Constructs an empty, unnamed parameter list.
Arguments:
Return Type: Void
Privilege: Public

GlParameterList - Constructs a parameter list with the given parameter and name.
Arguments: GlParameter *, name: char * = 0
Return Type: Void
Privilege: Public

GlParameterList - Constructs a parameter list from a binary stream image.
Arguments: RWvistream &
Return Type: Void
Privilege: Public

GlParameterList - Constructs an empty parameter list with the given name.
Arguments: name: char *
Return Type: Void
Privilege: Public

Restore - Used to build a parameter list from a machine-independent binary image from
the given file.
Arguments: filename: RWCString &
Return Type: GlStatus
Privilege: Public

Restore - Used to build a parameter list from a machine-independent binary image from
the given stream.
Arguments: RWvistream&
Return Type: GlStatus
Privilege: Public

Restore - Used to build a parameter list from a machine-independent binary image from
the given memory buffer.
Arguments: buffer: void*, length: unsigned int

4-269 305-CD-024-002

Return Type: Void
Privilege: Public

~GlParameterList - Used to destroy a paramter list.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The GlParameterList class has associations with the following classes:
None

4.3.171GlStringP Class

Parent Class: GlParameter
Public: No
Distributed Object: No
Purpose and Description:
This class of parameters holds a single RWCString object.

Attributes:

myStringBase - This is the value of this string parameter.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

GlStringP - Constructs an empty, unnamed string parameter.
Arguments:
Return Type: Void
Privilege: Public

GlStringP - Constructs a string parameter with the given value and name.
Arguments: RWCString, name: char* = NULL
Return Type: Void
Privilege: Public

4-270 305-CD-024-002

Textify - Used to produce a human-readable form of this parameter in the given string.
Arguments: RWCString&
Return Type: void
Privilege: Public

operator= - Used to assign a new value to this string parameter.
Arguments: val: RWCString
Return Type: GlStringP&
Privilege: Public

value - Used to retrieve a reference to the current value of this string parameter.
Arguments:
Return Type: const RWCString&
Privilege: Public

~GlStringP - Destroys this string parameter.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The GlStringP class has associations with the following classes:
None

4.3.172GlTimeP Class

Parent Class: GlParameter
Public: No
Distributed Object: No
Purpose and Description:
This class represents parameters with an RWTime value.

Attributes:

myTimeBase - This is the value of this time parameter.
Data Type: RWTIme
Privilege: Private
Default Value:

4-271 305-CD-024-002

Operations:

GlTimeP - Used to construct a time parameter with a default value and no name.
Arguments:
Return Type: Void
Privilege: Public

GlTimeP - Used to construct a time parameter with the given value and name.
Arguments: RWTime, name: char* = NULL
Return Type: Void
Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.
Arguments: RWCString&
Return Type: void
Privilege: Public

operator= - Used to set a new value for this time parameter.
Arguments: val: RWTime
Return Type: GlTimeP&
Privilege: Public

value - Used to retrieve the current value of this time parameter.
Arguments:
Return Type: const RWTime&
Privilege: Public

~GlTimeP - Used to destroy this time parameter.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The GlTimeP class has associations with the following classes:
None

4-272 305-CD-024-002

4.3.173MSSLog Class

Parent Class: DsAdLog

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MSSLog class has associations with the following classes:
None

4.3.174MsBaCostIF Class

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The MsBaCostIF class has associations with the following classes:
Class: DsSrRequestBase accountsfor

4-273 305-CD-024-002

4.3.175PlOnDemandPRNB Class

Parent Class: Not Applicable
Attributes:
None
Operations:
None
Associations:
The PlOnDemandPRNB class has associations with the following classes:
Class: DsAsAsterB submits

4.3.176RWTPtrOrderedVector Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This is a COTS class from the Rogue Wave library that can be used to implement ordered
lists of objects. It is a template that can be instantiated over any class that implements the
== operator.

Attributes:

None

Operations:

None

Associations:

The RWTPtrOrderedVector class has associations with the following classes:
None

4-274 305-CD-024-002

4.4 CSCI Dynamic Model
This section describes several scenarios for the Science Data Server CSCI. A scenario delineates
the steps that occur in a particular execution through the system. The scenarios address the
following topics:

• Acquiring an ESDT

• Asynchronous Status Updates

• Auto-cancel a Subscription

• Canceling a Subscription

• Catalog Deleting a Metadata Entry

• Catalog Insert Collection Metada

• Catalog Insertion of Metadata

• Catalog Search

• Catalog Updating Metadata

• Changing a Request's Priority

• Client Browsing

• Client Connecting to a Data Server

• Client Request Submission

• Client Searching

• Client-side Resuming a Session

• Deleting a Queued Request

• Ending Session No Active Requests

• Fulfilling a One-time Subscription

• Fulfilling Open Ended Subscription

• Inserting a New ESDT

• Inserting Composite ESDT

• Inserting Single ESDT

• Instantiating an ESDT

• Operator Viewing Queued Requests

• Registering a Subscribable Event

• Returning a List of Subscriptions

• Server handling a Browse Request

• Server handling of a Search Request

• Server Request Handling

• Server-side Resuming a Session

• Startup of a Science Data Server

4-275 305-CD-024-002

• Submitting a Subscription

• Subsetting a granule

• Suspending a Session

• Unregistering a Subscribable Event

• Update Server Configuration

• Updating a Subscription

• Validating Metadata

Figures 4.4-1 through 4.4-38 are event trace diagrams from OMT that define the class interactions
used to support these scenarios.

4.4.1. SDSRV_Acquiring_an_ESDT

Summary

This scenario begins at the point where the server session receives an Acquire command request
from the client (refer to scenario: SDRV_Server_Request_Handling). The session determines that
the already established working collection (containing one granule) is required to service the
command, the working collection in turn passes the command to the granule. The granule now
determines the type of service it is required to perform and, if available, calls that service -
“Externalize” is the scenario. Two main operations are then performed. First the granule meta-data
is extracted from the database and written out to file, and second the granule science data files are
copied from the archive. The location and names of these files is returned to the working collection.
Following completion of all ESDT “Externalize” services (in this scenario there is only one) the
working collection then requests that the files be prepared for distribution.

Assumptions

• A work area has already been assigned.

• A connection has already been established to the data server.

• A search has been performed and a collection already contains one granule.

• An Acquire command request has been generated and submitted by the client to the data
server.

• Only one granule is being requested.

• The Acquire command request has been handled be the Session and passed onto the
Working collection (see ET SDSRV_Server_Request_Handling).

• The data granule files are passed onto distribution for eventual staging/despatch to the user.

4-276 305-CD-024-002

D
sS

rR
eq

ue
st

D
sS

rS
es

si
on

G
lP

ar
am

et
er

Li
st

D
sS

rW
or

ki
ng

C
ol

le
ct

io
n

D
sS

dD
is

tF
ile

D
sS

dD
is

tL
is

t
D

sS
rC

om
m

an
d

D
sG

eE
S

D
T

W
ra

pp
er

D
sN

sV
iV

IR
S

1B
D

sM
dM

et
aD

at
a

D
sM

dC
at

al
og

ue
D

sS
tA

rc
hi

ve

C
on

tin
ue

d
fr

om
 S

ce
na

rio
: S

D
S

R
V

_S
er

ve
r_

R
eq

ue
st

_H
an

dl
in

g

D
sG

eE
S

D
T

D
es

cr
ip

to
r

C
on

tin
ue

d
on

 S
ce

na
rio

: S
D

S
R

V
_S

er
ve

r_
R

eq
ue

st
_H

an
dl

in
g

G
lP

ar
am

et
er

Li
st

E
xe

cu
te

C
om

m
an

d

E
xe

cu
te

C
om

m
an

d

G
et

C
at

eg
or

y

E
xe

cu
te

C
om

m
an

d

G
et

S
er

vi
ce

N
am

e

G
et

P
ar

am
et

er
s

E
xt

er
na

liz
e

D
sM

dM
et

ad
at

a G
et

G
ra

nu
le

M
et

ad
at

a

G
et

P
ar

am
et

er

G
et

A
ttr

ib
ut

e

S
av

eT
oE

xt
er

na
l

R
et

rie
ve

~
D

sM
dM

et
aD

at
a

D
sS

tA
rc

hi
ve

~
D

sS
tA

rc
hi

ve
In

se
rt

D
sS

dD
is

tF
ile

D
sS

dD
is

tL
is

t

In
se

rt

D
is

tr
ib

ut
e

A
sy

nc
hr

on
ou

s
R

et
ur

n
S

et
S

ta
tu

s

~
D

sM
dC

at
al

og
ue

F
ig

u
re

 4
.4

-1
.

S
D

S
R

V
_A

cq
u

ir
in

g
_a

n
_E

S
D

T
 D

yn
am

ic
 M

o
d

el

4-277 305-CD-024-002

4.4.2. SDSRV_Asynchronous_Status_Updates

Summary

This scenario shows a common mechanism used in client interaction with the data server: the
asynchronous reporting of status updates. The basic mechanism is a callback function that is
established by the client software that is called every time the status of a the request changes. Thus
the client knows immediately of progress statuses (10%, 20%, etc.), error statuses, and when the
request finishes (status = DONE). On the diagram, the split between the client and the dataserver
(i.e. the network) occurs between the two classes labeled DsClSubmittedRequest.
DsClSubmittedRequest is a distributed object whose client-side (the "proxy") forwards function
calls to the server-side (the "real" object). Once the client creates a request and establishes a
callback, the proxy calls a function on the "real" DsClSubmittedRequest that will not return until
a status change occurs in the server ("WaitStatus"). This function runs in its own thread of control
so that the request may be canceled at any time. If all goes well, eventually the client receives the
DONE status and can obtain the results from the DsClRequest. Notice that the client never deals
directly with the DsClSubmittedRequest, only with the DsClRequest which forwards calls to the
DsClSubmittedRequest.

Assumptions

• all steps execute successfully

• filling the request with command(s) is left to other scenarios

• submitting the request to a collector is left to other scenarios

4-278 305-CD-024-002

C
lie

nt
A

pp
G

lC
al

lb
ac

k
D

sC
lR

eq
ue

st
D

sC
lS

ub
m

itt
ed

R
eq

ue
st

D
sC

lS
ub

m
itt

ed
R

eq
ue

st
D

sS
rR

eq
ue

st
D

sS
rS

es
si

on
G

lP
ar

am
et

er
Li

st
D

sS
rS

ub
m

itt
ed

R
eq

ue
st

V
ec

to
r

S
et

S
ta

tu
s

S
et

S
ta

tu
s

W
ai

tS
ta

tu
s

re
tu

rn
 W

ai
tS

ta
tu

s

In
vo

ke

In
vo

ke

G
et

S
ta

tu
s

G
et

S
ta

tu
s

G
et

R
es

ul
ts

G
et

R
es

ul
ts

G
et

R
es

ul
ts

~
D

sC
lR

eq
ue

st

~
D

sC
lS

ub
m

itt
ed

R
eq

ue
st

~
D

sC
lS

ub
m

itt
ed

R
eq

ue
st

D
sC

lR
eq

ue
st

G
lC

al
lb

ac
k

S
et

S
ta

tu
sC

al
lb

ac
k

D
sC

lS
ub

m
itt

ed
R

eq
ue

st

D
sC

lS
ub

m
itt

ed
R

eq
ue

st

S
et

C
al

lb
ac

k

G
lP

ar
am

et
er

Li
st

in
se

rt

F
ig

u
re

 4
.4

-2
.

S
D

S
R

V
_A

sy
n

ch
ro

n
o

u
s_

S
ta

tu
s_

U
p

d
at

es
 D

yn
am

ic
 M

o
d

el

4-279 305-CD-024-002

4.4.3. SDSRV_Auto-cancel_A_Subscription

Summary

This scenario shows the steps that are executed when a subscription expires. Note that the user is
notified in advance of a subscription expiration, and it only expires if it's not renewed. The diagram
begins with the daily callback timer firing, which calls CheckExpirations on the
DsSbSubscriptionInterface object. The DsSbSubscriptionInterface searches the list of
DsSbSubscription objects for any that have expired, and when it finds one it calls NotifyCancel on
that object. This generates a notification that is sent to the user (either direct or email) informing
him of the expiration of the subscription. Finally, the subscription is canceled and removed from
the server.

Assumptions

• there is one subscription that has expired today

• the subscription interface callback timer is about to fire

• all steps execute successfully

4-280 305-CD-024-002

DsSbCallbackTimer DsSbSubscriptionInterface DsSbSubscription GlNotification GlStatus DsSbRegisteredEvent

CheckExpirations

NotifyCancel

GlNotification

GlStatus

SetText

SetCode

SendToUser

CancelSubscription

CancelSubscription

~DsSbSubscription

Figure 4.4-3. SDSRV_Auto-Cancel_A_Subscription Dynamic Model

4-281 305-CD-024-002

4.4.4. SDSRV_Canceling_a_Subscription

Summary

The scenario shows how the client cancels a subscription. The scenario shows steps used to
withdraw a subscription from the client side and then reflected on the server side. This is achieved
through the distributed object, DsClSubscriptionCollector. The object,
DsClSubscriptionCollector, has already been constructed, and the client implements the
withdrawal operation of the client side subscription. All objects on the server side cancel the
particular subscription.

Assumptions

• user has logged on and has proper permissions.

• DsClSubscriptionCollector has already been created.

4-282 305-CD-024-002

C
lie

nt
A

pp
D

sC
lS

ub
sc

rip
tio

n
D

sC
lS

ub
sc

rip
tio

nC
ol

le
ct

or
D

sS
bS

ub
sc

rip
tio

nI
nt

er
fa

ce
D

sS
bR

eg
is

te
re

dE
ve

nt
D

sS
bS

ub
sc

rip
tio

n

W
ith

dr
aw

C
an

ce
lS

ub
sc

rip
tio

n

C
an

ce
lS

ub
sc

rip
tio

n

C
an

ce
lS

ub
sc

rip
tio

n

~
D

sS
bS

ub
sc

rip
tio

n

 ~
D

sC
lS

ub
sc

rip
tio

n

F
ig

u
re

 4
.4

-4
.

S
D

S
R

V
_C

an
ce

lin
g

_a
_S

u
b

sc
ri

p
ti

o
n

 D
yn

am
ic

 M
o

d
el

4-283 305-CD-024-002

4.4.5. SDSRV_Catalog_Deleting_a_Metadata_Entry

Summary

This scenario shows the sequence of events to delete a DsMdMetadata object from
the database. The granule identifier is passed to the DeleteGranuleMetadata oper-
ation of the DsMdCatalog class. The DsMdCatalog class is responsible for formu-
lating a database delete command. The execution of the command is carried out in
the DsDbInterface class. The logic for determining the tables involved in the dele-
tion and the order in which to delete is within Illustra rules or functions. Several
migration paths have been identified for the transition from the use of Sybase
stored procedures to an Illustra architecture. The pros and cons of each approach
are under consideration.

Assumptions

• The DsMdMetadata object should already exist in the database before the
deletion. The initiator passes in a unique granule identifier. It is also
assumed that an instance of the DsMdCatalog is available for processing
operations.

• The deletion is persistent. Any subsequent retrieval of the metadata object
(either by the same user or other user) will fail.

4.4.6. SDSRV_Catalog_Insert_Collection_Metadata

Summary

This scenario shows the insertion of collection level metadata as a result of adding
a new type to the SDSRV. The DsMdCatalog class supports this operation through
the InsertCollectionMetadata method. This method updates the DsDbGranuleToD-
bVector with the name of the database storing granules for the collection and uses

DsMdCatalog DsDbInterfaceDSSERVER

DeleteGranuleMetadata

Execute

Figure 4.4-5. SDSRV_Catalog_Deleting_a_Metadata_Entry Dynamic Model

4-284 305-CD-024-002

the DsDbInterface class to invoke Illustra rules, functions, or dynamic SQL to insert
the data.

Assumptions

• This scenario assumes the initiator must first create a DsMdCatalog which
establishes a connection to the database. The scenario also assumes the
existence of a PVL string buffer containing all the metadata for the collection
to insert and that all attributes are valid for a collection.

• The DsMdCatalog is not deleted and is available for other operations.

Figure 4.4-6. SDSRV_Catalog_Insert_Collection_Metadata Dynamic Model

4.4.7. SDSRV_Catalog_Insertion_of_Metadata

Summary

This scenario shows how metadata, stored in PVL format, is parsed and inserted
into the SDSRV databases. The PVL is captured using the DsMdMetadata Load-
FromExternal method. The instance of the DsMdMetadata class is passed to the
DsMdCatalog class where attributes are mapped to databases, tables, and column
names and inserted into the SDSRV database through the InsertGranuleMetadata
method. In addition, the scenario shows the use of the DsDbWrapper classes (Ds-
DbInterface, DsDbGranuleToTableVector, and DsDbAttributeToTableVector) for
establishing a connection to Illustra, executing Illustra commands, and mapping
granules to the appropriate database.

DsMdCatalog DsDbInterface DsDbAttributeToTableVector DsDbGranuleToDbVectorDsMdMetadataDSSERVER

Connect

Initialize

new

new

PutAttributes

new

GetAttribute

new

Initialize

PutProductDb

InsertCollectionMetadata

Execute

4-285 305-CD-024-002

Assumptions

This scenario assumes the initiator must first create a DsMdCatalog which estab-
lishes a connection to the database. The scenario also assumes the existence of a
PVL string buffer containing all the metadata for the granule and that all PVL at-
tributes are valid for the product type and contain valid values. The DsMdCatalog
is not deleted and is available for other operations.

4.4.8. SDSRV_Catalog_Search

Summary

This scenario shows how a database query, expressed in PVL and stored in a GlPa-
rameterList, is executed. It shows how the DsMdCatalog class uses the DsDb-
Wrapper classes (DsDbInterface, DsDbGranuleToTableVector, and
DsDbAttributeToTableVector) for establishing a connection to Illustra, executing Il-
lustra commands, determining which databases need to be queried. In addition,
these classes map attributes names defined by the DsDeDiscriptor to table and col-
umn names in the SDSRV databases. Finally it shows how the metadata attributes
are loaded into an instance of the DsMdMetadata class (one per result granule) and
packaged in a RWTPtrOrderedVector instance for return to the initiator.

Assumptions

• This scenario assumes the initiator must first create a DsMdCatalog which
establishes a connection to the database. The scenario also assumes a
GlParameterList is passed in and that the names of the attributes in the list
use valid ECS database names.

• The DsMdCatalog is not deleted and is available for other operations.

DsMdCatalog
DsDbInterface

DsDbAttributeToTableVector
DsDbGranuleToDbVector

DsMdMetadata
DSSERVER

connect

Initialize

new

Initialize

new

new

new

LoadFromExternal

new

InsertGranuleMetadata

Figure 4.4-7. SDSRV_Catalog_Insertion_of_Metadata Dynamic Model

4-286 305-CD-024-002

4.4.9. SDSRV_Catalog_Updating_Metadata

Summary

This scenario shows the sequence of events to update attributes of an existing
metadata object and make the change persistent in the SDSRV databases. The
metadata object is first updated by the initiator using DsMdMetadata operations.
The instance of the DsMdMetata class is then passed to the DsMdCatalog to make
the update permanent in the database. The scenario shows the events used by the
DsMdCatalog class to establish the database context through the DsDbInterface
class, to perform attributes to databases, tables, columns mapping through data-
base DsDbWrapper classes (DsDbAttributeToTableVector and DsDbGranuleToDb-
Vector) and to execute a SQL update command using the DsDbInterface class.

Assumptions

• The DsMdMetadata object being updated should already exist before the
update operation. This scenario also assumes that the DsMdCatalog object
does not exist before the update operation. Otherwise the construction part
of the DsMdCatalog object and the subsequent initialization of other
database wrapper objects will be skipped. In which case, a direct
UpdateGranuleMetadata is invoked using the DsMdCatalog class. It is
preferable for performance reason to avoid reestablishing database
connections for each single update.

• The update is persistent. Any subsequent retrieval of the metadata object
(either by the same user or other user) will see the effect of the update.

DsMdCatalog DsDbInterface DsDbAttributeToTableVector DsDbGranuleToDbVector DsMdMetadataDSSERVER RWTPtrOrderedVector<DsMdMetadata>GlParameterList DsDeDiscriptor

connect

Initialize

new

new

new

new

Initialize

Search

FindParameter

GetProductDb

FindParamter

Execute

new

PutAttribute

insert

GetTableColumnName

GetQueryableParameters

Figure 4.4-8. SDSRV_Catalog_Search Dynamic Model

4-287 305-CD-024-002

4.4.10.SDSRV_Changing_A_Request_Priority

Summary

This scenario shows how a client changes the priority of a request that has been submitted to the
server but is not yet executing. The two DsClSubmittedRequest classes in the diagram represent
the client-side and server-side of the distributed DsClSubmittedRequest object. Changing the
priority of a request simply requires that the priority field in the server-side request information is
updated, since the code that gets the next request to execute searches the vector for the highest-
priority request every time. Note that if the request was executing, the server-side
DsClSubmittedRequest would return a fail status.

Assumptions

• the client has all necessary permissions - the request is queued on the server

• all steps execute successfully

DsMdCatalog DsDbInterface DsDbAttributeToTableVector DsDbGranuleToDbVectorDsMdMetadataDSSERVER

Connect

Initialize

new

new

UpdateAttribute/UpdateAttributes

new

GetUpdatedAttributes

new

Initialize

GetProductDb

UpdateGranuleMetadata

Execute

GetTableColumnName

Figure 4.4-9. SDSRV_Catalog_Updating_Metadata Dynamic Model

4-288 305-CD-024-002

4.4.11.SDSRV_Client_Browsing

Summary

This scenario shows how the client classes are used to browse an item from a data server. The
client is assumed to have created an DsClESDTReferenceCollector connected to the desired
server, and is required to construct a DsClRequest containing the proper browse command. All of
the mechanics leading up to obtaining results are given in the
SDSRV_Client_Request_Submission scenario. The results are in a 3-level GlParameterList.

The top-level list is the results from executing the entire request. It is composed of a series of
GlParameterList(s), one for each command within the request. (Of course, in this case, there's only
one command in the request). Each of these command GlParameterList(s) is also composed of a
series of GlParameterList(s), one for each ESDT currently in the collection. (Again, this scenario
assumes only one ESDT in the collection). Given this structure, the first "at(0)" retrieves the
results for the command, and the second "at(0)" retrieves the results for the ESDT. This is a
parameter of type GlBinaryP which contains the actual browse data. Note that there could be
several parameters in this final list that give, for example, the UR of ESDT from which the browse
data came, or perhaps its size. If these values were provided, the parameters would be named and
typed appropriately, and the client could sift through the return parameters to find the ones that are
interesting.

Assumptions

• user has logged on and has proper permissions

• the steps in the SDSRV_Client_Request_Submission scenario occur but are not shown

• DsClESDTReferenceCollector is already created and populated with one ESDT

• the request will contain exactly one command

ClientApp DsClRequest DsClSubmittedRequest DsClSubmittedRequest

SetPriority

SetPriority

SetPriority

Figure 4.4-10. SDSRV_Changing_A_Request_Priority Dynamic
Model

4-289 305-CD-024-002

4.4.12.SDSRV_Client_Connecting_to_a_Data_Server

Summary

The ECSNETWORK line in the event trace shows where the various objects exist with respect to
the platforms in the system. The DsClESDTReferenceCollector object is a distributed object on
the client side. When the client software creates the DsClESDTReferenceConnection on the server
side, the DsSrSession object is created on the server side. This is done via OODCE calls to the
Directory Naming Service and the DsFactory object via RPCs. Once the DsSrSession object has
been created, it registers to the DsSrServer object, which exists the entire time that the Dataserver
is running. Registering with the DsSrServer object provides the DsSrSession object with
knowledge of the internal structure of the Dataserver (address of well-known server processes,
such as DsSrSubscriptionInterface or DsSrSubmittedRequestVector). Once the DsSrSession has
been registered, it creates an empty DsSrWorkingCollection and an empty DsSrRequestVector to
handle future requests. When the DsSrSession is all set, it returns the ID which has been assigned
to it by the DsSrServer to the client DsClESDTReferenceCollector. The
DsClESDTReferenceCollector stores the ConnectionID for internal processing and also returns it
to the client software so that the session can be resumed if it is interrupted or suspended.

Assumptions

• Client software knows the address of the dataserver to which to connect

• Client software has already collected all user information (i.e., has a MSSUserProfile
object available)

• Client software wishes to create the connection directly

ClientApp SDSERVERDsClRequestGlParameterList GlBinaryP

GetResults()

at(0)

at(0)

value()

scenario: SDSRV_Client_Request_Submission

4.4-11. SDSRV_Client_Browsing Dynamic Model

4-290 305-CD-024-002

4.4.13.SDSRV_Client_Request_Submission

Summary

This scenario shows how the client classes handle a request. The
SDSRV_Asynchronous_Status_Updates scenario shows the details of the request's connection to
the data server; this scenario shows the steps used to submit it and how results are retrieved. The
DsClESDTReferenceCollector is assumed to be already created and connected, so the client is only
required to construct a request and submit it. The client regains control when the status changes;
this scenario shows only the return when status is DONE. The client is then able to retrieve the
results and clean up the objects.

Assumptions

• user has logged on and has proper permissions - DsClESDTReferenceCollector is already
created

• the steps in the SDSRV_Asynchronous_Status_Updates scenario occur but are not shown

• the request contains exactly one command - all steps execute successfully

ClientApp DsClESDTReferenceCollector DsSrSession DsSrServer DsSrWorkingCollection DsSrRequestVector

ECSNETWORK

DsFactory

DsClESDTReferenceCollector

Connect

DsSrWorkingCollection

DsSrRequestVector

return ConnectionID

MakeSession

DsSrSession

GetConnectionID

Figure 4.4-12. SDSRV_Client_Connecting_to_a_Data_Server Dynamic Model

4-291 305-CD-024-002

4.4.14.SDSRV_Client_Resuming_a_Session

Summary

The client software constructs a DsClESDTReferenceCollector with the GlUR of the
previously suspended session. The DsClESDTReferenceCollector establishes a
connection to the server (see Scenario
SDSRV_Client_Connecting_to_a_Dataserver) and the server reconstructs the sus-
pended session (see SDSRV_Server_Resuming_a_Session). Once the connection
has been established, the DsClESDTReferenceCollector invokes the GetState
method of the DsSrSession. The DsClESDTReferenceCollector then performs the
UpdateState operation to reconstruct the matching state on the client-side. This in-
volves creating the DsClESDTReferenceVector, which in turn creates a
DsClTypeInfo, and the various DsClESDTReferences. The DsClESDTRefer-
enceVector queries the DsSrSession for a list of all the requests. It then performs
the BuildRequestVector operation, which constructs a DsClRequestVector and
populates it with newly created DsClRequests. The DsClESDTRequestVector then
signals the DsSrSession to "resume" (i.e., begin to accept requests from the client),
sets its own state to "active," and returns from the constructor.

Assumptions

• Client software has previously suspended a session (see Scenario
SDSRV_Suspending_a_Session)

• Client has the GlUR of the suspended session

ClientApp DsClESDTReferenceCollector SDSERVERDsClRequestDsClCommand

DsClCommand

DsClRequest

Submit

SubmitToServer

GetSRID

Submit

GetStatus

GetResults()

~DsClRequest

~DsClCommand

scenario: SDSRV_Asynchronous_Status_Updates

4.4-13. SDSRV_Client_Request_Submission Dynamic Model

4-292 305-CD-024-002

4.4.15.SDSRV_Client_Searching

Summary

The client software creates a DsClQuery object. This is a container object which holds values for
parts of a query (e.g. - projection and constraints). The "from clause" of the query is presumed to
be defined by the data server to which the query is sent. That is, the dataserver does not require
table names to be provided; the data server catalog contains all the information necessary to locate
the metadata based on the constraints. Once the DsClQuery has been created, two attributes must
be set, the callback and the constraints. The client software creates a GlCallback object and sets
the DsClQuery object's Callback attribute to it. This callback is the local portion of the end-to-end
asynchronous message passing mechanism. This callback is a standard callback which is invoked
by the DsClESDTReferenceCollector once it (the DsClESDTReferenceCollector) has received
and processed the results of a user request. The second attribute of DsClQuery, (Constraints), takes
an already-packaged GlParameterList of search attributes and the values to be used for them. Once
the DsClQuery object attributes have been set, the client software sends the DsClQuery object to
the DsClESDTReferenceCollector as a parameter in the Search method. The
DsClESDTReferenceCollector calls the DsClQuery's conversion method to formulate a data server
command, which it then uses to construct a DsClRequest object. Once the request is created, it's
Submit method is invoked. The processing of the DsClRequest is documented in Scenario
SDSRV_Client_Request_Submission. The handling of the remote request status is described in
Scenario SDSRV_Asynchronous_Status_Updates. Once the request has completed (status has
been set to "done" and the local DsClRequest callback has been invoked), the
DsClESDTReferenceCollector retrieves the results from the DsClRequest object. The results are
a set of commands. The DsClESDTReferenceCollector UpdateState method iterates over the set
of commands, executing each in turn. In this example, all of the commands will be "add"
commands (because the working collection was empty prior to the search). The result of the
command processing is to make the DsClESDTReferenceCollector on the client-side match the
DsSrWorkingCollection on the server side. Once all the commands have been processed, the
DsClQuery object's (local) callback is invoked to alert the client software that the request has
completed. The client software uses standard vector commands to iterate over the set of
DsClESDTReferences. At any point in time after the DsClQuery callback has been invoked with
a status of DONE, the DsClQuery object can be deleted.

ClientApp DsClESDTReferenceCollector ECSNETWORK

(See Scenarios: SDSRV_Client_Connecting_to_a_Dataserver &

DsClESDTReferenceVector DsClTypeInfo DsClESDTReference DsClRequestVector DsClRequest

SDSRV_Server_Resuming_a_Session)DsClESDTReferenceCollector(GlUR& sessionID)

GetState

UpdateState

GetRequests

BuildRequestVector

Resume

SetState

DsClESDTReferenceVector

DsClTypeInfo

DsClESDTReference

DsClRequestVector

DsClRequest

4.4-14. SDSRV_Client_Resuming_a_Session Dynamic Model

4-293 305-CD-024-002

Assumptions

• Client software has already established a connection to the Data Server (see Scenario
SDSRV_Client_Connecting_to_a_Data_Server)

• Client software has already collected query constraints from the user

• Client software has already converted query constraints to a GlParameterList

• All parameters in the GlParameterList are valid queryable parameters

4.4.16.SDSRV_Deleting_A_Queued_Request

Summary

This scenario shows the interaction between the client and server when a client cancels and deletes
a request that is queued on the server. Since the client creates and controls his DsClRequest
objects, he can simply call Cancel on the desired DsClRequest. This is passed through the
DsClESDTReferenceCollector distributed object to the server (DsSrSession), where the request is
cancelled. This returns a CANCEL status to the client through the
SDSRV_Asynchronous_Status_Updates scenario, which indicates to the client that the
DsClRequest may be deleted.

ClientApp DsClQueryDsClESDTReferenceCollector GlCallback DsClRequestDsClESDTReference

DsClQuery

GlCallback

SetCallback

SetConstraints

Search

DsClRequest

ConvertToCommand

DsClESDTWrapper
(potentially many times)

at(0)

GetResults

UpdateState

Submit
Scenario: SDSRV_Client_Request_Submission

Scenario: SDSRV_Asynchronous_Status_Updates

at(1)...

~Query

Invoke

~DsClRequest

4.4-15. SDSRV_Client_Searching Dynamic Model

4-294 305-CD-024-002

Assumptions

• the client has all necessary permissions - the request is queued on the server

• all steps execute successfully

4.4.17.SDSRV_Ending_Session_No_Active_Request

Summary

The ECSNETWORK line in the event trace shows where the various objects exist with respect to
the platforms in the system. The DsClESDTReferenceCollector object is a distributed object.
When the client software removes the DsClESDTReferenceCollector, that object must clean up on
both the client side and the server side. On the client side of the network, the
DsClESDTReferenceCollector removes the proxy objects DsClTypeInfo (potentially more than
one), and DsClESDTReference (potentially more than one). Because the
DsClESDTReferenceCollector is a distributed object, the corresponding server-side object
(DsSrSession) is also removed. The first thing that the DsSession does is unregister from the
DsSrServer object. This removes the DsSession from being considered "active" in the data server
system. After it is no longer registered, the DsSession object removes its DsSrWorkingCollection
(which in turn deletes all associated DsGeESDTWrappers) and its (empty) DsSrRequestVector.

Assumptions

• Client software has already executed a request, and the request has finished

• The WorkingCollection is holding some ESDT objects.

• Client software has previously cleaned up all no-longer-useful objects (i.e., if a previous
request was a query, the DsClQuery object and the DsClRequest has already been removed
from memory)

ClientApp DsClRequest DsClSubmittedRequest DsSrRequestDsSrSessionDsClESDTReferenceCollector DsSrRequestVector

Cancel

CancelRequest

CancelRequest

find

Cancel

remove

~DsSrRequest

SetStatus

scenario: Asynchronous_Status_Updates

~DsClRequest

~DsClSubmittedRequest

4.4-16. SDSRV_Deleting_A_Queued_Request Dynamic Model

4-295 305-CD-024-002

4.4.18.SDSRV_Fulfilling_a_One-time_Subscription

Summary

This scenario shows how the SDSRV fulfills a previously submitted subscription. In this scenario
the originating object has detected the advertised and subscribed event. It then triggers that event
for processing within the Subscription Server. The subscription example illustrated here is a one-
time subscription, meaning after one time the event detection is processed, the subscription will be
removed as an active subscription.

Assumptions

• The submitted subscription is for a simple notification to be sent.

ClientApp DsClESDTReferenceCollector DsSrSession DsSrServer DsSrWorkingCollection DsSrRequestVector

ECSNETWORK

DsGeESDTWrapperDsClESDTReferenceDsClTypeInfo

~DsClESDTReferenceCollector

DeleteConnection

~DsSrSession

~DsSrWorkingCollection

~DsSrRequestVector

~DsGeESDTWrapper
(potentially many times)

~DsClESDTReference
(potentially many times)

~DsClTypeInfo

Figure 4.4-17. SDSRV_Ending_Session_No_Active_Request Dynamic Model

DsGeESDT DsSbEventHandler DsSbRegisteredEvent DsSbSubscription DsSbActionDsSbEventDsGeEventTable GlNotification GlStatus GlParameterLIst

DsGeEventTable

Find

Trigger

EventOccurred

Execute

GetNotify

ExecuteSubscriptions

GetText

GlStatus

Textify

SetText

GlNotification

SendToUser

4.4-18. SDSRV_Fulfilling_Open_Ended_Subscription Dynamic Model

4-296 305-CD-024-002

4.4.19.SDSRV_Fulfilling_Open_Ended_Subscription

Summary

This scenario shows how the SDSRV fulfills a previously submitted subscription. In this scenario
the originating object has detected the advertised and subscribed event. It then triggers that event
for processing within the Subscription Server. The subscription example illustrated here is a open-
ended subscription, meaning it will continue to be active, waiting for future occurrences of the
event.

Assumptions

• The submitted subscription is for a simple notification to be sent.

4.4.20.SDSRV_Inserting_Composite_ESDT

Summary

This scenario begins at the point where the server session receives an Insert command request from
the client (refer to scenario: SDSRV_Server_Request_Handling). The client for this scenario is the
Ingest subsystem. The session determines that the already established working collection is
required to service the command. The working collection instantiates an 'empty' ESDT of the
correct type using dynamic binding (see scenario: SDSRV_Instantiating_an_ESDT). For each
composite granule represented as files within the command the 'Internalize' command is called (in
this scenario a browse ESDT granule). Each ESDT internalize returns a vector of populated
metadata objects and filenames. Three main operations are then performed by the 'anchor' ESDT
object (DsViVIRS1B). First the science data file(s) are sent to the archive for storage, second the
filenames and unique granule IDs are added to the granule metadata (and thus the product and
granule association is maintained) and third the metadata is written to the database.

DsGeESDT DsSbEventHandler DsSbRegisteredEvent DsSbSubscription DsSbActionDsSbEventDsGeEventTable GlNotification GlStatus GlParameterLIstDsSbSubscriptionInterface

DsGeEventTable

Find

Trigger

EventOccurred

Execute

GetNotify

ExecuteSubscriptions

GetText

GlStatus

Textify

SetText

GlNotifcation

SendToUser

CancelSubscription

CancelSubscription

~DsClSubscription

Figure 4.4-19. SDSRV_Fulfilling_a_One-time_Subscription Dynamic Model

4-297 305-CD-024-002

Points to note:

The unique granule ID is set during insertion of the granule metadata. The ID is passed back to the
working collection as the result of a successful Externalize operation. Ultimately this ID will be
returned to the client. The associations between granules inserted in this manner are maintained by
adding the unique granule ID's into the relevant metadata streams sent to the database.

Assumptions

• Ingest supplies a validated file containing P=V metadata values

• Ingest supplies a file containing scientific data

• Ingest supplies a file containing related browse data.

• A work area has already been assigned

• A connection has already been established to the dataserver

• A working collection already exists

• Data has been staged ready for insertion into the database

• The Insert request is as a result of call from the Ingest Subsystem

• Metadata stream has already been validated

• Ingest supplies a validated file containing P=V metadata values

• Ingest supplies a file containing scientific data

• A work area has already been assigned

• A connection has already been established to the dataserver

• A working collection already exists

• Data has been staged ready for insertion into the database

• The Insert request is as a result of call from the Ingest Subsystem

• Metadata stream has already been validated

4-298 305-CD-024-002

D
sS

rR
eq

ue
st

D
sS

rS
es

si
on

G
lP

ar
am

et
er

D
sS

rW
or

ki
ng

C
ol

le
ct

io
n

G
lP

ar
am

et
er

Li
st

D
sS

rC
om

m
an

d
D

sV
iV

IR
S

1B
D

sM
dM

et
ad

at
a

D
sS

tA
rc

hi
ve

D
sM

dC
at

al
og

ue

C
on

tin
ue

d
fr

om
 s

ce
na

rio
: S

D
S

R
V

_S
er

ve
r_

R
eq

ue
st

_H
an

dl
in

g

C
on

tin
ue

d
on

 S
ce

na
rio

: S
D

S
R

V
_S

er
ve

r_
R

eq
ue

st
_H

an
dl

in
g

D
sG

eE
ve

nt
T

ab
le

D
sS

bE
ve

nt
D

sG
eB

ro
w

se
P

ro
du

ct
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r

E
xe

cu
te

C
om

m
an

d

G
et

C
at

eg
or

y

G
et

S
er

vi
ce

N
am

e

G
et

P
ar

am
et

er
s

F
in

dP
ar

am
et

er

V
al

ue

. .
 .

. .
 .

 S
ce

na
rio

: S
D

S
R

V
_I

ns
ta

nt
ia

tin
g_

an
_E

S
D

T

In
te

rn
al

iz
e

D
sM

dC
at

al
og

ue

D
sM

dM
et

ad
at

a

D
sS

tA
rc

hi
ve

S
to

re

P
ut

A
ttr

ib
ut

es

In
se

rt
G

ra
nu

le
M

et
ad

at
a

G
lP

ar
am

et
er

In
se

rt

~
D

sM
dM

et
ad

at
a

~
D

sM
dC

at
al

og
ue

~
D

sS
tA

rc
hi

ve

~
D

sV
iV

IR
S

1B

S
et

S
ta

tu
s

E
xe

cu
te

C
om

m
an

d
D

sG
eE

ve
nt

T
ab

le

F
in

d

T
rig

ge
r

F
in

d

T
rig

ge
r

~
D

sS
bE

ve
nt

~
D

sG
eE

ve
nt

T
ab

le

F
in

dP
ar

am
et

er

V
al

ue

S
ce

na
rio

: S
D

R
V

_

In
st

an
tia

tin
g_

an
_E

S
D

T

E
xe

cu
te

C
om

m
an

d

In
te

rn
al

iz
e

F
in

d

T
rig

ge
r

R
W

T
P

tr
O

rd
er

ed
V

ec
to

r

F
in

dP
ar

am
et

er

V
al

ue

In
se

rt

S
to

re

D
sM

dM
et

ad
at

a

P
ut

A
ttr

ib
ut

es

~
R

W
T

P
tr

O
rd

er
ed

V
ec

to
r

D
sG

eE
ve

nt
T

ab
le

F
ig

u
re

 4
.4

-2
0.

 S
D

S
R

V
_I

n
se

rt
in

g
_C

o
m

p
o

si
te

_E
S

D
T

 D
yn

am
ic

 M
o

d
el

4-299 305-CD-024-002

4.4.21.SDSRV_Inserting_New_ESDT

Summary

The purpose of this scenario is to show how a new Data Type is incorporated into the currently
executing Science Data Server. The Data Server Administrator initiates this scenario from the
DsGuAdminGUI. This scenario begins after the administrator has selected the option to Add New
DataType, has supplied the required parameters for this option, and has selected Execute. The
required parameters for adding a new Data Type are the new Data Type's name and version
number, a file which is the dynamic linked library (DLL) containing its implementation and an
ASCII file containing the ESDT Descriptor information.

Upon receiving this Administrators request, the SDSRV performs a 3-step process for adding a
new Data Type which is controlled by the DsGeESDTAdmin object. First, the new type is
registered as a known Data Type within this SDSRV. Verification that the type is new is performed
and a unique identifier is assigned to this type. This information is persistently stored which
establishes this Data Type's existence.

Second, the given DLL filename is associated with this newly established Data Type. This
association is persistently stored which enables the Data Type's implementation to be used for
performing services of this new type.

Finally, the new ESDT Descriptor information is added to the set of descriptors that this SDSRV
knows about. The ESDT Descriptor file contains well-defined groups of information such as the
Core Metadata Group. The file is parsed to extract and store the individual groups persistently as
separately accessible entities. Once the file has been processed, the ESDT Descriptor initialization
process is begun. This process advertises the services that this Data Type provides, registers events
that will be reported (for triggering subscriptions), and exports data dictionary information to the
Data Management Subsystem.

Assumptions

• The Data Type does not already exist.

• The DLL file exists on the same host as the SDSRV.

• The Descriptor file exists and has the appropriate format.

4-300 305-CD-024-002

D
sD

eE
S

D
T

A
dm

in

D
sG

eT
yp

eI
D

D
sD

eD
D

V
ec

to
r

D
sD

eV
al

id
V

ec
to

r

D
sD

eE
S

D
T

D
es

cr
ip

to
r

D
sD

eS
ta

tic
M

et
ad

at
aV

ec
to

r

D
sD

eE
ve

nt

D
sD

eE
ve

nt
V

ec
to

r

D
sD

eD
D

D
sD

eE
S

D
T

D
es

cr
ip

to
rS

et

D
sD

bA
cc

es
s

D
sG

eE
S

D
T

D
yn

am
ic

Li
br

ar
y

D
sD

eS
ci

en
ce

P
ar

am
et

er
V

ec
to

r

D
sD

eS
er

vi
ce

V
ec

to
r

D
sD

eS
er

vi
ce

D
sS

bE
ve

nt
D

sD
eM

et
ad

at
aD

ef
V

ec
to

r

D
sG

eE
S

D
T

E
ve

nt
T

ab
le

D
sG

eT
yp

eI
D

D
sD

bA
cc

es
s

F
ill

N
ex

tT
yp

eC
od

e

S
to

re

D
sG

eE
S

D
T

D
yn

am
ic

Li
br

ar
y

D
sD

bA
cc

es
s

~
D

sD
bA

cc
es

s

S
to

re

~
D

sD
bA

cc
es

s

D
sD

eE
S

D
T

D
es

cr
ip

to
rS

et

A
dd

D
sD

eE
S

D
T

D
es

cr
ip

to
r

D
sD

eS
ta

tic
M

et
ad

at
aV

ec
to

r

D
sD

bA
cc

es
s

S
to

re

D
sD

eM
et

ad
at

aD
ef

V
ec

to
r

S
to

re

D
sD

eV
al

id
V

ec
to

r

S
to

re

D
sD

eS
ci

en
ce

P
ar

am
et

er
V

ec
to

r

S
to

re

D
sD

eE
ve

nt
V

ec
to

r

D
sD

eE
ve

nt

S
to

re

D
sD

eD
D

V
ec

to
r

D
sD

eD
D

S
to

re

D
sD

eS
er

vi
ce

V
ec

to
r

D
sD

eS
er

vi
ce

S
to

re

In
iti

al
iz

e

E
xp

or
t

E
xp

or
t

A
dv

er
tis

e

R
eg

is
te

r

R
eg

is
te

r

D
sS

bE
ve

nt

R
eg

is
te

r

A
dv

er
tis

e

~
D

sS
bE

ve
nt

~
D

sD
eE

S
D

T
D

es
cr

ip
to

r

~
D

sD
eS

ta
tic

M
et

ad
at

aV
ec

to
r

~
D

sD
eM

et
ad

at
aD

ef
V

ec
to

r

~
D

sD
eV

al
id

V
ec

to
r

~
D

sD
eS

ci
en

ce
P

ar
am

et
er

V
ec

to
r

~
D

sD
eE

ve
nt

V
ec

to
r

~
D

sD
eE

ve
nt

~
D

sD
eD

D
V

ec
to

r

~
D

sD
eD

D

~
D

sD
eS

er
vi

ce
V

ec
to

r

~
D

sD
eS

er
vi

ce

D
sG

eE
S

D
T

E
ve

nt
T

ab
le

A
dd

F
ig

u
re

 4
.4

-2
1.

 S
D

S
R

V
_I

n
se

rt
in

g
_N

ew
_E

S
D

T
 D

yn
am

ic
 M

o
d

el

4-301 305-CD-024-002

4.4.22.SDSRV_Inserting_Single_ESDT

Summary

This scenario begins at the point where the server session receives an Insert command request from
the client (refer to scenario: SDSRV_Server_Request_Handling). The client for this scenario is the
Ingest subsystem. The session determines that the already established working collection is
required to service the command. The working collection instantiates an 'empty' ESDT of the
correct type using dynamic binding (see scenario: SDSRV_Instantiating_an_ESDT). Three main
operations are then performed. First the science data file(s) are sent to the archive for storage,
second the filenames and unique granule ID are added to the granule metadata and third the
metadata is written to the database.

Points to note:

The unique granule ID is set during insertion of the granule metadata. The ID is passed back to the
working collection as the result of a successful Externalize operation. Ultimately this ID will be
returned to the client.

Assumptions

• Ingest supplies a validated file containing P=V metadata values

• Ingest supplies a file containing scientific data

• A work area has already been assigned

• A connection has already been established to the dataserver

• A working collection already exists

• Data has been staged ready for insertion into the database

• The Insert request is as a result of call from the Ingest Subsystem

• Metadata stream has already been validated

4-302 305-CD-024-002

D
sS

rR
eq

ue
st

D
sS

rS
es

si
on

G
lP

ar
am

et
er

D
sS

rW
or

ki
ng

C
ol

le
ct

io
n

G
lP

ar
am

et
er

Li
st

D
sS

rC
om

m
an

d
D

sV
iV

IR
S

1B
D

sM
dM

et
ad

at
a

D
sS

tA
rc

hi
ve

D
sM

dC
at

al
og

ue

C
on

tin
ue

d
fr

om
 s

ce
na

rio
: S

D
S

R
V

_S
er

ve
r_

R
eq

ue
st

_H
an

dl
in

g

C
on

tin
ue

d
on

 S
ce

na
rio

: S
D

S
R

V
_S

er
ve

r_
R

eq
ue

st
_H

an
dl

in
g

D
sG

eE
ve

nt
T

ab
le

D
sS

bE
ve

nt

E
xe

cu
te

C
om

m
an

d

G
et

C
at

eg
or

y

G
et

S
er

vi
ce

N
am

e

G
et

P
ar

am
et

er
s

F
in

dP
ar

am
et

er

V
al

ue

. .
 .

. .
 .

 S
ce

na
rio

: S
D

S
R

V
_I

ns
ta

nt
ia

tin
g_

an
_E

S
D

T

In
te

rn
al

iz
e

D
sM

dC
at

al
og

ue

D
sM

dM
et

ad
at

a

D
sS

tA
rc

hi
ve

S
to

re

P
ut

A
ttr

ib
ut

es In
se

rt
G

ra
nu

le
M

et
ad

at
a

G
lP

ar
am

et
er

In
se

rt

~
D

sM
dM

et
ad

at
a ~

D
sM

dC
at

al
og

ue

~
D

sS
tA

rc
hi

ve

~
D

sV
iV

IR
S

1B

S
et

S
ta

tu
s

E
xe

cu
te

C
om

m
an

d
D

sG
eE

ve
nt

T
ab

le

F
in

d

T
rig

ge
r

F
in

d

T
rig

ge
r

~
D

sS
bE

ve
nt

~
D

sG
eE

ve
nt

T
ab

le

F
ig

u
re

 4
.4

-2
2.

 S
D

S
R

V
_I

n
se

rt
in

g
_S

in
g

le
_E

S
D

T
 D

yn
am

ic
 M

o
d

el

4-303 305-CD-024-002

4.4.23.SDSRV_Instantiating_an_ESDT

Summary

The scenario begins with the working collection determining what data type is to be instantiated.
The ESDTwrapper makes a call to the DsGeDynamicLibraryObject, including in that call the data
type required. Using appropriate lookup tables the relevant dynamic link library (DLL) for the data
type in question is loaded and the data type independent function newESDT called. This results in
the calling of the data type specific constructor, the end of result of which is the passing of an ESDT
object handle back to the ESDTWrapper. From this point on the ESDTWrapper can be treated as
a specific data type.

Assumptions

• The data type is already defined (see scenario: SDSRV_Creating_a_new_datatype).

• A connection has already been established to the dataserver.

• A working collection already exists.

4-304 305-CD-024-002

DsSrWorkingCollection DsGeESDTWrapper DsViVIRSDsGeESDTDynamicLibrary

DsGeESDTWrapper

DsGeESDTDynamicLibrary

newESDT

DsViVIRS

~DsViVIRS

ExecuteCommand <see other scenarios>

~DsGeESDTDynamicLibrary

Figure 4.4-23. SDSRV_Instantiating_an_ESDT Dynamic Model

4-305 305-CD-024-002

4.4.24.SDSRV_Op_View_Queued_Requests

Summary

This scenario shows how an SDSRV operator's GUI gets the necessary information about currently
queued requests from a Science Data Server.

Assumptions

• GUI knows which SDSRV the operator is interested in.

• GUI formats the text representation of the queued requests in a scrollable text widget.

4.4.25.SDSRV_Registering_a_Subscribable_Event

Summary

This purpose of this scenario is to show how a subscribable event gets established. This occurs
within the context of a variety of scenarios including adding a new Data Type and Startup of the
Science Data Server. Although this scenario focuses on events that are generated by Data Types,
this is not meant to imply that all subscribable events are Data Type related. A subscribable event
might be the occurrence of a disk being full. This scenario begins after an DsDeESDTDescriptor
has been created and it has determined that it must establish its subscribable events.

The DsDeESDTDescriptor establishes a DsGeESDTEventTable for holding all of the events for
this Data Type and persistently stores it. Then for an event that the Data Type has the ability to
notice, the DsDeESDTDescriptor creates a DsSbEvent with a name, category, and description.
Since the DsSbEvent is a distributed object, this causes a creation of an DsSbEvent within the
Subscription Server process space. Then the DsDeESDTDescriptor registers the event which
notifies the SubscriptionInterface that this is now a known event. The SubscriptionInterface
coordinates with the Data Management Subsystem to advertise the fact that this event is
subscribable. After the event has been registered, it gets stored persistently in the previously
created DsGeESDTEventTable. This process is repeated for each event that this Data Type has the
ability to notice.

DsGUAdminGUI DsAdRequestInterface DsSrServer DsSrSubmittedRequestVector DsClRequest DsClRequestVector

DsAdRequestInterface

ListAllQueuedRequests

GetSrVector

first

DsClRequest

DsClRequestVector

insert

first

Textify

4.4-24. SDSRV_Op_View_Queued_Requests Dynamic Model

4-306 305-CD-024-002

Assumptions

• The SDSRV has the UR of its Subscription Server Factory.

• The Subscription Server is active.

• There is just one event being registered.

• The DsDeEventVector and DsDeEvent are already created.

4.4.26.SDSRV_Returning_List_of_Subscriptions

Summary

This scenario shows how the DsClSubscriptionCollector is populated with the subscriptions for a
specified user. The client tells the DsClSubscriptionCollector (a distributed object) to BuildList,
which (server-side) asks the DsSbSubscriptionInterface to build a parameter list of references to
the subscriptions for a user. The client-side DsClSubscriptionCollector takes this list and builds a
DsClSubscription (only one in this case) from it and adds it to himself.

Assumptions

• There is one subscription for the user

• all steps execute successfully

DsDeESDTDescriptor DsSbEvent DsSbSubscriptionInterface DmAdAdvertisementDsGeESDTEventTableDsDeEventVector DsDeEvent DsDbAccess DsSbFactory

MakeEvent

DsSbSubscriptionInterface

RegisterEvent

DmAdAdvertisement

Insert

~DmAdAdvertisement

~DsSbSubscriptionInterface

~DsSbEvent

DsGeESDTEventTable

Add

~DsGeESDTEventTable

Register

Register

Register

Store

Store

DsSbEvent

4.4-25. SDSRV_Registering_a_Subscribable_Event Dynamic Model

4-307 305-CD-024-002

4.4.27.SDSRV_Server_Handling_A_Browse_Request

Summary

This scenario shows the execution of a browse request within the data server. A browse request is
really just a request with a single command ("browse") that is executed by an ESDT. The diagram
begins with the submission of the request to the DsSrSession, and assumes the steps of the top part
of the SDSRV_Server_Request_Handling scenario are executed. The DsSrWorkingCollection is
then handed the command to execute, and passes it to the DsGeESDTWrapper. The
DsGeESDTWrapper is a class that encapsulates the dynamic binding of ESDT services to the data
server process, and passes commands through to the actual ESDT code to execute. The diagram
shows the base class "DsGeESDT" executing the command, while in reality a leaf class would
perform the actual execution. This abstraction shows that neither the DsSrWorkingCollection nor
the DsGeESDTWrapper need to know the exact type of the ESDT, just that it inherits from
DsGeESDT. Once the execution of the command has finished, the results, in this case a byte
stream that contains the browse information, are added to the request results, and the remainder of
the SDSRV_Server_Request_Handling scenario is finished.

Assumptions

• the DsSrWorkingCollection contains a single ESDT, which is already instantiated

• the request contains exactly one command - the client has all necessary permissions

• all steps execute successfully

SDCLIENT DsSbSubscriptionInterface GlParameterListDsClSubscriptionCollector DsClSubscription GlStringP

BuildList

GetAllSubscriptions

GlParameterList

GlStringP

insert

DsClSubscription

insert

Figure 4.4-26. SDSRV_Returning_List_Of_Subscriptions Dynamic Model

4-308 305-CD-024-002

4.4.28.SDSRV_Server_Handling_A_Search_Request

Summary

The manner in which the client software submits a request is described in Scenario
SDSRV_Client_Request_Submission. The data server processing of the request is described in
Scenario SDSRV_Server_Request_Handling. Once the request has been identified as a Search
request, a GlParamterList is created to hold the set of commands which will be returned to the
client-side of the system to update the client state to match the resulting DsSrWorkingCollection.
A GlStatus is also created to store status information about the search. The DsSrCommand
specifying the search, the GlStatus for passing status information and a GlParameterList for the
results are provided to the DsSrWorkingCollection's ExecuteCommand method. This method in
turn invokes the DsMdCatalog object's Search method. The processing of a science data query is
described in Scenario SDSRV_Catalog_Search. The search returns a set of objects containing the
metadata for the ESDT's which match the query constraints. The DsSrWorkingCollection iterates
over the list of return objects, creating a DsGeESDTWrapper for each. The DsGeESDTWrapper
associates a given set of metadata with the services available on that metadata. Each time a
DsGeESDTWrapper object is created, the DsSrWorkingCollection puts an "add" directive in the
GlParameterList. The manner in which the DsSrWorkingCollection returns the results to the
DsSrRequest is described in Scenario SDSRV_Server_Request_Handling. The GlParameterList
is returned as described in Scenario SDSRV_Asynchronous_Status_Updates.

Assumptions

• All corresponding client-side proxies have been established

• OODCE (or MSS) handles all of the telecommunications (finding objects, etc.)

• The WorkingCollection is empty at the start of this scenario

• Non-conflicting requests are handled asynchronously (i.e., queuing a request is an
independent action from taking the next request from the queue

SDCLIENT DsSrSession DsSrWorkingCollectionGlParameterList DsGeESDTWrapperGlParameterList DsGeESDT

Submit

ExecuteCommand

ExecuteCommand

GlParameterList

insert

~GlParameterList

ExecuteCommand

Browse

scenario: SDSRV_Server_Request_Handling

scenario: SDSRV_Server_Request_Handling

Figure 4.4-27. SDSRV_Server_Handling_A_Browse_Request Dynamic Model

4-309 305-CD-024-002

4.4.29.SDSRV_Server_Request_Handling

Summary

This scenario shows the interaction of classes in the data server to handle a newly submitted
request. The DsClESDTReferenceCollector is a distributed object whose server-side is the
DsSrSession. When the client submits the request to the collector, its core information is stored in
the (distributed) DsClSubmittedRequest, and the unique ID of the DsClSubmittedRequest is sent
to DsSrSession. DsSrSession uses this ID to find the DsClSubmittedRequest on the server side,
and extracts the information necessary to build a DsSrRequest. In this scenario, since it's the only
request in the server, it's retrieved and executed immediately after it is queued by the DsSrSession.
In reality, the execution of requests runs in a separate thread, and would be waiting for a request to
arrive in the queue. As the request executes, each command is extracted from it, authorized against
the client information that was provided when the DsSrSession was created, and executed. The
scenario shows execution up to the point where the command is about to be handed to another class
to be handled. This is where other scenarios will fill in specific command execution steps. Once
the command has been executed, the server collects the results (see SDSRV_Client_Browsing) and
cleans up.

Assumptions

• the new request is the only one in the server - the request contains exactly one command

• the client has all necessary permissions

• all steps execute successfully

GlStatus
DsSrRequest

SDCLIENT DsSrSession GlParameterList DsSrWorkingCollection SDCATALOGDsGeESDTWrapper

GlParameterList

GlStatus

ExecuteCommand

Search
Scenario: SDSRV_Catalog_Search

DsGeESDTWrapper
Scenario: SDSRV_Instantiating_an_ESDT

SetResults
Scenario: SDSRV_Server_Request_Handling

Scenario: SDSRV_Catalog_Search

Submit
Scenario: SDSRV_Client_Request_Handling

DsSrRequest
Scenario: SDSRV_Server_Request_Handling

SetStatus
Scenario: SDSRV_Asynchronous_Status_Updates

GetResults
Scenario: SDSRV_Asynchronous_Status_Updates

Figure 4.4-28. SDSRV_Server_Handling_a_Search_Request Dynamic Model

4-310 305-CD-024-002

SDCLIENT DsClSubmittedRequest DsSrSession DsSrSubmittedRequestVector DsSrRequestDsSrServer DsSrCommandDsSrRequestVector GlParameterListGlParameterList

[Other scenarios will provide event tracing at this point]

Request Results CommandResults

Submit

GetSRVector

Find

GetInfo

DsSrRequest

DsSrCommand

insert

SetStatus

SetStatus

insert

Execute

removeFirst

GetCategory

GlParameterList

GetResults

insert

SetStatus

SetStatus

SetStatus

~DsSrRequest

~DsSrCommand

GetResults

Authorize

GetNextRequest

Figure 4.4-29. SDSRV_Server_Request_Handling Dynamic Model

4-311 305-CD-024-002

4.4.30.SDSRV_Server_Resuming_a_Session

Summary

The DsSrSession is constructed using the GlUR of the previously suspended ses-
sion (see Scenario SDSRV_Client_Resuming_a_Session). The DsSrSession con-
structs a DsSrRequestVector using the GlUR of the suspended session, and
constructs a DsSrWorkingCollection using the GlUR of the suspended session.

The DsSrRequestVector finds (in persistent store) and populates itself with all DsS-
rRequests associated with the session UR (issuing constructors to DsSrRequest).
Each DsSrRequest, in the process of being constructed, constructs its associated
DsSrSubmittedRequest with its DsSrRequestID (finding the correct DsSrSubmitte-
dRequest in the persistent store).

The DsSrWorkingCollection finds and populates itself with all DsGeESDTWrappers
associated with the session UR.

When both the DsSrRequestVector and the DsSrWorkingCollection are restored,
the DsSrSession sets its state to "active" so that it will begin to process queued re-
quests and accept new requests from the client.

Assumptions

• Client software has previously suspended a session (see Scenario
SDSRV_Suspending_a_Session)

• Client has the GlUR of the suspended session

• Client has inititated Session resumption (See
SDSRV_Client_Resuming_a_Session)

4.4.31.SDSRV_Startup_of_a_Science_Data_Server

Summary

This scenario shows the steps required to startup a data server. The MSS_Object represents the
management provided by the MSS subsystem over project entities such as processes. It will
instantiate a DsCnDSSStartup object on the target system, which will handle all of the details of
starting the data server. All server processes are started, which causes the creation of the indicated
factory objects. Once the factories are created, new distributed objects may be created by clients
to interface with the server. After starting the processes, DsCnDSSStartup instantiates a

ECSNETWORK DsSrSession

(See Scenario: SDSRV_Client_Connecting_to_a_Dataserver)

DsSrRequestVector DsSrRequest DsSrSubmittedRequest DsSrWorkingCollection

(See Scenario: SDSRV_Client_Resuming_a_Session)

DsSrSession(MSS_UserProfile, GlUR& sessionID)

DsSrRequestVector(GlUR& sessionID)

DsSrRequest(GlUR& sessionID)

DsSrSubmittedRequest(DsSrRequest&)

DsSrWorkingCollection(GlUR& sessionID)

Resume

SetState

Figure 4.4-30. SDSRV_Server_Resuming_a_Session Dynamic Model

4-312 305-CD-024-002

DsDeESDTDescriptorSet and initializes it, which walks through a list of all data types known for
this server and creates a DsDeESDTDescriptor for each and initializes it. The result of initializing
all of the types is the existence of advertisements for all of the services for every type, as well as
advertisements for the events which are subscribable for each type. The creation of these
advertisements can be traced in two other scenarios: SDSRV_Inserting_A_New_Data_Type and
SDSRV_Registering_A_Subscribable_Event.

Assumptions

• all steps execute successfully

4.4.32.SDSRV_Submitting_a_Subscription

Summary

This scenario shows how a client can submit a subscription to the SDSRV. In this scenario the
client has retrieved a subscription advertisement from the Advertising server and has decided that
he/she would like to be notified upon the future occurrence of that advertised event.

Assumptions

• Client has retrieved an advertisement object from the Advertising Server that represents the
event that he/she is interested in.

MSS_Object DsFactoryDsCnDSSStartup DsSbFactory DsDeESDTDescriptorSet DsDeESDTDescriptor

DsCnDSSStartup

StartProcesses

DsFactory

DsSbFactory

InitializeESDTs

Initialize

Initialize

DsDeESDTDescriptorSet

DsDeESDTDescriptor

Figure 4.4-31. SDSRV_Startup_Of_A_Science_Data_Server Dynamic Model

4-313 305-CD-024-002

4.4.33.SDSRV_Subsetting_an_ESDT

Summary

This scenario begins at the point where the server session receives an Subset by
parameter command request from the client (refer to scenario:
SDSRV_Server_Request_Handling). The session determines that the already es-
tablished working collection is required to service the command. The working col-
lection already contains an instantiated ESDT to which the subset service is to be
applied. The subset command is passed to the appropriate ESDT for processing (in
this case a DsNiViVIRS1B granule). The ESDT determines the type of command re-
quested (subset) and associated command parameters. To prepare for a granule
subset the ESDT now performs four main operations. First the filenames with this
granule are extracted from the granule metadata, second these files are requested
for staging from the archive, third the appropriate CSDT class (DsCsSwath in this
case) associated with this particular granule is instantiated using the filenames as
part of the CSDT constructor command (remember the ESDT 'knows' what type of
science data it is - swath, point, grid etc). The CSDT constructor command opens
the file(s) and attaches to the appropriate swath (in this case) structures. Lastly the
ESDT determines the mapping between the full parameter names given within the
client subset command and the internal swath array attribute names by querying
the ESDT Descriptor associated with this particular ESDT type. The ESDT is now
ready to actually subset the granule. The ESDT now requests the CSDT (which 'un-
derstands' the internal details of the swath structure) to extract the appropriate pa-
rameter (e.g band1) from the swath structure. Using the HDF and EOS-HDF
libraries, the parameter is extracted from the swath structure and written to another
file on disk. The ESDT updates its metadata to account for the extracted parameter

ClientApp DsClSubscription DsClSubscriptionCollector DsSbSubscriptionInterface DsSbSubscription DsSbRegisteredEvent

DsClSubscription

DsClSubscriptionCollector

DsSbSubscriptionInterface

SetAction

Submit

Insert

AddSubscription

DsSbSubscription

GetEventId

AddSubscriptions

Figure 4.4-32. SDSRV_Submitting_a_Subscription Dynamic Model

4-314 305-CD-024-002

(the metadata updates occur to the temporary subsetted granule and not to the per-
sistent metadata within the inventory associated with the parent, complete, gran-
ule). The status of the completed service is returned to the client. From the clients
perspective a new subsetted granule now exists within the working collection, re-
placing the parent granule with which we started this scenario.

Assumptions

• A work area has already been assigned

• A connection has already been established to the dataserver

• A working collection already exists

• The working collection contains at least one granule as result of a valid
search

• The 'Subset by Parameter' service is advertised as available for the granule
in question

• Sufficient disk space has been made available for file staging from the
archive

• The granule science data is formatted according to the EOS-HDF swath
specifications

4-315 305-CD-024-002

D
sS

rR
eq

ue
st

D
sS

rS
es

si
on

G
lP

ar
am

et
er

Li
st

D
sS

rW
or

ki
ng

C
ol

le
ct

io
n

D
sS

rC
om

m
an

d
D

sG
eE

S
D

T
W

ra
pp

er
D

sN
sV

iV
IR

S
1B

D
sM

dM
et

aD
at

a
D

sM
dC

at
al

og
D

sS
tA

rc
hi

ve

C
on

tin
ue

d
fr

om
 S

ce
na

rio
: S

D
S

R
V

_S
er

ve
r_

R
eq

ue
st

_H
an

dl
in

g

D
sG

eE
S

D
T

D
es

cr
ip

to
r

C
on

tin
ue

d
on

 S
ce

na
rio

: S
D

S
R

V
_S

er
ve

r_
R

eq
ue

st
_H

an
dl

in
g

D
sC

sS
w

at
h

E
O

S
-H

D
F

 L
ib

ra
ry

G
lP

ar
am

et
er

Li
st

E
xe

cu
te

C
om

m
an

d

E
xe

cu
te

C
om

m
an

d

G
et

C
at

eg
or

y

E
xe

cu
te

C
om

m
an

d

G
et

S
er

vi
ce

N
am

e

G
et

P
ar

am
et

er
s

S
ub

se
t

G
et

G
ra

nu
le

M
et

ad
at

a

R
et

rie
ve

D
sS

tA
rc

hi
ve

~
D

sS
tA

rc
hi

ve

A
sy

nc
hr

on
ou

s
R

et
ur

n

S
et

S
ta

tu
s

D
sC

sS
w

at
h

G
et

P
ar

am
et

er

S
W

O
pe

n

S
W

A
tta

ch

S
W

in
qd

at
af

ld

S
W

re
ad

fie
ld

D
sC

sN
ew

C
S

D
T

P
ut

A
ttr

ib
ut

es

E
xt

ra
ct

P
ar

am
et

er

In
se

rt

F
ig

u
re

 4
.4

-3
3.

 S
D

S
R

V
_S

u
b

se
tt

in
g

_a
n

_E
S

D
T

 D
yn

am
ic

 M
o

d
el

4-316 305-CD-024-002

4.4.34.SDSRV_Suspending_a_Session

Summary

The client application software invokes the Suspend method of the DsClESDTRef-
erenceCollector. This causes the DsClESDTReferenceCollector to go into "sus-
pended" state, in which it will accept no more requests from the client software.
The DsClESDTReferenceCollector then creates a suspend request and submits it
(see Scenario SDSRV_Server_Request_Handling, part 1). When the suspend re-
quest is executed, the DsSrSession goes into "suspended" state, in which it will ac-
cept no more requests from the client-side software and will not execute any more
requests from its DsSrRequestVector. The DsSrSession assigns a GlUR to the ses-
sion and returns the GlUR as the results of the suspend request (see Scenario
SDSRV_Server_Request_Handling, part 2). At this point, both the client-side and
the server-side begin time-independent actions, described in separate paragraphs
below.

Client-Side:

When the suspend request has "completed" (i.e., has received its results, which is
the UR of the suspended session), the DsClESDTReferenceCollector gets the re-
sults (the suspended session UR) from the DsClRequest, which in turn gets them
from the DsClSubmittedRequest. The DsClSubmittedRequest is a distributed ob-
ject, so this effectively transfers the results across the network. The DsClESDTRef-
erence object then deletes the DsClRequest, which in turn deletes the
DsClSubmittedRequest. The DsClESDTReferenceCollector iterates over the set of
DsClRequests that the client has previously submitted, invoking the Disconnect
method of each, then returns the GlUR of the session to the client software. Mean-
while (and independently), each client DsClRequest goes into "disconnected"
state, in which it will process status requests from client software locally. Each cli-
ent DsClRequest moves any results available to it at that time over to the client-side
by invoking the GetResults method on its associated DsClSubmittedRequest.
Each DsClRequest deletes its associated DsClSubmittedRequest.

Server-Side:

Once the GlUR has been returned to the client-side, the DsSrSession invokes the
Suspend method on its associated DsSrRequestVector and DsSrWorkingCollec-
tion. Independently, the DsSrRequestVector and the DsSrWorkingCollection begin
their close-down routines. (Because the server-side objects of concern [requests
and elements in the working collection] are persistent, all that is necessary is to re-
move the volatile-memory component.)

The DsSrRequestVector goes into "suspended" state, in which it waits until any ac-
tive DsSrRequests have completed, then iterates over its DsSrRequests, invoking
the Disconnect method on each. Each DsSrRequest invokes the Disconnect meth-
od of its associated DsSrSubmittedRequest. Each DsSrSubmittedRequest waits
until the associated client-side DsClSubmittedRequest has finished copying the re-
sults over to the client-side before returning from the Disconnect method. When
the DsSrSubmittedRequest Disconnect method has concluded, the DsSrRequest

4-317 305-CD-024-002

removes the DsSrSubmittedRequest from memory (without affecting persistent
store), then returns from its Disconnect method. As each DsSrRequest Disconnect
method concludes, the DsSrRequestVector removes the DsSrRequest from mem-
ory. When all the DsSrRequests have been removed from memory, the DsSrRe-
questVector returns from its Suspend method. When the DsSrRequestVector has
concluded its Suspend operation, the DsSrSession removes it from memory.

The DsSrWorkingCollection goes into "suspended" state, in which it waits until any
DsGeESDTWrapper which is currently processing has completed. It then removes
all DsGeESDTWrappers from memory and returns from its Suspend method. When
the DsSrWorkingCollection has concluded its Suspend operation, the DsSrSession
removes it from memory.

When both the DsSrRequestVector and the DsSrWorkingCollection are gone, the
DsSrSession goes out of memory.

Assumptions

• Client has established a session (see Scenario
SDSRV_Client_Connecting_to_a_Dataserver)

• Client has performed a search and has at least one UR in the working
collection

(see Scenario SDSRV_Client_Searching)

• Client has submitted multiple requests (see Scenario
SDSRV_Client_Request_Submission)

4-318 305-CD-024-002

C
lie

nt
A

pp

(C
lie

nt
)

D
sC

lR
eq

ue
st

D
sC

lE
S

D
T

R
ef

er
en

ce
C

ol
le

ct
or

(S
us

pe
nd

)

D
sC

lR
eq

ue
st

D
sS

rS
es

si
on

(C
lie

nt
)

D
sC

lS
ub

m
itt

ed
R

eq
ue

st
D

sS
rR

eq
ue

st
V

ec
to

r
D

sS
rW

or
ki

ng
C

ol
le

ct
io

n
D

sS
rR

eq
ue

st
D

sS
rS

ub
m

itt
ed

R
eq

ue
st

(O
nc

e
to

 e
ac

h
cl

ie
nt

 r
eq

ue
st

)

S
ee

 S
ce

na
rio

: S
D

S
R

V
_S

er
ve

r_
R

eq
ue

st
_H

an
dl

in
g,

 P
ar

t 1

S
ee

 S
ce

na
rio

: S
D

S
R

V
_S

er
ve

r_
R

eq
ue

st
_H

an
dl

in
g,

 P
ar

t 2

(S
us

pe
nd

)

D
sC

lS
ub

m
itt

ed
R

eq
ue

st

E
C

S
N

E
T

W
O

R
K

S
us

pe
nd

D
sC

lR
eq

ue
st

S
ub

m
it

S
et

S
ta

te

S
et

S
ta

te

G
et

R
es

ul
ts

~
D

sC
lS

ub
m

itt
ed

R
eq

ue
st

D
is

co
nn

ec
t

S
et

S
ta

te

S
et

R
es

ul
ts

A
ss

ig
nU

R

G
et

R
es

ul
ts

~
D

sC
lR

eq
ue

st

S
us

pe
nd

D
is

co
nn

ec
t

S
us

pe
nd

D
is

co
nn

ec
t

G
et

R
es

ul
ts

~
D

sC
lS

ub
m

itt
ed

R
eq

ue
st

~
D

sS
rS

ub
m

itt
ed

R
eq

ue
st

~
D

sS
rR

eq
ue

st
V

ec
to

r

~
D

sS
rR

eq
ue

st

~
D

sS
rW

or
ki

ng
C

ol
le

ct
io

n

F
ig

u
re

 4
.4

-3
4.

 S
D

S
R

V
_S

u
sp

en
d

in
g

_a
_S

es
si

o
n

 D
yn

am
ic

 M
o

d
el

4-319 305-CD-024-002

4.4.35.SDSRV_Unregistering_a_Subscribable_Event

Summary

The purpose of this scenario is to show how a subscribable event which has been previously
established, gets unregistered. This would be done if a Data Type were being removed from the
Data Server. This scenario begins after an DsDeESDTDescriptor has been created and it has
determined that it must unregister its subscribable events.

The DsDeESDTDescriptor establishes the DsGeESDTEventTable for this Data Type which
contains the DsSbEvents that were previously stored when this Data Type was initialized. Because
this is a distributed object, an DsSbEvent is created in the Subscription Server execution space.
Then for each event that the Data Type has previously stored in the DsGeESDTEventTable, the
DsDeESDTDescriptor unregisters that event. This causes the SubscriptionInterface to cancel the
advertisement associated with this event. Finally, the DsSbEvent is removed from the persistent
DsGeESDTEventTable.

Assumptions

• The SDSRV has the UR of its Subscription Server Factory.

• The Subscription Server is active.

• All events of a Data Type are being unregistered.

DsDeESDTDescriptor
DsSbEvent DsSbSubscriptionInterface DmAdAdvertisementDsGeESDTEventTable DsDbAccess DsSbFactory

DsGeESDTEventTable

MakeEvent

at(0)

Unregister

UnregisterEvent

DmAdAdvertisement

Cancel

~DmAdAdvertisement

~DsSbSubscriptionInterface

DsSbSubscriptionInterface

~DsGeESDTEventTable

~DsSbEvent

DsDbAccess

Fill

Remove

Unstore

DsSbEvent

Figure 4.4-35. SDSRV_Unregistering_a_Subscribable_Event Dynamic Model

4-320 305-CD-024-002

4.4.36.SDSRV_Update_Server_Configuration

Summary

This scenario shows how an operator may change the configuration of a SDSRV. In this scenario
an operator has updated the threshold of queued requests for SDSRV connections in a GUI widget.
The operator then selects an appropriate action widget (e.g. button) that triggers a callback, in this
case the SetQueueSize method of DsAdRequestInterface object.

Assumptions

• The operator has already identified the SDSRV of interest

• Active connections that already have more queued request than the new threshold allows
will continue processing, but no accept new requests until they have completed enough to
get below the threshold.

4.4.37.SDSRV_Updating_a_Subscription

Summary

The scenario shows how the client updates a subscription. The scenario shows steps used to update
a subscription from the client side and ultimately, reflected on the server side. This is achieved
through the distributed object, DsClSubscriptionCollector. The object,
DsClSubscriptionCollector, has already been constructed. This scenario shows that the client
wants to update the expiration date of the subscription. The client sets the expiration date of the
subscription. The older subscription is withdrawn as outlined in the scenario
SDSRV_Updating_a_Subscription. The subscription is submitted as outlined in the scenario
SDSRV_Submitting_a_Subscription.

Assumptions

• user has logged on and has proper permissions.

• DsClSubscriptionCollector has already been created.

DsGUAdminGUI DsAdRequestInterface DsSrConfiguration DsSrServer DsSrConnection

DsAdRequestInterface

SetQueueSize

Set

ListConnections

Refresh

Figure 4.4-36. SDSRV_Update_Server_Configuration Dynamic Model

4-321 305-CD-024-002

4.4.38.SDSRV_Validating_Metadata

Summary

The purpose of this scenario is to show how validation of metadata is accomplished within the
Science Data Server. Metadata validation is accomplished by the Science Data Server for external
clients such as the Ingest Subsystem and the Processing Subsystem. In addition, metadata
validation occurs when a new granule is being inserted into the Science Data Server. This scenario
assumes that the validation is being done in the context of an insertion of a new granule. Validation
of metadata includes both a completeness check (that all required metadata fields are specified) and
a value check (that all values are valid).

This scenario begins when an instance of an DsGeESDT creates the DsDeESDTDescriptor
associated with its type and invokes the validation service. The client of this service, DsGeESDT
in this case, must provide the P=V metadata to be validated and a GlStatus reference that will be
updated during the validation process.

The first step in the validation process is to verify that the given metadata is valid with respect to
the core metadata valid values. This DsDeCoreValidVector which is the same for all
DsDeESDTDescriptors is created from its persistent location and it creates each of its
DsDeCoreValid objects. The DsDeESDTDescriptor then looks at each entry in the given metadata

ClientApp DsClSubscription DsClSubscriptionCollector

SetExpirationDate

Withdraw

Submit

Scenario: SDSRV_Canceling_A_Subscription

Scenario: SDSRV_Submitting_A_Subscription

Figure 4.4-37. SDSRV_Updating_a_Subscription Dynamic Model

4-322 305-CD-024-002

and tries to find an associated entry in the vector. If an entry is found, the value of the input
metadata entry is compared for validity against the vector entry. This is repeated for all metadata
entries for the input metadata.

The second step in the validation process is to verify that the given metadata is valid with respect
to metadata validation criteria that is specific to the Data Type (Product Specific Metadata). These
valids are a refinement of the DsDeCoreValids. This process is nearly identical to the
CoreValidVector validation except that the vector obtained from persistent storage in this case is
specific to the given type.

The last step in the validation process is to ensure that all mandatory metadata entries are present
in the given metadata. This is done with the MetadataDefVector that defines the metadata
attributes for this data type. The MetadataDefVector is obtained from persistent storage and is used
to look at each MetadataDef entry, see if it is mandatory, and ensure that the input metadata has
included this attribute. An indication of the success or failure of the validation is provided as a
result. If there are errors during the validation process, these will be recorded in the provided
GlStatus object.

Assumptions

• The client of this service provided a P=V metadata stream.

Figure 4.4-38. SDSRV_Validating_Metadata Dynamic Model

DsDeValidDsDeCoreValidDsDeCoreValidVectorDsDeESDTDescriptor DsDeValidVectorDbAccessDsGeESDT DsDeMetadataDefDsDeMetadataDefVector

DsDeESDTDescriptor

Validate

DsDeCoreValidVector

DbAccess

Fill

DsDeCoreValid

Validate

Find

Validate

IsValid

DsDeValidVector

Fill

DsDeValid

Validate

Find

IsValid

DsDeMetadataDefVector

Fill

DsDeMetadataDef

HasMandatory

IsMandatory

~DsDeCoreValidVector

~DsDeCoreValid

~DsDeValidVector

~DsDeValid

~DsDeMetadataDefVector

~DsDeMetadataDef

~DsDbAccess

~DsDeESDTDescriptor

4-323 305-CD-024-002

4.5 CSCI Structure
Table 4.5-1 shows the components of the SDSRV CI, (its CSC's). Each CSC is described and
designated as being custom developed code (DEV), off-the-shelf (OTS) or a combination of the
two (DEV/OTS). If the custom developed code will be used for OTS integration purposes, it is
identified as WRAPPER. Following the table are a series of sections that describe each CSC and
lists the classes that comprise that CSC.

Table 4.5-1. SDSRV’s Components (1 of 2)

CSC Abbr. Description Implementation

ACRIM Ac The classes supporting the ACRIM Instru-
ment Data Products.

DEV

Administration/Operation Ad The classes required to support Administrator
and Operations functionality.

DEV

CERES Ce The classes supporting the CERES Instrument
Data Products.

DEV

Client Cl The Public classes offered to SDSRV clients.
This includes the distributed classes.

DEV/OTS

Configuration/Startup Cn The classes supporting configuration and startup
of the SDSRV.

DEV

COLOR Co The classes supporting the COLOR Instru-
ment Data Products.

DEV

Metadata Md The classes and database implementations sup-
porting the storage and access of metadata.

DEV/WRAPPER

CSDT Cs The CSDT classes. WRAPPER

DB Wrappers Db The COTS database wrapper classes. WRAPPER

Descriptors De The classes used to define and describe ESDTs
and their supporting functionality.

DEV/OTS

ERS Er The classes supporting the ERS Instrument
Data Products.

DEV

ETM Et The classes supporting the ETM Instrument
Data Products.

DEV

General ESDT Ge Those classes which provide the framework
around which specific ESDTs are built.

DEV

Global Gl Those classes that are intended to be globally
available for re-use.

DEV/OTS

GUI Gu The classes and other software that is supplied to
support whatever GUI requirements that the SD-
SRV has.

DEV

JERS Je The classes supporting the JERS Instrument
Data Products.

DEV

LIS Li The classes supporting the LIS Instrument Data
Products.

DEV

MISR Mi The classes supporting the MISR Instrument
Data Products.

DEV

4-324 305-CD-024-002

4.5.1 CSC Definitions

4.5.1.1. ACRIM

Purpose and Description

The classes supporting the ACRIM Instrument Data Products.

Classes

DsAcACRIM

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.2. Administration/Operation

Purpose and Description

The classes required to support SDSRVAdmininstrator and Operations functionality.

CSC Abbr. Description Implementation

MODIS Mo The classes supporting the MODIS Instru-
ment Data Products.

DEV

MOPITT Mp The classes supporting the MOPITT Instru-
ment Data Products.

DEV

Non-Product Science
ESDTs

Np The classes used to provide the interface to and
implementation of those ESDTs that are not ECS
products, but whose content is still Earth Science
data.

DEV

Non-Science ESDTs Ns The classes used to support the ESDTs that do
not contain Earth Science Data.

DEV

PR Pr The classes supporting the PR Data Products. DEV

RADARSAT Ra The classes supporting the Radarsat Data
Products.

DEV

SAGE Sa The classes supporting the SAGE Instrument
Data Products.

DEV

Server Sr The classes used to provide the framework for
the infrastructure of the SDSRV.

DEV/OTS

Subscriptions Sb The classes used to support the subscription
functionality.

DEV/OTS

SSA Ss The classes supporting the SSA Instrument
Data Products.

DEV

SeaWinds Sw The classes supporting the SeaWinds Instru-
ment Data Products.

DEV

TMI Tm The classes supporting the TMI Data Products. DEV

VIRS Vi The classes supporting the VIRS Data Products. DEV

Table 4.5-1. SDSRV’s Components (2 of 2)

4-325 305-CD-024-002

Classes

DsAdDataTypeCollector
DsAdDescriptor
DsAdLog
DsAdRequestInterface

DsAdSubscriptionIF

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.3. CERES

Purpose and Description

The classes supporting the CERES Instrument Data Products.

Classes

DsCeCERES

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.4. Client

Purpose and Description

The Public classes offered to SDSRV clients. This includes distributed classes.

Classes

DsClAction
DsClCollector
DsClCollectorVector
DsClCommand
DsClConnection
DsClDescriptor
DsClDescriptorCollector
DsClESDTReference
DsClESDTReferenceCollector
DsClESDTReferenceVector
DsClNotificationReceiver
DsClQuery
DsClRequest
DsClRequestVector

4-326 305-CD-024-002

DsClSubmittedRequest
DsClSubscription
DsClSubscriptionCollector
DsClTypeInfo

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.5. Configuration/Startup

Purpose and Description

The classes supporting configuration and startup of the SDSRV.

Classes

DsCnConfiguration
DsCnDSSConfiguration
DsCnDSSStartup

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.6. COLOR

Purpose and Description

The classes supporting the COLOR Instrument Data Products.

Classes

DsCoCOLOR

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.7. CSDT

Purpose and Description

The CSDT classes.

4-327 305-CD-024-002

Classes

DsCsCSDT
DsCsGrid
DsCsImage
DsCsPoint
DsCsRaw
DsCsSwath

DsCsTable

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.8.DB Wrappers

Purpose and Description

The COTS database wrapper classes.

Classes

DsDbAccess
DsDbAttributeToTableVector
DsDbConnection
DsDbGranuleToDbVector
DsDbInterface

Candidate Products

Illustra

ECS White Paper References

Not Applicable

4.5.1.9. Descriptors

Purpose and Description

The classes used to define and describe ESDTs and their supporting functionality.

Classes

DsDeCoreValid
DsDeCoreValidVector
DsDeDD
DsDeDDVector
DsDeESDTDescriptor
DsDeESDTDescriptorSet
DsDeEvent
DsDeEventVector
DsDeMathOp

4-328 305-CD-024-002

DsDeMetadataDef
DsDeMetadataDefVector
DsDeRange
DsDeScienceParameter
DsDeScienceParameterVector
DsDeSeries
DsDeService
DsDeServiceVector
DsDeStaticMetadata
DsDeStaticMetadataVector
DsDeValid
DsDeValidVector

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.10.ERS

Purpose and Description

The classes supporting the ERS Instrument Data Products.

Classes

DsErERS

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.11.ETM

Purpose and Description

The classes supporting the ETM Instrument Data Products.

Classes

DsEtETM

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4-329 305-CD-024-002

4.5.1.12.General ESDT

Purpose and Description

Those classes which provide the framework around which specific ESDTs are built.

Classes

DsGeBrowseProduct
DsGeDynamicLibrary
DsGeECSDataProduct
DsGeESDT
DsGeESDTConfiguration
DsGeESDTDynamicLibrary
DsGeESDTEventTable
DsGeESDTServiceProvider
DsGeESDTWrapper
DsGeRange
DsGeScienceData
DsGeSummaryProduct
DsGeTypeID

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.13.Global

Purpose and Description

Those classes that are intended to be globally available for re-use.

Classes

GlBinaryP
GlDateP
GlDoubleP
GlLongP
GlParameter
GlParameterList
GlStringP
GlTimeP

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4-330 305-CD-024-002

4.5.1.14.GUI

Purpose and Description

The classes and other software that is supplied to support whatever GUI requirements that the
SDSRV has.

Classes

DsGuAdminGUI

DsGuConfig

DsGuDTMgt

DsGuRequestMgt

DsGuRscMgt

DsGuSubscriptions

DsGuSystem

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.15.JERS

Purpose and Description

The classes supporting the JERS Instrument Data Products.

Classes

DsJeJERS

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.16.LIS

Purpose and Description

The classes supporting the LIS Instrument Data Products.

Classes

DsLiLIS

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4-331 305-CD-024-002

4.5.1.17.Metadata

Purpose and Description

The classes and database implementations supporting the storage and access of metadata.

Classes

DsMdCatalog
DsMdMetadata

Candidate Products

Illustra

ECS White Paper References

Not Applicable

4.5.1.18.MISR

Purpose and Description

The classes supporting the MISR Instrument Data Products.

Classes

DsMiMISR

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.19.MODIS

Purpose and Description

The classes supporting the MODIS Instrument Data Products.

Classes

DsMoMODIS

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.20.MOPITT

Purpose and Description

The classes supporting the MOPITT Instrument Data Products.

Classes

DsMpMOPITT

4-332 305-CD-024-002

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.21.Non-Product Science ESDTs

Purpose and Description

The classes used to provide the interface to and implementation of those ESDTs that are not ECS
products, but whose content is still Earth Science data.

Classes

DsCoCombination
DsGvRadar
DsNmNMC
DsNpAncillary
DsNpCalibration
DsNpCorrelative
DsNpNonECSDataProduct
DsNpOA
DsNpPlatform
DsNpVersion0
DsSsSSMI

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.22.Non-Science ESDTs

Purpose and Description

The classes used to support the ESDTs that do not contain Earth Science Data.

Classes

DsNsHistoricalData
DsNsMPR
DsNsNonECSDataProduct
DsNsProductionHistory
DsNsQAStatistics
DsNsScienceSoftwareArchivePackage

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4-333 305-CD-024-002

4.5.1.23.PR

Purpose and Description

The classes supporting the PR Data Products.

Classes

DsPrRadar

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.24.RADARSAT

Purpose and Description

The classes supporting the RADARSAT Instrument Data Products.

Classes

DsRaRADARSAT

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.25.SAGE

Purpose and Description

The classes supporting the SAGE Instrument Data Products.

Classes

DsSaSAGE

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.26.Server

Purpose and Description

The classes used to provide the framework for the infrastructure of the SDSRV.

4-334 305-CD-024-002

Classes

DsFactory
DsSrClient
DsSrCommand
DsSrCommandBase
DsSrCommandInfo
DsSrCommandVector
DsSrConnection
DsSrQueuedConnection
DsSrRequest
DsSrRequestBase
DsSrRequestInfo
DsSrRequestVector
DsSrServer
DsSrSession
DsSrSubmittedRequestVector

DsSrArchiveUtilization

DsSrCost

DsSrCostingPolicy

DsSrCostingTable

DsSrCPUUtilization

DsSrDiskUtilization

DsSrFixedUtilization

DsSrIOUtilization

DsSrMediaUtilization
DsSrWorkingCollection

DsSrResourceUtilization

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.27.Subscriptions

Purpose and Description

The classes used to support the subscription functionality.

Classes

DsSbAction
DsSbActionBase
DsSbCallBackTimer

4-335 305-CD-024-002

DsSbEvent
DsSbEventHandler
DsSbEventTimer
DsSbRegisteredEvent
DsSbSubscription
DsSbSubscriptionInterface
DsSbTimer

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.28.SSA

Purpose and Description

The classes supporting the SSA Instrument Data Products.

Classes

DsSsSSA

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.29.SeaWinds

Purpose and Description

The classes supporting the SeaWinds Instrument Data Products.

Classes

DsSwSeaWinds

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.30.TMI

Purpose and Description

The classes supporting the TMI Data Products.

Classes

DsTmTMI

4-336 305-CD-024-002

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.31.VIRS

Purpose and Description

The classes supporting the VIRS Data Products.

Classes

DsViVIRS

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.2 CSCI Dynamic Architecture

The dynamic architecture of the SDSRV CI is defined by the individual processes (or executables)
that comprise its implementation. The SDSRV CI is implemented as three separate, cooperating
UNIX processes. Those processes are the ScienceDataServer, SDSRVAdmin and
SubscriptionServer. These three processes, along with those executables that include the SDSRV
Client CSC library, will supply the SDSRV CI functionality to ECS. The implementation of the
SDSRV CI also depends on the various implementations of two of the other DSS software CIs
(DDIST and STMGT CIs). The following paragraphs describe each of the three SDSRV CI
processes, along with some general information about other applications that will use the SDSRV's
Client CSC.

4.5.2.1 ScienceDataServer Process

The primary role of the ScienceDataServer Process is to provide an access mechanism for all the
advertised data type services and their implementations. For systems external to ECS and for ECS
subsystems outside the DSS, the ScienceDataServer Process is the repository of all ECS non-
document data objects and the interface to their services.

This process depends on the SubscriptionServer Process as well as the implementation process
from the STMGT and DDIST CI's of the DSS. It also depends on implementations of various CSS
and MSS services.

The ScienceDataServer Process comprises the following SDSRV CI CSCs:

• Configuration/Startup

• Metadata

• CSDT

• DB Wrappers

• Descriptors

4-337 305-CD-024-002

• General ESDT

• Global

• Non-ProductScienceESDTs

• Non-ScienceESDTs

• Server

• Subscription

It also comprises the interface class CSCs from STMGT, DDIST, ADSRV, MSS and CSS.
Additionally, the Release B implementation of the ScienceDataServer Process will
comprise implementations for the Release A data types as well as Release B data
types. These implementations are the ACRIM, CERES, COLOR, ERS, ETM, JERS,
LIS, MISR, MODIS, MOPITT, PR, RADARSAT, SAGE, SSA, SeaWinds, TMI and VIRS
SDSRV CSCs.

4.5.2.2 SDSRVAdmin Process

The role of the SDSRVAdmin Process is to support Science Data Server Administrators and
Operators in performing their role in ECS. SDSRV administrators and operators are primarily
concerned with the configuration of the SDSRV and monitoring and controlling the processing
within the ScienceDataServer Process.

This process depends on the ScienceDataServer Process as well as the implementations of various
CSS and MSS services.

The SDSRVAdmin Process comprises the following SDSRV CI CSCs:

• Administration/Operation

• Client

• Configuration/Startup

• DB Wrappers

• Global

• GUI

• Server

It also comprises the interface class CSCs from MSS and CSS.

4.5.2.3 SubscriptionServer Process

The role of the SubscriptionServer Process is to support the detection of previously defined events
and to perform specified actions on behalf of clients who have previously registered to those
events.

The SubscriptionServer Process depends on the implementations of various ADSRV, CSS and
MSS services. In order to actually perform its role in the ECS, the SubscriptionServer Process
requires that its client, namely the ScienceDataServer Process, be active and have previously
registered events with it.

4-338 305-CD-024-002

The SubscriptionServer Process comprises the following SDSRV CI CSCs:

• Client

• Configuration/Startup

• Global

• Subscription

It is also comprised of the interface class CSCs from ADSRV, CSS and MSS.

4.5.2.4 General Application of SDSRV Client CSC

The applications that utilize ScienceDataServer Process capabilities are generically referred to as
"SDSRV Client Applications", or "Clients" within the SDSRV context. There are a number of
ECS SDSRV Clients Applications as well as, potentially, non-ECS SDSRV Client Applications.
Examples of ECS Clients are the Ingest, Planning, Processing and CIDM subsystems. All of these
Clients must use the SDSRV Client CSC implementation. The implementation of this CSC is in
the form of a UNIX library. Public interfaces to the Client CSC will be provided in the form of
header files that may be included in the Client's source code. The Client process must be linked
with the SDSRV Client CSC implementation library. The public interface, as well as the
implementation, of the SDSRV Client CSC will be constructed in a way that will allow SDSRV
Client Applications to extend the Client CSC to more closely fit their own needs through the C++
implementation of inheritance. The Client CSC's role is to provide an extensible interface to, and
abstraction of the ScienceDataServer Process. This CSC will hide from the Client the details of
network location, OODCE and other technologies used in support of the SDSRV CI's
implementation. Restrictions on SDSRV Client Applications include those imposed by the
technology chosen for distributed communication in ECS, namely OODCE. Indeed, applications
that include the SDSRV Client CSC implementation are, by definition, OODCE client
applications. OODCE restrictions include the requirement that SDSRV Client Applications exist
within a DCE cell.

4.6 SDSRV CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

4.6.1 System Management Strategy

The SDSRV CSCI is designed to provide robust data storage, search, and distribution services to
external data providers and requestors. Specifically, the design goal of the SDSRV CSCI is to
always return status (successful or unsuccessful) for every received request. To accomplish that
goal, the CSCI follows ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery

4-339 305-CD-024-002

4.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown. The ScienceDataServer and
SubscriptionServer SDSRV processes act as an "object factory". As such each process instantiates
objects in process threads (pthreads) when a request is serviced. At DSS system startup, three
required processes are launched. The ScienceDataServer process is started as a standalone
processes. The primary role of the ScienceDataServer Process is to provide an access mechanism
for all the advertised data type services and their implementations. The SubscriptionServer process
will also routinely be started at system startup. The role of the SubscriptionServer Process is to
support the detection of previously defined events and to perform specified actions on behalf of
clients who have previously registered to those events. The third "process" that is required for
SDSRV functionality is the COTS DBMS product. The DBMS will be used for persistent storage
of science and operational system data.

The final process associated with the SDSRV is the SDSRVAdmin process. The role of the
SDSRVAdmin Process is to support Science Data Server Administrators and Operators in
performing their role in ECS. SDSRV administrators and operators are primarily concerned with
the configuration of the SDSRV and monitoring and controlling the processing within the
ScienceDataServer Process. The SDSRVAdmin process will be routinely started and used for
control and operation, but technically is not required for unattended operations of the SDSRV
CSCI.

4.6.1.2 Error Detection and Reporting

The Data Server CSCI is designed for primarily automated operations with little need for
operations involvement short of tuning and critical error conditions. CSS and MSS jointly provide
event logging services for logging and reporting errors and faults, for browsing error/status logs,
and for detecting and reporting critical errors. The Data Server CSCI will fully use those services
during operations. Errors/status may be reported in two error logs. MSS maintains the first log,
the MSS event log. It contains errors/status of interest to operations staff to evaluate system status
and to perform trend analysis. The Data Server subsystem maintains the second log. The Data
Server event log contains selected errors/status from the MSS event log (for context) plus highly-
detailed debug events. Software maintenance personnel use the Data Server event log to diagnose
system and software problems in response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in Table 4.6-
1.

4-340 305-CD-024-002

4.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client (client being defined as any service requestor, not
just the ECS Desktop Client), it is the Data Server Subsystem design goal to complete the request
processing and return status (successful or unsuccessful) to the requestor. The Data Server CSCI
is built on the model of checkpointing processing at the command level (within a request) along
with the user's working collection (context in a manner of speaking). During restart or recovery
operations the CSCI will restore a user's working collection and resume processing at the next

Table 4.6-1. SDSRV Error Categories

Error Category Actions to Be Taken

Initialization File/Environment
Corrupt

This would be seen during a system startup process and would result in
one or more executables not starting. Operations staff evaluate the con-
dition and correct.

DB Client Fatal Error This condition occurs whenever a Data Base client API library call
is made that returns what is considered to be a "fatal" (i.e., connec-
tion is terminated) error from the COTS Data Base. An example of
this would be an internal software error from the COTS Data Base.

DB Server Fatal Error This condition occurs when, for example, the Data Base, is full, but
includes other scenarios where the connection to the Data Base
server is closed, the current transaction is aborted, and processing
of the current Data Base command stops.

DB Connection Unavailable This condition occurs when an initial connection cannot be estab-
lished to the Data Base

DB Connection Dropped This could be a serious failure of the Data Base or a short lived
problem with the connection. Operations (DBA) would need to eval-
uate the problem, possibly restarting the Data Base and the Data
Server processes.

DB Client Warning Error This type of error is raised when non-connection terminating errors
occur in various Data Base API calls. A typical example occurs
when an incorrect argument is passed to an API routine, such as a
bad connection description or a NULL value where a pointer is re-
quired.

DB Server Warning Error This type of error occurs when processing of the current transac-
tion is aborted and processing of the current Data Base command
is halted, but the connection to the server is unaffected.

Unable to establish link to/in-
voke DLL

The use of DLLs is a fundamental aspect in the Data Server CSCI de-
sign. DLLs will be installed and maintained in the system for established
and newly added data type services. The inability to utilize or invoke any
of these libraries would be a fundamental error in the configuration and
operation of the system. Operations would issue a trouble ticket and
need to have the problem analyzed and resolved.

Internal queue overflow Errors reported along these lines represent a very poorly tuned and/or
faulty system. This type error would represent potential loss of service
requests. Operations staff would immediately throttle back system pro-
cessing thresholds and write a trouble ticket for future off line analysis
and tuning.

Unable to allocate disk space Unable to allocate working storage space using Data Server STMGT
CSCI services. This is another system of a poorly tuned system. Report
alert to operations staff who would immediately lower system thresholds
for requests. Operations staff would analyze system off-line and tune.

4-341 305-CD-024-002

unprocessed command. This model will also be used in support of the suspension and resumption
of a client's session. Therefore, upon establishment of a user session, the SDSRV CSCI will have
the user's working collection checkpointed to the COTS data base. Likewise, Requests (containing
Commands) are also checkpointed. After each command is completed, the working collection will
be checkpointed if it has changed in value or state. After a process or system failure, the
checkpointed working collection and Requests are automatically restored to the last checkpointed
state and processing continues.

Failure scenarios with recovery methods:

a. Failure of a Data Server Executable. This process is immediately restarted as a Unix
standalone process. The User Working Collections and Requests are restored from their
checkpointed states. Data Base integrity is verified and transactions rolled back via COTS
procedures.

b. Loss of the data base tables used for checkpointing. The data base management system
automatically logs transactions to allow restorations of table information. This feature,
coupled with DBA generated Data Base backups, provide for recovery. Since high
reliability is required in this area, the Data Base tables will be stored on RAID.

c. Failure of the processor on which a SDSRV process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one
or more of the above process restarts. If the processor is disabled, the disablement is
detected my MSS SNMP services and a backup processor is restarted. The backup
processor has full access to the data base tables used for checkpointing. Again, restart of
individual processes is handled as described above.

d. Failure of an external application. After a given number of retries to transmit data or via
DCE services that alert us of failure of the recipient process, operations staff are notified
by means of an alert message. The DAAC operations staff will coordinate to diagnose the
failure.

4.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 4.6-2 highlights the critical
SDSRV GUI screens.

Table 4.6-2. Science Data Server Subsystem Administration Management GUI
 (1 of 2)

GUI Description Data Operations

Science Data Server
Administration GUI

Primary Screen for Data
Server Requests.

References to:
 Request,
 Log&Reports,
 Configuration,
 Client Management and
 Resource Management
GUIs.

Logon
Realizes and/or makes the
GUIs visible.

4-342 305-CD-024-002

4.6.3 Standard SDSRV Reports

GUI Description Data Operations

Data Type Management
GUI

Allows operators to man-
age the data types of-
fered by the Science
Data Server

List of data types (ES-
DTs)
Descriptor contents
Related Libraries

View Data Types
View a specific Data Type
Update a descriptor
Add a Data Type
Remove a Data Type

Subscription Manage-
ment GUI

Allows operators to man-
age the current subscrip-
tions. Creation, update,
deletion of subscriptions
will be managed using
the standard Client Sub-
scription GUI

Event Information:
 Event ID
 Event Description
 Subscriptions on event
Subscription Information:
 Event ID
 Client Information
 Subscription Type
 Subscription Action

View Events
View Subscriptions
Filter Subscriptions
(event, client, action)
Access to Client Subscrip-
tion GUI

Database COTS GUI COTS provided GUI to
support database man-
agement

COTS COTS

Table 4.6.3-1. Standard Science Data Server Reports

Report Type Report Description Intended Audience

User Characterization Is a summary report identifying each user class and the
number of users in each class. The reporting period is
either the last 24 hours, the previous 7 days, previous
30 days, or number since a given date. The report in-
cludes: the number of new distinct users per time peri-
od, the number of repeat distinct users per time period,
summary of users by class, by product interest, by
mode of access, by user affiliation.

System Operator
Resource Planner
Performance Analyst
Sr. Science Coordinator
Operations Supervisor
DAAC Manager

System Access Profile A summary report providing the profile of user system
accesses and the time spent by each user on the sys-
tem. The reporting period is either the last 24 hours, the
previous 7 days, previous 30 days, or number since a
given date. Information provided includes: Number of
Search/Browse requests for the time period, the num-
ber of returned browse items for the period, the number
of separate system accesses by DAAC staff, the num-
ber of separate system accesses by non-DAAC staff in-
cluding guest users and captive accounts, total number
of separate accesses, total average session time over
all user sessions, total number of distinct users, total
number of guest users, total users accesses identified
by access method (e.g. ftp).

System Operator
Resource Planner
Performance Analyst
Sr. Science Coordinator
Operations Supervisor
DAAC Manager

Science Data Server
Error

The Science Data Server Error Report is a summary re-
port of the frequency of errors of different types encoun-
tered during server operations. The report consists of
an Error Class Summary which counts the reported er-
rors for each error class and type.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Table 4.6-2. Science Data Server Subsystem Administration Management GUI
 (2 of 2)

5-1 305-CD-024-002

5. DDSRV - Document Data Server CSCI

This section contains the design information presented at IDR-B. Detailed design is currently in
progress for the DDSRV CI and will be fully documented in the re-delivery of The Release B SDPS
Data Server (305-CD-024-002) prior to the Delta Detailed Design Review for the SDSRV CI and
the DDSRV CI.

5.1 CSCI Overview
The Document Data Server (DDSRV) reflects many of the design principles used by the SDSVR
in its management of Earth Science Data Types. The DDSRV will have implementation
differences due to requirements unique to document search and retrieval, and the constraints placed
by WWW technology.

The design of the CI has been driven by the commitment to implementing the "data are data"
vision, the desire to retain design symmetry with the Science Data Server (SDSVR), the
requirement to interface with the V0/V1 Gateway services, the desire to minimize V0 document
migration costs, and the mandate to maximize the use of COTS, especially, WWW technology, in
the management of Earth Science document data types.

With these design goals in mind, the DDSRV maximizes the reuse of common functionality with
the SDSRV. Common base classes are used for client, server, command and request objects. This
provides a common interface for constructing and executing service requests. Similarly, common
data modeling abstractions are employed. Documents are modeled within a specialization
hierarchy derived from the ESDT base class. ESDTs are implemented using a CSDT
specialization hierarchy representing different document storage formats.

Services are statically bound to document objects. A stateless communication paradigm is used
reducing the design complexity. Object association multiplicity has been minimized within the
design, reflecting the design drivers behind the DDSRV.

A key design driver of the Data Server is the maintenance of a common data model for ECS data
objects. Although distinct programmatic interfaces will be implemented for the DDSRV and
SDSVR, a single common data model will be internally managed in order to support the navigation
between science and document objects, while maintaining integrity between the data objects in an
automated fashion. This approach is anticipated to reduce evolution costs when a common set of
data type services will be used to access both science and document objects.

5.2 CSCI Context
The external interface to the DDSRV is through HTTP. Search and acquire requests are formulated
as WAIS queries and HTTP Get commands respectively and issued by the Client using HTTP.
A HTTP demon process monitors a TCP/IP port for incoming requests and hands them off to the
DDSRV using a CGI (Common Gateway Interface) call. These requests are packaged as internal
command and request structures by a client object which is then executed by the server object.

5-2 305-CD-024-002

Documents are ingested into the ECS via the Ingest Subsystem. Insert requests are constructed by
Ingest specifying the document type, file location and metadata which is then submitted to the
DDSRV. The metadata is inserted into the DBMS through the DBMS Wrapper layer, the
document indexed for free text queries using COTS indexing technology and the document data
inserted into the document repository.

Document search requests are received in WAIS query format which are interpreted into an
internal query format and submitted to the DBMS Wrapper. The search results are formatted in
HTML and returned across the HTTP connection to be rendered in the WWW Client.

Document acquire requests are received as HTTP Get commands which are interpreted as extract
commands to access documents in the document repository. A HTTP header is constructed
specifying the MIME type of the document and the document data returned across the HTTP
connection to be handled by the WWW Client.

Figure 5.2-1 provides a context diagram for this CSCI which shows the interfaces with other
CSCIs.

Table 5.2-1 provides a functional grouping of these interfaces along with the associated input and
output data.

WWW
Client

DMS

INGEST

DDIST

PLANG

Document Data
Server

Documents,
Keywords

GlStatus,
GlUR

Documents,
Keywords

Documents,
Search Results

HTTP
Request

GlStatus,
GlUR

HTTP
Request

Documents,
Search Results

WAIS Query in V0 TermsWAIS Query in V1 Terms

5.2-1. DDSRVContextevents Event Flow Diagram

5-3 305-CD-024-002

5.3 CSCI Object Model
This section provides an object model for the Document Data Server CSCI. The Document Data
Server Object model contains two main categories of objects. The first are the generic server
objects that support access to the Document Data Server. These objects include the Server, Client,
Request, and Command. The second category of objects are the Earth Science Data Type (ESDT)
objects and supporting objects. This includes the Guide, Algorithm Description, Production Plan
and Reference Paper. The supporting objects for the ESDTs include the Computer Science Data
Types (CSDT) that implement the ESDTs (ASCII, HTML, PDF, RTF, Postscript, Binary, Word,
WordPerfect, and Interleaf), and those required for exporting configuration information to
other CSCIs (Keyword, Keyword Locator). Other objects appear in the object model, but are not
described in the following section; they have been allocated to other CSCIs and are replicated here
for purpose of completeness.

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text "All Attributes inherited from the
parent class" (and analogously for operations). If a derived class has additional attributes of its
own, those new attributes are listed, but the attributes from the parent class are not repeated
(analogously for operations). "None" may indicate that the preliminary design has not resulted in
any specific attributes or operations (though over the course of the detailed design, such items may
be added).

The Object Classes in the Object Model diagrams and descriptions each have an identified set of
attributes and public operations. The listed public services do not include two operations: a
constructor (often referred to as "Create") and a destructor (often referred to as "Destroy"). These
operations are not listed, but implied for all Object Classes in these models. In order to implement
these Object Classes constructors and destructors must be included, hence they are implied at the
preliminary design level. The specific constructor and destructor operations will be identified
through the detailed design activities. During the detailed design phase any overloading of
constructors and destructors (as well as other services) will also be defined.

5.2-1. DDSRVContextevents Event Flow Summary Table

Sender Receiver Event Name Detailed Signature

TBS TBS TBS TBS

5-4 305-CD-024-002

DsEsESDT DsGeCSDT DsSdESDT

DsCdTypeID

DsCdCSDT

DsSdCSDT

DsCdKeywordLocator

DsCdKeyword

DsCdASCII

DsCdHTML
DsCdPDF

DsCdRTF DsCdPostScript

myType

GetType()

SetType()

$myDsCdKeywList

myDomvalList

myFormat

myAliasList

myLength

myValue

myName

Validate()

~DsCdKeyword()

DsCdKeyword()

myExpectedKeywordsList

myOutputMCFPath

myKeywFilePath

myKeywextmet

mykeywTagRegExp

myKeywordsLocation

$myDsCdKeywordLocationList

ExportKeywords()

ParseKeywords()

Externalize()

Internalize()

Insert()

myPostScriptVersion

$myDsCdPostScript_List

Insert()

Extract()

UpdateCSDT()

NewCSDT()

DeleteCSDT()

$DsCdASCII_List

myASCII_Type

DeleteCSDT()

NewCSDT()

UpdateCSDT()

Extract()

Insert()

$myDsDoCSDTList

myLineBreak

myKeywordLocator

myPermissions

myVersion

myDate

mySize

myFormat

myType

myMimeType

myMimeVersion

DeleteCSDT()

NewCSDT()

UpdateCSDT()

Extract()

Insert()

myRTFVersion

$myDsCdRTF_List

DeleteCSDT()

NewCSDT()

UpdateCSDT()

Extract()

Insert()

WordB

InterleafB WordPerfectB

DsCdBinary

ByteOrder

FileExtension

NewCSDT()

DeleteCSDT()

UpdateCSDT()

Extract()

Insert()

myPDFVersion

$myDsCdPDF_List

DeleteCSDT()

NewCSDT()

UpdateCSDT()

Extract()

Insert()

$myDsCdInterleaf_List

myInterleafVersion

DeleteCSDT()

UpdateCSDT()

Extract()

Insert()

$myWordPerfect_List

myWordPerfectVersion

DeleteCSDT()

NewCSDT()

UpdateCSDT()

Extract()

Insert()

myHTMLVersion

$myDsCdHTML_List

DeleteCSDT()

NewCSDT()

UpdateCSDT()

Extract()

Insert()

$myDsCdWord_List

myWordVersion

NewCSDT()

UpdateCSDT()

Extract()

Insert()

DeleteCSDT()

 - : enum{DsCdUnKnownTy, DsCdASCIITy, DsCdHTMlTy, DsCdPDFTy, DsCdRTFTy, DsCdPSTy}

 +

 +

 - : List<DsCdKeyword> = Null

 - : List<char*> = Null

 - : enum{DsCdKeywFormun, DsCdKeywFormver, DsCdFormVal} = null

 - : List<char*> = null

 - : int = 0

 - : char* = null

 - : char* = null

 + : void

 + : void

 + : void

 - : List<DsDoKeyword *>

 - : char *

 - : char *

 -

 - : char *

 - : enum{DsCdKeyLocUn, DsCdwLocEm, DsCdKeywext}

 - : List<DsCdKeywordLocator *>

 +

 +

 -

 -

 +

 - : char *

 - : List<DsCdPostScript>

 +

 +

 +

 +

 +

 - : List<DsCdASCII>

 -

 +

 +

 +

 +

 +

 - : List<DsCdCSDT *>

 -

 - : DsDokeywordLocator *

 -

 - : char *

 - : char *

 - : long

 - : char *

 - : DsCdTypeID

 - : char *

 - : char *

±

±

±

±

±

 - : char *

 - : List<DsCdRTF *>

 +

 +

 +

 +

 +

 -

 -

 +

 +

 +

 +

 +

 - : char *

 - : List<DsCdPDF *>

 +

 +

 +

 +

 +

 - : List<DsCdInterleaf *>

 - : char *

 +

 +

 +

 +

 - : List<DsCdWordPerfect *>

 - : char *

 +

 +

 +

 +

 +

 - : char *

 - : List<DsCdHTML>

 +

 +

 +

 +

 +

 - : List<DsCdWord *>

 - : char *

 +

 +

 +

 +

 +

5.3-1. DsDoCSDT Object Model Diagram

5-5 305-CD-024-002

DsSvServer

DsDoClient

DsDoRequest

DsDoServer

DsCtClient

DsDoCommand

DsCtCommand

DsCtRequest

DsSeIndexer

DsSeWWWServer

DsCtInsertCommand
DsCtSearchcommand DsCtAcquireCommand

myCommand

myHTTPRequest

myDsEsESDT

myOstr

$myDsCtAcquireCommand

DsCtAcquireCommand(DsCtCommand &)

~DsCtAcquireCommand()

AcquireCommand()

myCommand

myWAISQuery

myParameterList

$myDsCtSearchCommandList

myResultsList

myHTMLResultsList

myKeywordResultsList

myFreeTextResultsList

DsCSearchCommand(DsCtCommand &)

~DsCtSearchCommand()

ExecuteSearch()

ExecuteKeywordSearch()

ExecuteFreeTextSearch()

FormatResults(ostream *ostr)

MergeResults()

myCommand

myDsEsESDT

myDatafile

myMetaFile

$DsCtInsertCommandList

DsCtInsertCommand(DsCtCommand &)

InsertCommand()

myCommndList

myRequestStartTime

myRequestStatus

myRequestTimeOut

$myRequestList

CancelRequest()

~DsCtRequest()

DsCtRequest()

ServiceRequest()

RequestStaus()

myCommandName

myCommandType

myCommandRequest

$myCommandList

ProcessCommand(int)

DsCtCommand(char * FileName)

~DsCtCommand()

DsCtCommand(istream *istr)

myCommandType

myRequest

ExecuteCommand()

myServerVersion

myServerName

mySystemLog

ShutDown()

StartUp()

myServer

myClient

myRequestName

myRequestType

ServiceRequest()

~DsCIRequest()

DsCIRequest()

myClientVersion

myClientName

mySystemLog

$myServerList

mySecurityProtocolVersion

mySecurityProtocol

myProtocolVersion

myProtocolName

myPortNumber

myIPNumber

myHostAddress

myClientList

Listen()

ServiceRequest()

ShutDown()

StartUp()

~DsDoServer()

DsDoServer()

$myClientList

mySecurityProtocolVersion

mySecurityProtocol

myProtocolVersion

myProtocolName

myPortNumber

myIPnumber

myHostAddress

myServer

DisConnectServer()

SubmitRequest(DsCtRequest)

ConnectServer(DsSvServer)

~DsCtClient()

DsCtClient(MSS_UserProfile)

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]
[DISTR OBJ] [DISTR OBJ]

 - : DsCtCommand & = null

 - : char * = null

 - : DsEsESDT & = null

 - : ostream & = null

 - : List <DsCtAcquireCommand> = null

 +

 +

 + : GlStatus

 - : DsCtCommand & = null

 - : char * = null

 - : GlParameterList * = null

 - : List <DsCtSearchCommand> = null

 - : GlParameterList * = null

 - : List <char *> = null

 - : List <char *> = null

 - : List <char *> = null

 +

 +

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 - : DsCtCommand & = null

 - : DsEsESDT & = null

 - : char * = null

 - : char * = null

 - : List <DsCtInsertCommand> = null

 +

 + : GlStatus

 - : List <DsCtCommand> = null

 - : RWDateTime & = null

 - : GlStatus & = null

 - : RWDateTime & = null

 - : List <DsCtRequest> = null

 + : GlStatus

 +

 +

 + : GlStatus

 + : GlStatus

 - : char * = null

 - : enum = 0

 - : DsCtRequest & = null

 - : List <DsCtCommand> = null

 + : GlStatus

 +

 +

 +

 - : enum {} = 0

 - : DsDoRequest & = null

 +

 - : char * = null

 - : char * = null

 - : GlLog & = null

 + : GlStatus

 + : GlStatus

 - : DsDoServer & = null

 - : DsDoClient & = null

 - : char * = null

 - : int = null

 + : GlStatus

 +

 +

 - : char * = null

 - : char * = null

 - : GlLog & = null

 - : List <DsSvServer> = null

 - : char * = null

 - : char * = null

 - : char * = null

 - : char * = null

 - : int = 0

 - : int = 0

 - : char * = null

 - : List <DsCtClient> = null

 - : GlStatus

 + : GlStatus

 + : GlStatus

 + : GlStatus

 +

 +

 - : List <DsCtCleint> = null

 - : char * = null

 - : char * = null

 - : char * = null

 - : char * = null

 - : int = 0

 - : int = 0

 - : char * = null

 - : DsSvServer & = null

 - : GlStatus

 + : GlStatus

 - : GlStatus

 +

 +

manages

services

constructs

5.3-2. DsDoDocumentServer Object Model Diagram

5-6 305-CD-024-002

DsGeESDT

DsCsCSDT

DsEsGuide

DsEsESDT DsSdESDT

DsEsTypeID

DsGeTypeID

DsEsReferencePaper

myDsEsReferencePaperType: enum{}

myReferencePaperName:

myScienceData: DsGeScienceData *

myDsEsReferencePaperList:List<DsEsreferncepaper *>

Externalize()

Internalize()

Update()

DsEsGuideTypeID

DsEsAlgorithmDescription

myDsEsAlgdescTyID:DsEsAlgDescTyID*

myDsEsScienceSoftWPkg:DsEsScienceSoftWPack *

myDsEsAlgdescList:List<DsEsAlgDesclist *>

Externalize();

Internalize();

Update();

DsEsProductionPlan

DsSdESDT

DsEsProductionPlanTypeID

$myList: List<DsEsProductionPlanTypeId *>

myTypeID: enum{DsEsProductionPlanTyUn,
DsEsProductionPlanBinaryTy,DsEsProductionPlanReportTy};

GetTypeID();

SetTypeID();

DsEsAlgorithmDescriptionTypeID

DsEsReferencePaperTypeID

myDsEsTypeList

myTypeID

DsEsTypeID(char *)

DsEsTypeID()()

GetEsDsType()

SetDsEsType()

mtTypeID

DsEsAlgDescTyID(char *)

~DsEsAlgDescTyID()

GetTypeID()

SetTypeID()

myProductionPlanList

myForcast

myEndDate

myStartDate

myDAAC

myDsEsProdPlTyID

Update()

Internalize()

Externalize()

myTypeID

$myDsEsRefPapTy

DsEsRefPapTyID(char * name)

GetTypeID()

SetTypeID()

myDocuementUpdated

myDocuementCreated

myDocumentVersion

myTemplateVersion

myTemplateName

myFilePath

myURL

$myDsEsESDTList

myDsEsCSDT

myDsEsTypeID

Update()

Internalize()

Externalize()

Virtual Validate()

DsEsESDT(DsEsTypeID *, DsEsCSDT *)

~DsEsESDT()

myTypeID

myDsEsGuideTypeList

DsEsGuideTypeID(char *Doctype)

~DsEsGuidetypeID()

GetDsEsGuideType()

SetDsEsGuideList(List<DsEsGuide *>)

myDataCenter

myGuideName

myDsEsGuideTypeID

myDsEsGuideList

Internalize()

Update()

Externalize(format)

[PERSISTENT CLASS]

 -

 -

 -

 -

±

 ±

 ±

 -

 -

 -

 ±

 ±

 ±

 -

 -

 +

 +

 - : <DsEsTypeID *>

 - : enum{DsEsTyUn, DsEsGuTy. DsESRefTy, DsEsAlgDesTy, DsEsPrPITy};

 +

 +

 +

 - : enum{DsEsAlgDescUn, DsEsSysDescDocTy, DsEsFilesDescDocTy, DsEsOpManTy,DsEsTestPlTy, DsEsATBDTy,DsEsDevStdDocTy, DsEsPrgGuideTy,DsEsPerTestResTy,DsEsDetDesDocTy};

 +

 +

 +

 +

 - : List<DsEsProductionPlan *>

 - : int {30, 10, 1}

 - : Date *

 - : Date *

 - : char *

 - : DsEsPrPlTyID *

 ±

 ±

 ±

 - : enum{DsEsRefpapTyUn, DsEsElectJouTy, DsEsJouArt, DsEsStdADoc};

 - : List<DsEsRefPapTyID *>

 +

 +

 +

 - : Date *

 - : char *

 - : char *

 - : char *

 - : char *

 - : char *

 - : char *

 - : Date List<DsEsESDT *>

 - : DsEsCSDT *

 - : DsEsTypeID *

 +

 +

 +

 +

 +

 +

 -

 -

 +

 +

 +

 +

 - : char *

 - : char *

 - : DsEsGuideTypeID *

 - : List<DsEsGuide *>

 ±

 ±

 ±

is implemented with

5.3-3. DsDoESDT Object Model Diagram

5-7 305-CD-024-002

DsDoRequest

DsDoServer

DsSd Server DsSvServer

DsCtRequest

DsCtClient

DsSdCommand

DsSdRequest <RWVector> DsSdSession DsDoClient

DsSdClient

DsCtCommand

DsDoCommand

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

<RWVector>

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

manages

serves

services

manages

5.3-4. DsDoServer Object Model Diagram

5-8 305-CD-024-002

5.3.1 DsCdASCII Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ASCII type for the document data.

Attributes:

$DsCdASCII_List
Data Type: List<DsCdASCII>
Privilege: Private
Default Value:

myASCII_Type
Data Type:
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

5-9 305-CD-024-002

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdASCII class has associations with the following classes:
None

5.3.2 DsCdBinary Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Purpose and Description:
This object represents the binaries (i.e executables) for the CSDT's used for the document
data.

Attributes:

ByteOrder
Data Type:
Privilege: Private
Default Value:

FileExtension
Data Type:
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract

5-10 305-CD-024-002

Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdBinary class has associations with the following classes:
None

5.3.3 DsCdCSDT Class

Parent Class: DsGeCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the CSDT of the Document ESDT.

Attributes:

$myDsDoCSDTList
Data Type: List<DsCdCSDT *>
Privilege: Private
Default Value:

5-11 305-CD-024-002

myDate
Data Type: char *
Privilege: Private
Default Value:

myFormat
Data Type: char *
Privilege: Private
Default Value:

myKeywordLocator
Data Type: DsDokeywordLocator *
Privilege: Private
Default Value:

myLineBreak
Data Type:
Privilege: Private
Default Value:

myMimeType
Data Type: char *
Privilege: Private
Default Value:

myMimeVersion
Data Type: char *
Privilege: Private
Default Value:

myPermissions
Data Type:
Privilege: Private
Default Value:

mySize
Data Type: long
Privilege: Private
Default Value:

myType
Data Type: DsCdTypeID
Privilege: Private
Default Value:

5-12 305-CD-024-002

myVersion
Data Type: char *
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Protected

Extract
Arguments:
Return Type: Void
Privilege: Protected

Insert
Arguments:
Return Type: Void
Privilege: Protected

NewCSDT
Arguments:
Return Type: Void
Privilege: Protected

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Protected

Associations:

The DsCdCSDT class has associations with the following classes:
DsEsESDT (Aggregation)

5-13 305-CD-024-002

5.3.4 DsCdHTML Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the HTML CSDT type for the Document data.

Attributes:

$myDsCdHTML_List
Data Type: List<DsCdHTML>
Privilege: Private
Default Value:

myHTMLVersion
Data Type: char *
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

5-14 305-CD-024-002

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdHTML class has associations with the following classes:
None

5.3.5 DsCdKeyword Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This object represents the CSDT keyword for the document data type ESDT.

Attributes:

$myDsCdKeywList
Data Type: List<DsCdKeyword>
Privilege: Private
Default Value: Null

myAliasList
Data Type: List<char*>
Privilege: Private
Default Value: null

myDomvalList
Data Type: List<char*>
Privilege: Private
Default Value: Null

myFormat
Data Type: enum{DsCdKeywFormun, DsCdKeywFormver, DsCdFormVal}
Privilege: Private
Default Value: null

5-15 305-CD-024-002

myLength
Data Type: int
Privilege: Private
Default Value: 0

myName
Data Type: char*
Privilege: Private
Default Value: null

myValue
Data Type: char*
Privilege: Private
Default Value: null

Operations:

DsCdKeyword
Arguments:
Return Type: void
Privilege: Public

Validate
Arguments:
Return Type: void
Privilege: Public

~DsCdKeyword
Arguments:
Return Type: void
Privilege: Public

Associations:

The DsCdKeyword class has associations with the following classes:
Class: DsCdKeywordLocator

5-16 305-CD-024-002

5.3.6 DsCdKeywordLocator Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This object represnts the Keyword locator for the document CSDT's.

Attributes:

$myDsCdKeywordLocationList
Data Type: List<DsCdKeywordLocator *>
Privilege: Private
Default Value:

myExpectedKeywordsList
Data Type: List<DsDoKeyword *>
Privilege: Private
Default Value:

myKeywFilePath
Data Type: char *
Privilege: Private
Default Value:

myKeywextmet
Data Type:
Privilege: Private
Default Value:

myKeywordsLocation
Data Type: enum{DsCdKeyLocUn, DsCdwLocEm, DsCdKeywext}
Privilege: Private
Default Value:

myOutputMCFPath
Data Type: char *
Privilege: Private
Default Value:

mykeywTagRegExp
Data Type: char *
Privilege: Private
Default Value:

5-17 305-CD-024-002

Operations:

ExportKeywords
Arguments:
Return Type: Void
Privilege: Public

Externalize
Arguments:
Return Type: Void
Privilege: Private

Insert
Arguments:
Return Type: Void
Privilege: Public

Internalize
Arguments:
Return Type: Void
Privilege: Private

ParseKeywords
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdKeywordLocator class has associations with the following classes:
Class: DsCdKeyword
DsCdCSDT (Aggregation)

5.3.7 DsCdPDF Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:

5-18 305-CD-024-002

This object represents the PDF CSDT type for the Document Data.

Attributes:

$myDsCdPDF_List
Data Type: List<DsCdPDF *>
Privilege: Private
Default Value:

myPDFVersion
Data Type: char *
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

5-19 305-CD-024-002

Associations:

The DsCdPDF class has associations with the following classes:
None

5.3.8 DsCdPostScript Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Thie object represents the PostScript CSDT type for Document data.

Attributes:

$myDsCdPostScript_List
Data Type: List<DsCdPostScript>
Privilege: Private
Default Value:

myPostScriptVersion
Data Type: char *
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:

5-20 305-CD-024-002

Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdPostScript class has associations with the following classes:
None

5.3.9 DsCdRTF Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the RTF CSDT type for the Document data.

Attributes:

$myDsCdRTF_List
Data Type: List<DsCdRTF *>
Privilege: Private
Default Value:

myRTFVersion
Data Type: char *
Privilege: Private
Default Value:

5-21 305-CD-024-002

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdRTF class has associations with the following classes:
None

5.3.10 DsCdTypeID Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:

5-22 305-CD-024-002

Attributes:

myType
Data Type: enum{DsCdUnKnownTy, DsCdASCIITy, DsCdHTMlTy, DsCdPDFTy,
DsCdRTFTy, DsCdPSTy}
Privilege: Private
Default Value:

Operations:

GetType
Arguments:
Return Type: Void
Privilege: Public

SetType
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdTypeID class has associations with the following classes:
DsCdCSDT (Aggregation)

5.3.11 DsCsCSDT Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:

Attributes:

None

5-23 305-CD-024-002

Operations:

None

Associations:

The DsCsCSDT class has associations with the following classes:
DsEsESDT (Aggregation)

5.3.12 DsCtAcquireCommand Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object represents the document retrieval commands received for the document data.

Attributes:

$myDsCtAcquireCommand - List of all active acquire commands. Used mainly for fault
recovery and memory management.
Data Type: List <DsCtAcquireCommand>
Privilege: Private
Default Value: null

myCommand - Reference to the associated command.
Data Type: DsCtCommand &
Privilege: Private
Default Value: null

myDsEsESDT - Reference to the document ESDT associated with the acquire command.
The CSDT related to this ESDT is used to implement the extract operation.
Data Type: DsEsESDT &
Privilege: Private
Default Value: null

myHTTPRequest - HTTP Get command string. Used to identify the location of the
document to return.
Data Type: char *
Privilege: Private
Default Value: null

5-24 305-CD-024-002

myOstr - Output stream to write document data.
Data Type: ostream &
Privilege: Private
Default Value: null

Operations:

AcquireCommand
Arguments:
Return Type: GlStatus
Privilege: Public

DsCtAcquireCommand
Arguments: DsCtCommand &
Return Type: Void
Privilege: Public

~DsCtAcquireCommand - Object destructor - invoke ESDT destructor.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCtAcquireCommand class has associations with the following classes:
DsCtCommand (Aggregation)

5.3.13 DsCtClient Class

Parent Class: DsDoClient
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object is the client object for the server object of Document Data server.

Attributes:

$myClientList - List of active clients.
Data Type: List <DsCtCleint>

5-25 305-CD-024-002

Privilege: Private
Default Value: null

myHostAddress - Internet address of client's host.
Data Type: char *
Privilege: Private
Default Value: null

myIPnumber - IP address of the client's host.
Data Type: int
Privilege: Private
Default Value: 0

myPortNumber - TCP/IP port number of the client.
Data Type: int
Privilege: Private
Default Value: 0

myProtocolName - Name of the protocol used for the client/server connection. For
external connections the protocol will be HTTP V1.0
Data Type: char *
Privilege: Private
Default Value: null

myProtocolVersion - Version of the communication protocol used by the client. For
external connections the protocol will be HTTP V1.0
Data Type: char *
Privilege: Private
Default Value: null

mySecurityProtocol - Name of the security protocol used by the client.
Data Type: char *
Privilege: Private
Default Value: null

mySecurityProtocolVersion - Version of the client's security protocol.
Data Type: char *
Privilege: Private
Default Value: null

myServer - Reference to the clients associated server.
Data Type: DsSvServer &
Privilege: Private
Default Value: null

5-26 305-CD-024-002

Operations:

ConnectServer - Make a connection to the server. This connection is synchronous and is
established for the duration of the transaction to service the request.
Arguments: DsSvServer
Return Type: GlStatus
Privilege: Private

DisConnectServer - Disconnection of the client from the server. This operation is invoked
when the external client unexpectedly quits. For example the user may select the stop
button on the WWW Client interface, this breaks the TCP/IP socket and the server is
notified. All outstanding service requests for the client need to be aborted.
Arguments:
Return Type: GlStatus
Privilege: Private

DsCtClient - Object constructor - for internal ECS connections the MSS_UserProfile must
be specified. For external connections via HTTP, a default profile will be used which
allows read access only.
Arguments: MSS_UserProfile
Return Type: Void
Privilege: Public

SubmitRequest - Submit a request to be executed by the server. The DsCtCommand and
DsCtRequest structures should be constructed before this operation is invoked. The
parameters described in each command should be validated prior before it is submitted to
the server.
Arguments: DsCtRequest
Return Type: GlStatus
Privilege: Public

~DsCtClient - Object destructor - no specific implementation
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCtClient class has associations with the following classes:
Class: DsCtRequest
Class: DsCtRequest constructs
Class: DsSvServer manages

5-27 305-CD-024-002

Class: DsSvServer serves

5.3.14 DsCtCommand Class

Parent Class: DsDoCommand
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object represents the client commands received for Document data.

Attributes:

$myCommandList - List of all active commands
Data Type: List <DsCtCommand>
Privilege: Private
Default Value: null

myCommandName - Name of the service to execute
Data Type: char *
Privilege: Private
Default Value: null

myCommandRequest - Associated request
Data Type: DsCtRequest &
Privilege: Private
Default Value: null

myCommandType - Command type to execute
Data Type: enum
Privilege: Private
Default Value: 0

Operations:

DsCtCommand - Constructor to read command from specified file.
Arguments: char * FileName
Return Type: Void
Privilege: Public

5-28 305-CD-024-002

ProcessCommand - Called to execute this command. The appropriate sub-command
operation is invoked.
Arguments: int
Return Type: GlStatus
Privilege: Public

~DsCtCommand - Object destructor - no specific implementation
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCtCommand class has associations with the following classes:
DsCtRequest (Aggregation)

5.3.15 DsCtInsertCommand Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object represents the insert commands received for the document data.

Attributes:

$DsCtInsertCommandList
Data Type: List <DsCtInsertCommand>
Privilege: Private
Default Value: null

myCommand - Associated DsCtCommand Object.
Data Type: DsCtCommand &
Privilege: Private
Default Value: null

myDatafile - Document data to be inserted in the document repository.
Data Type: char *
Privilege: Private
Default Value: null

5-29 305-CD-024-002

myDsEsESDT - Reference to ESDT for internalize operation.
Data Type: DsEsESDT &
Privilege: Private
Default Value: null

myMetaFile - Associated PVL file containing the metadata to be submitted to the DBMS
wrapper layer.
Data Type: char *
Privilege: Private
Default Value: null

Operations:

DsCtInsertCommand - Constructor with reference to assocaited command.
Arguments: DsCtCommand &
Return Type: Void
Privilege: Public

InsertCommand - Invoked for the insertion of a document into the document repository.
The associated DsEsESDT object is called with an internalize() method to insert the
metadata into the DBMS through the DBMS wrapper layer. Returns a GlStatus to indicate
success or failure.
Arguments:
Return Type: GlStatus
Privilege: Public

Associations:

The DsCtInsertCommand class has associations with the following classes:
DsCtCommand (Aggregation)

5.3.16 DsCtRequest Class

Parent Class: DsDoRequest
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object represents the requests from client to the Document Data Server.

5-30 305-CD-024-002

Attributes:

$myRequestList - List of currently active requests. Used for fault recovery and memory
management.
Data Type: List <DsCtRequest>
Privilege: Private
Default Value: null

myCommndList - List of the commands associated with this request.
Data Type: List <DsCtCommand>
Privilege: Private
Default Value: null

myRequestStartTime - Date and time of request submition.
Data Type: RWDateTime &
Privilege: Private
Default Value: null

myRequestStatus - Current status of request.
Data Type: GlStatus &
Privilege: Private
Default Value: null

myRequestTimeOut - Date and Time for request to time out.
Data Type: RWDateTime &
Privilege: Private
Default Value: null

Operations:

CancelRequest - Called to cancel a currently active request.
Arguments:
Return Type: GlStatus
Privilege: Public

DsCtRequest - Default constructor.
Arguments:
Return Type: Void
Privilege: Public

RequestStaus - Return the status of the currently executing request.
Arguments:
Return Type: GlStatus

5-31 305-CD-024-002

Privilege: Public

ServiceRequest - Called to execute the commands associated with this request. Loop
through the command list and execute the appropriate service request.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsCtRequest - Object destructor - call destructors for associated commands.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCtRequest class has associations with the following classes:
Class: DsCtClient
Class: DsSvServer
Class: DsCtClient constructs
Class: DsSvServer services

5.3.17 DsCtSearchcommand Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object represents the search commands received for the document data.

Attributes:

$myDsCtSearchCommandList
Data Type: List <DsCtSearchCommand>
Privilege: Private
Default Value: null

myCommand - Reference to associated command object.
Data Type: DsCtCommand &
Privilege: Private
Default Value: null

5-32 305-CD-024-002

myFreeTextResultsList - The list of URLs returned as a result of a free text query
submitted to the COTS search engine.
Data Type: List <char *>
Privilege: Private
Default Value: null

myHTMLResultsList - The list of URLs to be packaged in a HTML document which is
returned to the WWW client across the HTTP connection.
Data Type: List <char *>
Privilege: Private
Default Value: null

myKeywordResultsList - The list of URLs returned as a result of a keyword search
submitted to the DBMS wrapper layer.
Data Type: List <char *>
Privilege: Private
Default Value: null

myParameterList - The GlParameterList which represents the query to be submitted to the
DBMS wrapper layer. These search parameters are extracted from the WAIS query string.
Data Type: GlParameterList *
Privilege: Private
Default Value: null

myResultsList - The results set returned from the DBMS wrapper layer. From this list the
matching URLs are copied to the keyword results list.
Data Type: GlParameterList *
Privilege: Private
Default Value: null

myWAISQuery - WAIS query to be executed. The query string is copied from the
QUERY_STRING environmental passed through the CGI interface call. The query may be
keyword or free text.
Data Type: char *
Privilege: Private
Default Value: null

Operations:

DsCSearchCommand - Constructor with a reference to this object's associated command.
Arguments: DsCtCommand &
Return Type: Void
Privilege: Public

5-33 305-CD-024-002

ExecuteFreeTextSearch - Used to search the COTS search engine for free text searches.
Arguments:
Return Type: GlStatus
Privilege: Public

ExecuteKeywordSearch - Used to submit a query to the DBMS wrapper layer. The
results are stored in the results list.
Arguments:
Return Type: GlStatus
Privilege: Public

ExecuteSearch - Called to execute the search. Both a keyword and free-text search a
executed as appropriate.
Arguments:
Return Type: GlStatus
Privilege: Public

FormatResults - Format the merged results into a HTML document to be returned to the
WWW client across the HTTP connection. Write output to specified output stream.
Arguments: ostream *ostr
Return Type: GlStatus
Privilege: Public

MergeResults - Used to merge the results of a free text and keyword search. A list of
URLS are writted to the HTML results list.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsCtSearchCommand - Object destructor - Deep distruction, all associated results lists
need to be freed. Call distructor for GlParameterList and lists of URLs.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCtSearchcommand class has associations with the following classes:
DsCtCommand (Aggregation)

5-34 305-CD-024-002

5.3.18 DsDoClient Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object represnts the client for Document Data server.

Attributes:

myClientName - Name of the client. Used to identify the protocol and behaviour of a WWW
client.
Data Type: char *
Privilege: Private
Default Value: null

myClientVersion - Version number of the client. Different WWW clients may have
differnt behaviour and different versions may present a different interface.
Data Type: char *
Privilege: Private
Default Value: null

mySystemLog - Reference to the system log for exception reporting and logging.
Data Type: GlLog &
Privilege: Private
Default Value: null

Operations:

None

Associations:

The DsDoClient class has associations with the following classes:
None

5-35 305-CD-024-002

5.3.19 DsDoCommand Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This object represnts the commands for Document Data.

Attributes:

myCommandType - Type of command to execute. Relates to the service request type.
Data Type: enum {}
Privilege: Private
Default Value: 0

myRequest - Reference to the associated request.
Data Type: DsDoRequest &
Privilege: Private
Default Value: null

Operations:

ExecuteCommand - Called to invoke the appropriate service object according to the
command type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDoCommand class has associations with the following classes:
None

5.3.20 DsDoRequest Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Persistent Class:

5-36 305-CD-024-002

Purpose and Description:
This object represents the requests for document data received vy the Docuement Data
Server.

Attributes:

myClient - Reference to the associated client for this request.
Data Type: DsDoClient &
Privilege: Private
Default Value: null

myRequestName - Name of this request - taken from the GlParameterList for this request.
Data Type: char *
Privilege: Private
Default Value: null

myRequestType - Type of request to be serviced.
Data Type: int
Privilege: Private
Default Value: null

myServer - Reference to the associated server for this request.
Data Type: DsDoServer &
Privilege: Private
Default Value: null

Operations:

DsCIRequest - Object constructor - no specific implementation
Arguments:
Return Type: Void
Privilege: Public

ServiceRequest - Invoked for the execution of this service request, normally from the
server after the client has constructed the request and called service request to the server.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsCIRequest - Object destructor - call the destructor of the associated commands.
Arguments:
Return Type: Void
Privilege: Public

5-37 305-CD-024-002

Associations:

The DsDoRequest class has associations with the following classes:
None

5.3.21 DsDoServer Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents server receiving requests for data from Data Server.

Attributes:

myServerName - Name of the server object.
Data Type: char *
Privilege: Private
Default Value: null

myServerVersion - Version of the server running.
Data Type: char *
Privilege: Private
Default Value: null

mySystemLog - Reference to the associated log file for fault and error logging.
Data Type: GlLog &
Privilege: Private
Default Value: null

Operations:

ShutDown - Shut down the server aborting outstanding requests.
Arguments:
Return Type: GlStatus
Privilege: Public

5-38 305-CD-024-002

StartUp - Start up server and return status indicaing readiness to service incomming
requests.
Arguments:
Return Type: GlStatus
Privilege: Public

Associations:

The DsDoServer class has associations with the following classes:
None

5.3.22 DsEsAlgorithmDescription Class

Parent Class: DsEsESDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the Algorthimic description for the ESDT's of document type.

Attributes:

myDsEsAlgdescList
Data Type:
Privilege: Private
Default Value:

myDsEsAlgdescTyID
Data Type:
Privilege: Private
Default Value:

myDsEsScienceSoftWPkg
Data Type:
Privilege: Private
Default Value:

5-39 305-CD-024-002

Operations:

Externalize
Arguments:
Return Type: Void
Privilege: Protected

Internalize
Arguments:
Return Type: Void
Privilege: Protected

Update
Arguments:
Return Type: Void
Privilege: Protected

Associations:

The DsEsAlgorithmDescription class has associations with the following classes:
None

5.3.23 DsEsAlgorithmDescriptionTypeID Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the Algorithm Description type for the ESDT's.

Attributes:

mtTypeID - The ID used to distinguish between different types of Algorithm Description.
Data Type: enum{DsEsAlgDescUn, DsEsSysDescDocTy, DsEsFilesDescDocTy,
DsEsOpManTy, DsEsTestPlTy, DsEsATBDTy,DsEsDevStdDocTy,
DsEsPrgGuideTy,DsEsPerTestResTy, DsEsDetDesDocTy};
Privilege: Private
Default Value:

5-40 305-CD-024-002

Operations:

DsEsAlgDescTyID
Arguments: char *
Return Type: Void
Privilege: Public

GetTypeID
Arguments:
Return Type: Void
Privilege: Public

SetTypeID
Arguments:
Return Type: Void
Privilege: Public

~DsEsAlgDescTyID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsAlgorithmDescriptionTypeID class has associations with the following classes:
DsEsAlgorithmDescription (Aggregation)

5.3.24 DsEsESDT Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ESDT's of document type.

5-41 305-CD-024-002

Attributes:

$myDsEsESDTList
Data Type: Date List<DsEsESDT *>
Privilege: Private
Default Value:

myDocuementCreated
Data Type: char *
Privilege: Private
Default Value:

myDocuementUpdated
Data Type: Date *
Privilege: Private
Default Value:

myDocumentVersion
Data Type: char *
Privilege: Private
Default Value:

myDsEsCSDT
Data Type: DsEsCSDT *
Privilege: Private
Default Value:

myDsEsTypeID
Data Type: DsEsTypeID *
Privilege: Private
Default Value:

myFilePath
Data Type: char *
Privilege: Private
Default Value:

myTemplateName
Data Type: char *
Privilege: Private
Default Value:

myTemplateVersion
Data Type: char *

5-42 305-CD-024-002

Privilege: Private
Default Value:

myURL
Data Type: char *
Privilege: Private
Default Value:

Operations:

DsEsESDT
Arguments: DsEsTypeID *, DsEsCSDT *
Return Type: Void
Privilege: Public

Externalize
Arguments:
Return Type: Void
Privilege: Public

Internalize
Arguments:
Return Type: Void
Privilege: Public

Update
Arguments:
Return Type: Void
Privilege: Public

Virtual Validate
Arguments:
Return Type: Void
Privilege: Public

~DsEsESDT
Arguments:
Return Type: Void
Privilege: Public

5-43 305-CD-024-002

Associations:

The DsEsESDT class has associations with the following classes:
Class: DsEsTypeID

5.3.25 DsEsGuide Class

Parent Class: DsEsESDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the Guide information for ESDT's.

Attributes:

myDataCenter
Data Type: char *
Privilege: Private
Default Value:

myDsEsGuideList
Data Type: List<DsEsGuide *>
Privilege: Private
Default Value:

myDsEsGuideTypeID
Data Type: DsEsGuideTypeID *
Privilege: Private
Default Value:

myGuideName
Data Type: char *
Privilege: Private
Default Value:

Operations:

Externalize
Arguments: format

5-44 305-CD-024-002

Return Type: Void
Privilege: Protected

Internalize
Arguments:
Return Type: Void
Privilege: Protected

Update
Arguments:
Return Type: Void
Privilege: Protected

Associations:

The DsEsGuide class has associations with the following classes:
None

5.3.26 DsEsGuideTypeID Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the Guide type.

Attributes:

myDsEsGuideTypeList
Data Type:
Privilege: Private
Default Value:

myTypeID - Guide Type ID used to distinguish between different types of guide
Document.
Data Type:
Privilege: Private
Default Value:

5-45 305-CD-024-002

Operations:

DsEsGuideTypeID
Arguments: char *Doctype
Return Type: Void
Privilege: Public

GetDsEsGuideType
Arguments:
Return Type: Void
Privilege: Public

SetDsEsGuideList
Arguments: List<DsEsGuide *>
Return Type: Void
Privilege: Public

~DsEsGuidetypeID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsGuideTypeID class has associations with the following classes:
DsEsGuide (Aggregation)

5.3.27 DsEsProductionPlan Class

Parent Class: DsEsESDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the Production Plan for the ESDT's of document type.

5-46 305-CD-024-002

Attributes:

myDAAC
Data Type: char *
Privilege: Private
Default Value:

myDsEsProdPlTyID
Data Type: DsEsPrPlTyID *
Privilege: Private
Default Value:

myEndDate
Data Type: Date *
Privilege: Private
Default Value:

myForcast
Data Type: int {30, 10, 1}
Privilege: Private
Default Value:

myProductionPlanList
Data Type: List<DsEsProductionPlan *>
Privilege: Private
Default Value:

myStartDate
Data Type: Date *
Privilege: Private
Default Value:

Operations:

Externalize
Arguments:
Return Type: Void
Privilege: Protected

Internalize
Arguments:
Return Type: Void
Privilege: Protected

5-47 305-CD-024-002

Update
Arguments:
Return Type: Void
Privilege: Protected

Associations:

The DsEsProductionPlan class has associations with the following classes:
None

5.3.28 DsEsProductionPlanTypeID Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the type of the Production Plan.

Attributes:

$myList - List of currently active objects mainly used for fault recovery and memory
management.
Data Type:
Privilege: Private
Default Value:

myTypeID - Production Plan used to distinguish between different types of Production
Plans.
Data Type:
Privilege: Private
Default Value:

Operations:

GetTypeID
Arguments:
Return Type: Void

5-48 305-CD-024-002

Privilege: Public

SetTypeID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsProductionPlanTypeID class has associations with the following classes:
DsEsProductionPlan (Aggregation)

5.3.29 DsEsReferencePaper Class

Parent Class: DsEsESDT
Public: No
Distributed Object: No
Purpose and Description:
This object represents the Reference Papers of Document type for the ESDT's.

Attributes:

myDsEsReferencePaperList
Data Type:
Privilege: Private
Default Value:

myDsEsReferencePaperType
Data Type:
Privilege: Private
Default Value:

myReferencePaperName
Data Type:
Privilege: Private
Default Value:

myScienceData
Data Type:
Privilege: Private

5-49 305-CD-024-002

Default Value:

Operations:

Externalize
Arguments:
Return Type: Void
Privilege: Protected

Internalize
Arguments:
Return Type: Void
Privilege: Protected

Update
Arguments:
Return Type: Void
Privilege: Protected

Associations:

The DsEsReferencePaper class has associations with the following classes:
None

5.3.30 DsEsReferencePaperTypeID Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the Reference Papers of ESDT's.

Attributes:

$myDsEsRefPapTy - List of the currently active objects. Mainly used for fault recovery and
memory management.
Data Type: List<DsEsRefPapTyID *>

5-50 305-CD-024-002

Privilege: Private
Default Value:

myTypeID - High level type ID used to distinguish between the main document types.
Currently this includes Guides, Algoithm Descriptions, Reference Papers and Production
plans.
Data Type: enum{DsEsRefpapTyUn, DsEsElectJouTy, DsEsJouArt, DsEsStdADoc};
Privilege: Private
Default Value:

Operations:

DsEsRefPapTyID
Arguments: char * name
Return Type: Void
Privilege: Public

GetTypeID
Arguments:
Return Type: Void
Privilege: Public

SetTypeID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsReferencePaperTypeID class has associations with the following classes:
DsEsReferencePaper (Aggregation)

5.3.31 DsEsTypeID Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: No
Persistent Class:
Purpose and Description:

5-51 305-CD-024-002

This object represents the ID of the type of the ESDT.

Attributes:

myDsEsTypeList
Data Type: <DsEsTypeID *>
Privilege: Private
Default Value:

myTypeID
Data Type: enum{DsEsTyUn, DsEsGuTy. DsESRefTy, DsEsAlgDesTy, DsEsPrPITy};
Privilege: Private
Default Value:

Operations:

DsEsTypeID
Arguments: char *
Return Type: Void
Privilege: Public

GetEsDsType
Arguments:
Return Type: Void
Privilege: Public

SetDsEsType
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsTypeID class has associations with the following classes:
Class: DsEsESDT

5-52 305-CD-024-002

5.3.32 DsGeCSDT Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:

Attributes:

None

Operations:

None

Associations:

The DsGeCSDT class has associations with the following classes:
None

5.3.33 DsGeESDT Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
The Earth Science Data Type (ESDT) is a superclass for the various specializations that
represent the specific data types. The ESDT organizes and provides an interface to the
external and internal services. Most probably this class will be an abstract base class. If
there are instances of this class it will be to support a generic type of ESDT that has no data
type services other than get, put, and search.

Attributes:

None

5-53 305-CD-024-002

Operations:

None

Associations:

The DsGeESDT class has associations with the following classes:
Class: DsGeTypeID

5.3.34 DsGeTypeID Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This object uniquely identifies each ESDT's type. The type consists of a type name and a
version number. Each type-version number pair is assigned a unique code. The set of all
TypeIDs is stored persistently in a database.

Attributes:

None

Operations:

None

Associations:

The DsGeTypeID class has associations with the following classes:
Class: DsGeESDT

5.3.35 DsSdCSDT Class

Parent Class: DsGeCSDT
Public: No
Distributed Object: No

5-54 305-CD-024-002

Persistent Class:
Purpose and Description:
Computer Science Data Type. The CSDT is a data structure used by the data server
superclass that provides common services for the different types of CSDTs. The CSDT
provides the internal representation of data objects.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdCSDT class has associations with the following classes:
DsSdESDT (Aggregation)

5.3.36 DsSdClient Class

Parent Class: DsDoClient
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Acts as an interface class to the CSMS subsystem to use the accounting and user profiling
capabilities.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

5-55 305-CD-024-002

Associations:

The DsSdClient class has associations with the following classes:
Class: DsSdSession services - The DsSdSession accesses all user profile and accounting
information via a DsSdClient.

5.3.37 DsSdCommand Class

Parent Class: DsDoCommand
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
An implementation of the DsCommand abstract base class that provides services necessary
for data server creation and storage of command objects.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdCommand class has associations with the following classes:
DsSdRequest (Aggregation)

5.3.38 DsSdESDT Class

Parent Class: DsGeESDT
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
The Earth Science Data Type (ESDT) is a superclass for the various specializations that

5-56 305-CD-024-002

represent the specific data types. The ESDT organizes and provides an interface to the
external and internal services.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdESDT class has associations with the following classes:
DsSdESDT (Aggregation)

5.3.39 DsSdRequest Class

Parent Class: DsDoRequest
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
To store and track services requested by a client and used in the execution of services. The
Request contains all the information that has been provided by the requester as well as any
information that has been acquired during the execution of the request. It has the capability
to validate the components supplied in the request and to assign a unique identifier for new
requests entering the system.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

5-57 305-CD-024-002

Associations:

The DsSdRequest class has associations with the following classes:
Class: DsSdSession manages

5.3.40 DsSdServer Class

Parent Class: DsDoServer
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a single point of entry for external clients and to manage and create sessions.
The server is the single interface to the data server. It provides the interface for a user to
establish a connection with the data server.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdServer class has associations with the following classes:
None

5.3.41 DsSdSession Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
To manage ESDT-oriented interaction between the external client and the data server. It
provides an interface for the other objects in the system to communicate with the client and
manages a DsSdWorkingCollection on behalf of the client. Adds request queueing and

5-58 305-CD-024-002

DsSdWorkingCollection handling functionality to DsSdConnection (its super class).

Attributes:

None

Operations:

None

Associations:

The DsSdSession class has associations with the following classes:
Class: DsSdRequest manages
Class: DsSdClient services - The DsSdSession accesses all user profile and accounting
information via a DsSdClient.
DsSdServer (Aggregation)

5.3.42 DsSeIndexer Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This object represents the COTS Technology for free text Indexing.

Attributes:

None

Operations:

None

Associations:

The DsSeIndexer class has associations with the following classes:
Class: DsSvServer

5-59 305-CD-024-002

5.3.43 DsSeWWWServer Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This object represents the COTS Technology for HTTP connections.

Attributes:

None

Operations:

None

Associations:

The DsSeWWWServer class has associations with the following classes:
Class: DsSvServer

5.3.44 DsSvServer Class

Parent Class: DsDoServer
Public: Yes
Distributed Object: No
Persistent Class:
Purpose and Description:
The Object represents the server object for Document Data Server.

Attributes:

$myServerList - List of currently active servers. Used for fault recovery and memory
management.
Data Type: List <DsSvServer>
Privilege: Private
Default Value: null

myClientList - List of the active clients being serviced by the server.

5-60 305-CD-024-002

Data Type: List <DsCtClient>
Privilege: Private
Default Value: null

myHostAddress
Data Type: char *
Privilege: Private
Default Value: null

myIPNumber - IP number of the server.
Data Type: int
Privilege: Private
Default Value: 0

myPortNumber - TCP/IP port number on the host to monitor for incoming HTTP
requests.
Data Type: int
Privilege: Private
Default Value: 0

myProtocolName - Name of the communication protocol supported by the server.
Data Type: char *
Privilege: Private
Default Value: null

myProtocolVersion - Version of the communication protocol supported by the server.
Data Type: char *
Privilege: Private
Default Value: null

mySecurityProtocol - Name of the security protocol used by the server. Needs to be
compatable with the client security protocol for a secure connection.
Data Type: char *
Privilege: Private
Default Value: null

mySecurityProtocolVersion - Version of the security protocol used by the server.
Data Type: char *
Privilege: Private
Default Value: null

5-61 305-CD-024-002

Operations:

DsDoServer - Object constructor - no specific implementation
Arguments:
Return Type: Void
Privilege: Public

Listen - Monitors the TCP/IP port for incomming requests.
Arguments:
Return Type: GlStatus
Privilege: Private

ServiceRequest - Called by client to execute a service request.
Arguments:
Return Type: GlStatus
Privilege: Public

ShutDown - Shut down of an active server. Currently active clients will have their
associated service requests aborted.
Arguments:
Return Type: GlStatus
Privilege: Public

StartUp - Start up server. Return status to calling object indicating the server is ready to
service incoming requests.
Arguments:
Return Type: GlStatus
Privilege: Public

~DsDoServer - Object destructor - destroy associated client objects
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSvServer class has associations with the following classes:
Class: DsCtRequest
Class: DsSeIndexer
Class: DsSeWWWServer
Class: DsCtClient manages
Class: DsCtClient serves
Class: DsCtRequest services

5-62 305-CD-024-002

5.3.45 InterleafB Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Purpose and Description:
THis object represents the document data in the interleaf format.
Attributes:
$myDsCdInterleaf_List
Data Type: List<DsCdInterleaf *>
Privilege: Private
Default Value:

myInterleafVersion
Data Type: char *
Privilege: Private
Default Value:

Operations:
DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:
The InterleafB class has associations with the following classes:
None

5-63 305-CD-024-002

5.3.46 WordB Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Purpose and Description:
This object represents the documents in Word format.
Attributes:
$myDsCdWord_List
Data Type: List<DsCdWord *>
Privilege: Private
Default Value:

myWordVersion
Data Type: char *
Privilege: Private
Default Value:

Operations:
DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

5-64 305-CD-024-002

Associations:
The WordB class has associations with the following classes:
None

5.3.47 WordPerfectB Class

Parent Class: DsCdCSDT
Public: No
Distributed Object: No
Purpose and Description:
This object represents all the document data in WordPerfect format.
Attributes:
$myWordPerfect_List
Data Type: List<DsCdWordPerfect *>
Privilege: Private
Default Value:

myWordPerfectVersion
Data Type: char *
Privilege: Private
Default Value:

Operations:
DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void

5-65 305-CD-024-002

Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:
The WordPerfectB class has associations with the following classes:
None

5.4 CSCI Dynamic Model
This section describes several scenarios for the Science Data Server CSCI. A scenario delineates
the steps that occur in a particular execution through the system. The scenarios address the
following topics:

5.4.1 Inserting a document

5.4.2 Searching for a document

5.4.3 Acquiring a document

5.4.4 Fault Scenario: HTTP Connection Failure

5.4.5 Document Metadata Insertion Subscription

5.4.1 Inserting a Document

5.4.1.1 Summary

This scenario illustrates the classes and events which interact to insert a document and its metadata
into the DDSRV. The Ingest subsystem performs metadata extraction and range checking in a
manner analogous to that for science data, presenting the DDSRV with the document data file and
its metadata file. The DDSRV then uses the DBMS Wrappers to index the document from its
metadata file keywords. In addition, the DDSRV performs full text indexing for those document
types which have a free text search defined for its ESDT. After the document has been inserted
into the DDSRV a status indicating a successful insert request is returned to the Ingest Subsystem,
and the document is ready for searching.

5.4.1.2 Assumptions

In this scenario, the DDSRV will be ingesting a Data Center Guide document
(DsDoDataCenterGuide). The Ingest Subsystem has received a Data Center Guide document in
HTML format, from its client interface. The Ingest Subsystem has extracted keywords from the
document, performed range checking of the keywords using metadata configuration information,
and has produced a parameter value list file (PVL) containing the document keywords. The Ingest
Subsystem has established a connection with the DDSRV to complete the insertion of the HTML
document, and its keyword and free text indexing.

5-66 305-CD-024-002

V
0

C
lie

nt
D

sS
eW

W
W

S
er

ve
r

D
sS

vC
lie

nt
D

sC
tC

om
m

an
d

G
LP

ar
am

et
er

G
LP

ar
am

et
er

Li
st

D
sC

tR
eq

ue
st

D
sC

tA
cq

ui
re

C
om

m
an

d
D

sE
sE

S
D

T
D

sC
dC

S
D

T
D

sS
vs

er
ve

r

H
T

T
P

 G
et

R
eq

ue
st

S
ub

m
itA

cq
ui

re
()

C
G

I C
al

l

D
sC

tC
om

m
an

d

S
et

C
at

ag
or

y

S
et

S
er

vi
ce

na
m

e(
"A

cq
ui

re
")

G
L

P
ar

am
et

er
("

ht
tp

re
qu

es
t"

, h
ttp

re
qu

es
ts

tr
in

g)

G
LP

ar
am

et
er

Li
st

("
G

LP
ar

am
et

er
")

In
se

rt
(G

LP
ar

am
et

er
)

S
et

 P
ar

am
et

er
*G

l P
ar

am
et

er
 L

is
t)

D
sC

tR
eq

ue
st

S
ub

m
itR

eq
ue

st
(D

sC
tR

eq
ue

st
)

ex
ec

ut
er

eq
ue

st
(s

tr
ea

m
)

E
xe

cu
te

C
om

m
an

d(
os

tr
ea

m
)

D
sC

tA
cq

ui
re

C
om

m
an

d(
cs

tr
ea

m
)

D
sE

sE
S

D
T

()

D
sC

dC
S

D
T

()

R
et

re
iv

e
D

oc
um

en
t(

)

E
xt

er
na

liz
e(

)

E
xt

ra
ct

()

G
L

S
ta

tu
s

G
L

S
ta

tu
s

G
L

S
ta

tu
s

G
LS

ta
tu

s

G
L

S
ta

tu
s

G
L

S
ta

tu
s

H
T

T
P

 H
ea

de
r

+

B
od

y

H
T

T
P

5.
4-

1.
 D

D
S

R
V

_A
cq

u
ir

e
D

yn
am

ic
 M

o
d

el

5-67 305-CD-024-002

5.4.2 Searching for a Document

5.4.2.1 Summary

The DDSRV provides both a free text index and keyword index on its document holdings. The
keyword index uses parameter names and values consistent with the ESDT metadata stored in the
SDSRV; the free text index is performed by a COTS product. Keyword integrity between the data
designs of the DDSRV and the SDSRV facilitates navigation between the various layers of the data
pyramid. The scenario ends with the presentation of an HTML formatted results list of references
to documents which meet the search criteria. Each document reference in the results list is
presented as a hyperlink in the HTML page, and points to the relevant document that is stored in
the DDSRV.

5.4.2.2 Assumptions

In this scenario, the client is requesting both a free text search and a keyword search for Data Center
Guide documents. The client has formulated the query in WAIS from an interactive client capable
of viewing HTML documents.

5-68 305-CD-024-002

V
0

C
lie

nt
D

sS
eW

W
W

S
er

ve
r

D
sS

vS
er

ve
r

D
sC

tR
eq

ue
st

D
sC

tC
om

m
an

d

D
sC

tA
cq

ui
re

C
om

m
an

d
D

sE
sE

S
D

T
D

sC
dC

S
D

T

T
C

P
/IP

S
oc

ke
t B

ro
ke

n

H
T

T
P

 C
on

ne
ct

io
n

C
lo

se
d

C
an

ce
lR

eq
ue

st
()

A
bo

rt
C

om
m

an
d(

)

A
bo

rt
A

cq
ui

re
()

C
an

ce
lE

xt
er

na
liz

e(
)

C
an

ce
le

xt
ra

ct
()

G
LS

ta
tu

s

G
LS

ta
tu

s

G
L

S
ta

tu
s

G
L

S
ta

tu
s

G
L

S
ta

tu
s

Lo
gC

an
ce

lR
eq

ue
st

H
T

T
P

 S
ta

tu
s

(C
on

ne
ct

io
n

B
ro

ke
n)

H
T

T
P

 S
ta

tu
s

40
0

(C
on

ne
ct

io
 B

ro
ke

n)

5.
4-

2.
 D

D
S

R
V

_F
au

lt
S

ce
n

ar
io

 D
yn

am
ic

 M
o

d
el

5-69 305-CD-024-002

5.4.3 Acquiring a Document

5.4.2.1 Summary

The DDSRV provides storage for its documents and document metadata, and performs the on-line
distribution of documents to its HTTP clients.

5.4.3.1 Assumptions

In this scenario, the client has already located the document of interest, and is requesting
distribution of a Data Center Guide document via on-line HTTP connection from an interactive
client capable of viewing HTML documents.

5-70 305-CD-024-002

D
sS

eW
W

W
S

er
ve

r
G

LP
ar

am
et

er
D

sC
tC

om
m

an
d

G
LP

ar
am

et
er

Li
st

D
sC

tR
eq

ue
st

V
0C

lie
nt

D
sS

vC
lie

nt
D

sS
vS

er
ve

r
D

sC
tS

ea
rc

hC
om

m
an

d
D

sM
dC

at
al

og
D

sS
eI

nd
ex

er

W
A

IS
 Q

ue
ry

S
ub

m
itS

ea
rc

h(
)

C
G

I C
al

l

ct
or

()

S
et

C
at

ag
or

y(
)

se
tS

er
vi

ce
N

am
e(

"S
ea

rc
h"

)

ct
or

("
da

ta
ty

pe
",

"D
sD

oD
at

aC
en

te
rG

ui
de

")

ct
or

("
w

ai
sq

ue
ry

",
w

ai
sq

ue
ry

st
rin

g) ct
or

()

In
se

rt
(G

LP
ar

am
et

er
)

S
et

P
ar

am
et

er
s(

G
LP

ar
am

et
er

Li
st

)

ct
or

(D
sC

tC
om

m
an

d)

S
ub

m
itR

eq
ue

st
(D

sC
tR

eq
ue

st
)

E
xe

cu
te

R
eq

ue
st

(o
st

re
am

)

E
xe

cu
te

C
om

m
an

d(
os

tr
ea

m
)

D
sC

tS
ea

rc
hC

om
m

an
d(

w
ai

sq
ue

ry
)

E
xe

cu
te

S
ea

rc
h(

os
tr

ea
m

)
E

xe
cu

te
K

ey
w

or
dS

ea
rc

h(
)

G
LP

ar
am

et
er

("
D

at
aC

en
te

r"
,D

A
A

C
)

G
LP

ar
am

et
er

Li
st

(G
LP

ar
am

et
er

 *
)

D
oc

um
en

ts
ea

rc
h(

)

K
ey

w
or

dr
es

ul
ts

Li
st

, G
LS

ta
tu

s

E
xe

cu
te

F
re

eT
ex

tS
ea

rc
h

F
ul

lT
ex

tQ
ue

ry
()

F
re

eT
ex

tR
es

ul
ts

Li
st

M
er

ge
re

su
lts

()

F
or

m
at

R
es

ul
ts

()

G
LS

ta
tu

s

G
LS

ta
tu

s

G
LS

ta
tu

s

G
LS

ta
tu

s

H
T

M
L

R
es

ul
ts

S
et

H
T

M
L

R
es

ul
ts

5.
4-

3.
 D

D
S

R
V

_I
n

se
rt

 D
yn

am
ic

 M
o

d
el

5-71 305-CD-024-002

5.4.4 Fault Scenario : HTTP Connection Failure

5.4.4.1 Summary

In this scenario, during the execution of a service request by the DDSRV, the WWW Client has
closed the HTTP connection. Typically this will be as a result of the user selecting the "Stop" but-
ton on the WWW Client to abort the HTTP request. Under exceptional conditions, the HTTP con-
nection may have been closed as a result of network failure.

The HTTP server is alerted of the termination of the HTTP connection when the TCP/IP socket is
broken. The DDSRV is invoked to cancel the service request. The abort command propagates
through the command and request objects to the object executing the service. In this example, an
acquire service is being executed by the ESDT and CSDT objects, extracting a document from the
document repository.

Status information is propagated back through the call stack, to the server level. The server logs
an entry in the system log to report the error and returns an HTTP error 400 to indicate the connec-
tion is broken.

5.4.4.2 Assumptions

A HTTP connection has been established between the WWW Client and WWW server and a
HTTP transaction is under way. The DDSRV maintains sufficient information about currently ac-
tive service requests to terminate those associated with the WWW Client. If possible, a HTTP Sta-
tus message indicating the error will be issued by the WWW Server to the WWW Client.

5-72 305-CD-024-002

D
sC

tR
eq

ue
st

D
sC

tC
lie

nt
D

sC
sH

T
M

L

D
sM

dM
et

ad
at

a

D
sS

eI
nd

ex
er

D
sE

sG
ui

de
D

sM
dM

et
aC

at
al

og

IN
G

E
S

T

D
sC

tC
om

m
an

d
G

LP
ar

am
et

er
G

LP
ar

am
et

er
Li

st
D

sS
vS

er
ve

r

D
sC

tC
om

m
an

d(
)

S
et

C
at

ag
or

y(
)

S
et

S
er

vi
ce

N
am

e(
"I

ns
er

t"
)

G
LP

ar
am

et
er

("
da

ta
ty

pe
",

"D
sD

oD
at

aC
en

te
rG

ui
de

")

G
LP

ar
am

et
er

("
m

et
af

ile
",

fn
am

e)

G
LP

ar
am

et
er

Li
st

(G
lP

ar
am

et
er

)

In
se

rt
(G

LP
ar

am
te

r)

In
se

rt
(G

LP
ar

am
te

r)

S
et

P
ar

am
et

er
s(

G
LP

ar
am

et
er

Li
st

)
D

sC
tR

eq
ue

st
(D

sC
tC

om
m

an
d)

S
ub

m
itr

eq
ue

st
(D

sC
tR

eq
ue

st
)

S
ub

m
itR

eq
ue

st
()

G
et

C
om

m
an

d(
D

sC
tR

eq
ue

st
)

D
sC

tC
om

m
an

d
*

E
xe

cu
te

C
om

m
an

d(
)

D
sE

sG
ui

de
("

D
sD

pD
at

aC
en

te
rG

ui
de

")

In
te

rn
al

iz
e(

)
D

sC
sH

T
M

L(
D

sC
sC

S
D

T
_T

yp
e)

D
sM

dM
et

ad
at

a(
"D

sD
oD

at
aC

en
te

rG
ui

de
")

Lo
ad

F
ro

m
E

xt
er

na
l(c

ha
r

*)

D
sM

dC
at

al
og

()

In
iti

al
iz

e(
)

In
se

rt
D

oc
um

en
tM

et
ad

at
a(

D
sT

m
di

de
nt

ifi
er

,D
sM

dM
et

ad
at

a
*)

G
LS

ta
tu

s

In
se

rt
()

In
de

xD
oc

um
en

t

C
O

T
S

 S
ta

tu
s

G
LS

ta
tu

s,
 D

sT
m

dI
de

nt
ifi

er

G
LS

ta
tu

s,
 D

sT
m

dI
de

nt
ifi

er

G
LS

ta
tu

s,
 D

sT
m

dI
de

nt
ifi

er

5.
4-

4.
 D

D
S

R
V

_S
ea

rc
h

 D
yn

am
ic

 M
o

d
el

5-73 305-CD-024-002

5.4.5 Document Metadata Insertion Subscription

5.4.5.1 Summary

In this scenario, the user submits a request subscription for document metadata
insertion to the SDSRV. The subscription describes what document types the user
would like to see, the metadata attributes that are of interest, and any supporting
documentation that is desired. Actions that are to be taken upon receipt of a
document that fulfills the request, such as notification of the user, are also
specified in the subscription.

When the DDSRV receives a document and its associated metadata from the Ingest
Subsystem, it indexes and stores the document. After the document is stored, the
DDSRV creates an insert request of document metadata and submits it to the
SDSRV for insertion. After the SDSRV inserts the document, the SDSRV
subscription service detects the metadata insertion and checks to see if it matches
any user subscriptions. If it does, the SDSRV executes any necessary follow-up
actions, such as notifying the user(s) that their subscription request(s) were
satisfied.

5.4.5.2 Assumptions

The Ingest Subsystem receives the document and generates the associated
metadata. After the DDSRV receives the document along with the metadata, it
performs the indexing and stores the document. This scenario assumes that the
subscription criteria for metadata matching is compatible with the metadata
actually produced by the Ingest Subsystem.

TBS

5.4-5. Document_Metadata_Insertion_Subscription

5-74 305-CD-024-002

5.5 CSCI Structure

5.5.1 DDSRV CSCs

The following table shows the components (CSCs) of the CSCI. Each CSC is described and
designated as being custom developed code (DEV), off-the-shelf (OTS) or a combination of the
two (DEV/OTS).

5.5.1.1 Document Data Server (DDSRV) CSC

Purpose and Description

The Document Data Server (DDSRV) CSC provides the base classes for the access methods and
infrastructure of the DDSRV. The classes in this CSC are further specialized by the DDSRV
Server CSC (Sv) and the DDSRV Client CSC (Ct) for implementing the access methods and server
functions.

Mapping to objects implemented by this component

DsDoServer

DsDoClient

Table 5.5.1 DDSRV Components

CSC Abbr. Description Type

DDSRV CSC Do The Document Data Server (DDSRV) CSC provides the
base classes for the access methods and infrastructure of
the DDSRV. The classes in this CSC are further special-
ized by the DDSRV Server CSC (Sv) and the DDSRV Cli-
ent CSC (Ct) for implementing the access methods and
server functions.

DEV

DDSRV Serv-
er CSC

Sv The Document Data Server (DDSRV) Server CSC pro-
vides the primary server capabilities for this CSCI. It pro-
vides the access methods and infrastructure for handling
document requests and start-up/shut down of the server.

DEV

DDSRV Cli-
ent CSC

Ct The Document Data Server (DDSRV) Client CSC pro-
vides the request and command services for clients ac-
cessing the Document Data Server. Clients connect to
the DDSRV through the instantiation of these classes.
The classes contained in this CSC are Public and Distrib-
uted.

DEV/OTS

DDSRV
ESDT CSC

Es The Document Data Server (DDSRV) ESDT CSC con-
sists of the classes describing the structure and opera-
tions supported for each of the document ESDTs.

DEV/OTS

DDSRV
CSDT CSC

Cd The Document Data Server (DDSRV) Server CSDT CSC
consists of the classes providing the Computer Science
Data Types (CSDTs) for the document ESDTs.

DEV/OTS

DDSRV
Search En-
gine CSC

Se The Document Data Server (DDSRV) Search Engine
CSC consists of off-the-shelf software for full-text indexing
and searching of documents, and hyperlinked access to
ESDT documents stored in the DDSRV.

OTS

5-75 305-CD-024-002

DsDoCommand

DsDoRequest

The Document Data Server Process contains classes from this CSC.

Candidate products

N/A

ECS white paper references

N/A

5.5.1.2 Document Data Server (DDSRV) Server CSC

Purpose and Description

The Document Data Server (DDSRV) Server CSC provides the primary server capabilities for this
CSCI. It provides the access methods and infrastructure for handling document requests and start-
up/shut down of the server.

Mapping to objects implemented by this component

DsSvServer

This class is contained in the Document Data Server Process.

Candidate products

N/A

ECS white paper references

N/A

5.5.1.3 Document Data Server (DDSRV) Client CSC

Purpose and Description

The Document Data Server (DDSRV) Client CSC provides the request and command services for
clients accessing the Document Data Server. Clients connect to the DDSRV through the
instantiation of these classes. The classes contained in this CSC are Public and Distributed.

Mapping to objects implemented by this component

DsCtClient

DsCtCommand

DsCtRequest

DsCtInsertCommand

DsCtSearchCommand

DsCtAcquireCommand

The Client Applications Process is comprised of classes from this CSC.

Candidate products

N/A

5-76 305-CD-024-002

ECS white paper references

N/A

5.5.1.4 Document Data Server (DDSRV) ESDT CSC

Purpose and Description

The Document Data Server (DDSRV) ESDT CSC consists of the classes describing the structure
and operations supported for each of the document ESDTs.

Mapping to objects implemented by this component

DsEsESDT

DsEsTypeID

DsEsAlgorithmDescription

DsEsAlgorithmDescriptionTypeID

DsEsGuide

DsEsGuideTypeID

DsEsProductionPlan

DsEsProductionPlanTypeID

DsEsReferencepaper

DsEsReferencepaperTypeID

The Document Data Server Process contains classes from this CSC.

Candidate products

N/A

ECS white paper references

N/A

5.5.1.5 Document Data Server (DDSRV) CSDT CSC

Purpose and Description

The Document Data Server (DDSRV) Server CSDT CSC consists of the classes providing the
Computer Science Data Types (CSDTs) for the document ESDTs.

Mapping to objects implemented by this component

DsCdCSDT

DsCdCSDT_TypeID

DsCdCSDT

DsCdKeywordLocator

DsCdKeyword

DsCdASCII

DsCdHTML

DsCdPDF

5-77 305-CD-024-002

DsCdRTF

DsCdPostscript

DsCdBinary

DsCdWordB

DsCdWordPerfectB

DsCdInterleafB

The Document Repository Process is comprised of classes from this CSC.

Candidate products

N/A

ECS white paper references

N/A

5.5.1.6 Document Data Server (DDSRV) Search Engine CSC

Purpose and Description

The Document Data Server (DDSRV) Search Engine CSC consists of off-the-shelf software for
full-text indexing and searching of documents, and hyperlinked access to ESDT documents stored
in the DDSRV.

Mapping to objects implemented by this component

DsSeWWWServer

DsSeIndexer

The WWW Server Process contains the DsSeWWWServer class; the DsSeIndexer is contained in
the Document Repository Process.

Candidate products

NetScape

CNIDR-ISite

Quadralay

ECS white paper references

N/A

5.5.2 DDSRV CI Processes

5.5.2.1 Document Data Server Process

The Document Data Server Process provides the server functions necessary for the execution of
the "factory model". The Document Data Server Process consists of classes from the following
CSCs :

DDSRV

DDSRV Server

DDSRV ESDT

5-78 305-CD-024-002

5.5.2.2 WWW Server Process

The WWW Server process accepts client requests for searching document metadata and acquiring
documents, and consists of an HTTP server and a CGI interface to the Document Data Server
Process. The WWW Server process utilizes the CGI interface for mapping requests in HTTP to
service requests for additional processing by the Document Data Server Process. The WWW
Server Process consists of classes from the following CSC :

DDSRV Search Engine

5.5.2.3 Document Repository Process

The Document Repository Process provides persistent storage for the document Earth Science
Data types. The Document Repository Process consists of classes from the following CSCs :

DDSRV CSDT

DDSRV Search Engine

5.5.2.4 Client Applications Process

The Client Applications Process provides the class library to be used by client applications for
sending requests to the DDSRV. The Client Applications Process consists of classes from the
following CSC :

DDSRV Client CSC

5.6 CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

5.6.1 System Management Strategy

The DDSRV CSCI is designed to provide robust document storage, search, retrieval, and
distribution services to external data providers and requestors via an encapsulated COTS product.
Specifically, the design goal of the DDSRV CSCI is to always return status (successful or
unsuccessful) for every received request. To accomplish that goal, the CSCI follows ECS project
guidelines for:

5.6.1.1 Process startup and shutdown;

5.6.1.2 Error detection and reporting;

5.6.1.3 Fault tolerance and error recovery

5.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown. The DDSRV uses the services
during operation. The DocumentDataServer process is started as a standalone processes. The
primary role of the DocumentDataServer Process is to provide an access mechanism for search and
repository requests. The WWWServer process will routinely be started at system startup. The
WWWServer Process provides document index and search capabilities in addition to a

5-79 305-CD-024-002

communication infrastructure link for document transfer. The DocumentRepository process will
also routinely be started at system startup. The DocumentRepository process responds to storage
and retrieval command sent by the WWWServer process.

5.6.1.2 Error Detection and Reporting

The Document Data Server CSCI is designed for primarily automated operations with little need
for operations involvement short of tuning and critical error conditions. CSS and MSS jointly
provide event logging services for logging and reporting errors and faults, for browsing error/status
logs, and for detecting and reporting critical errors. The Document Data Server CSCI will fully
use those services during operations. Errors/status may be reported in two error logs. MSS
maintains the first log, the MSS event log. It contains errors/status of interest to operations staff
to evaluate system status and to perform trend analysis. The Document Data Server CSCI
maintains the second log. The Document Data Server event log contains selected errors/status
from the MSS event log (for context) plus highly-detailed debug events. Software maintenance
personnel use the Data Distribution event log to diagnose system and software problems in
response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in Table 5.6-
1.

5.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client (client being defined as any service requestor, not
just the ECS Desktop Client), it is the Document Data Server CSCI's design goal to complete the
request processing and return status (successful or unsuccessful) to the requestor. The Document
Data Server CSCI is a stateless entity. All internal request and distribution queuing will be in
accordance with the established http protocols of the encapsulated COTS product.

Failure scenarios with recovery methods include:

1) Failure of the Data Distribution Executable. This process is immediately restarted as a Unix
standalone process. The http-based COTS product will then utilize internal capabilities to continue
data distribution.

Table 5.6-1. DDSRV Error Categories

Error Category Actions to Be Taken

Initialization File/Environment Corrupt This would be seen during a system startup process and would
result in one or more executables not starting. Operations staff
evaluate the condition and correct.

Unable To Allocate Disk Space An indication disk space is running low for the COTS product.
Operations staff would need to offload data.

Communications Link Dropped This could be a serious failure of an internal component, CSCI,
or an external component. Operations would need to analyze a
local problem to determine in a hardware component or local
CSCI has failed. Operations would coordinate external prob-
lems with the appropriate site.

5-80 305-CD-024-002

2) Failure of the processor on which the DDSRV process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one or more
of the above process restarts. If the processor is disabled, the disablement is detected by MSS
SNMP services and a backup processor is restarted.

5.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 5.6.2-1 highlights the critical
DDSRV GUI screens.

Table 5.6.2-1 Document Data Server Management GUI

GUI Description Data Operations

Document Data
Server Manage-
ment

Primary Screen for
access to the fol-
lowing GUIs: Doc-
ument
Management and
COTS GUI

References to:
 Document Management and
 COTS GUIs

Logon
Realizes and/or makes visible
other GUIs

Document Man-
agement GUI

Allows operators
to manage the
documents within
the Document
Data Server

Document set information (con-
tents)
Documents

View contents
Insert a document
View a Document
Edit a Document
Delete a Document

COTS GUI Provides the func-
tionality for opera-
tors to manage the
Document Data
Server COTS
product

TBD TBD

5-81 305-CD-024-002

5.6.3 Standard DDSRV Reports

Table 5.6.3-1 Standard Document Data Server Reports

Report Type Report Description Intended Audience

Inventory Up-
date Report

Provides a record of new docu-
ments added to the DAAC, and
provides summary information
associated with the addition of
new documents based on the
reporting period which is either
the last 24 hours, the previous 7
days, previous 30 days, or num-
ber since a given date. Associ-
ated information includes:
number of requests received,
number of successful and un-
successful requests, number of
documents archived, average
documents archived per re-
quest, current number of ar-
chived documents, and
average number of documents
per request.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Document Error Is a summary report of the fre-
quency of errors encountered
during document processing.
The reporting period is either
the last 24 hours, the previous 7
days, previous 30 days, or num-
ber since a given date. Informa-
tion for each unsuccessful
request includes: date/time
stamp, request identifier, error
code, error message.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

5-82 305-CD-024-002

This page intentionally left blank.

6-1 305-CD-024-002

6. STMGT - Storage Management CSCI

6.1 CSCI Overview
The Storage Management CSCI is a generalization of the interfaces to the various data repositories
which the Data Server Subsystem includes. The STMGT CSCI provides a single interface for
making objects persistent, updating their persistent state, or removing them from persistent storage.
The Data Server Subsystem will include several different types of storage services; each may offer
specializations of that general interface which offer functions that are unique to that particular type
of storage.

The Data Storage class interface will allow callers to specify the semantics of storage requirements
which may then select a specific type or pool of storage. For example, SearchResult objects are
stored temporarily for transmission to the client or for packaging on media for subsequent shipment
to respective data requesters. From a resource management perspective, it is desirable to store the
search results on a specific set of devices and monitor storage allocation to protect the server
against shutdown due to storage overflow. One of the purposes of the data storage service class is
to separate the semantics of storage requirements from the semantics of device types, storage and
data management technologies, and interface syntax.

6.2 CSCI Context
Table 6.2-1 provides a mapping for the STMGT CI interfaces provided to other ECS CSCI's.
Table 6.2-2 defines the interfaces in terms of the STMGT-provided classes and the specific service
to be used to accomplish that interface. The response (return parameter) from that member
function is also included.

6.3 CSCI Object Model
This section provides several object models for the Storage Management CSCI. Figure 6.3-1
DsSt_Configuration shows those objects which maintain configuration parameters for the CSCI.
Figure 6.3-2 DsSt_CostUtilization shows those objects used to provide cost estimates for requests
which the CSCI receives. Figure 6.3-3 DsSt_DataStorage shows those objects used to store files,
both temporarily and permanently. Figure 6.3-4 DsSt_DiskMonitoring shows those objects which
monitor magnetic disk usage and provide insight into the contents of staging disk and the Pull Disk.
Figure 6.3-5 DsSt_FileAccess shows those objects used to provide file level access to staging disk
work areas which have been allocated by STMGT clients. Figure 6.3-6 DsSt_FileList shows those
objects used to backup and restore data files. Figure 6.3-7 DsSt_Peripherals shows those objects
used in ingesting and distributing ECS data files. Figure 6.3-8 DsSt_ResourceManagement shows
those objects used to manage and control resources. Each of the objects in these figures is
described briefly in the subsequent paragraphs. The attributes shown in the figure are described in
the ECS Data Dictionary (305-CD-018 Volume 18). Other objects that may appear in the object
model, but not described in the following section are allocated to other CSCIs and are replicated
here for the purpose of completeness.

6-2 305-CD-024-002

S
T

M
G

T

D
D

IS
T

IN
T

O
P

A
dm

in
/O

P

IN
G

S
T

S
D

S
R

V

C
ha

ng
eD

ev
ic

eS
ta

tu
s,

R
ep

or
tR

es
ou

rc
eS

ta
ts

,
G

et
D

ev
ic

eS
ta

tu
s,

 R
ep

or
tO

pe
ra

tio
ns

, R
ep

or
tC

on
fig

ur
at

io
n,

R
ep

or
tR

es
ou

rc
eP

er
fo

rm
an

ce

D
ev

ic
eS

ta
tu

s,
R

es
ou

rc
eR

ep
or

ts
,

C
on

fig
ur

at
io

nR
ep

or
t

A
llo

ca
te

, D
ea

llo
ca

te
,

A
bo

rt
, R

eq
ue

st
S

ta
tu

s,
S

et
P

rio
rit

y,
D

is
tF

ro
m

,
E

st
im

at
eC

os
ts

R
es

ou
rc

eO
bj

ec
t,

S
ta

tu
s,

R
es

ou
rc

eC
os

tE
st

im
at

e

R
es

ou
rc

eO
bj

ec
t,

S
ta

tu
s

A
llo

ca
te

,
D

ea
llo

ca
te

,
In

ge
st

F
ro

m
,

R
eq

ue
st

S
ta

tu

R
es

ou
rc

eO
bj

ec
t,

S
ta

tu
s,

D
at

aO
bj

ec
ts

,
R

es
ou

rc
eC

os
tE

st
im

at
e,

R
es

ou
rc

eD
el

ay
E

st
im

at
e

A
dv

er
tis

em
en

t,
A

dv
er

tis
em

en
tC

an
ce

lla
tio

n

S
ta

tu
s

A
llo

ca
te

, D
ea

llo
ca

te
, R

eq
ue

st
S

ta
tu

s,
 S

to
re

, R
et

rie
ve

, D
el

et
eF

ile
,

E
st

im
at

eC
os

ts
, E

st
im

at
eD

el
ay

, R
es

to
re

S
et

P
rio

rit
y

A
bo

rt
s

B
ac

ku
p

R
es

to
re

F
ig

u
re

 6
.2

-1
. S

T
M

G
T

_E
ve

n
t

F
lo

w
 D

ia
g

ra
m

6-3 305-CD-024-002

Table 6.2-1. STMGT_events Event Flow Summary Table (1 of 2)
Sender Receiver Event Name

DDIST STMGT Abort

INGST STMGT Abort

STMGT INTOP Advertisement

STMGT INTOP AdvertisementCancellation

DDIST STMGT Allocate

INGST STMGT Allocate

SDSRV STMGT Allocate

Admin/OP STMGT Backup

Admin/OP STMGT ChangeDeviceStatus

STMGT Admin/OP ConfigurationReport

STMGT SDSRV DataObjects

DDIST STMGT Deallocate

INGST STMGT Deallocate

SDSRV STMGT Deallocate

SDSRV STMGT DeleteFile

STMGT Admin/OP DeviceStatus

DDIST STMGT DistFrom

DDIST STMGT EstimateCosts

SDSRV STMGT EstimateCosts

SDSRV STMGT EstimateDelay

Admin/OP STMGT GetDeviceStatus

INGST STMGT IngestFrom

STMGT Admin/OP OperationsReport

Admin/OP STMGT ReportConfig

Admin/OP STMGT ReportResourcePerformance

Admin/OP STMGT ReportOperations

Admin/OP STMGT ReportResourceStats

DDIST STMGT RequestStatus

INGST STMGT RequestStatus

SDSRV STMGT RequestStatus

Admin/OP STMGT ReportOperations

STMGT DDIST ResourceCostEstimate

STMGT SDSRV ResourceCostEstimate

SDSRV STMGT ResourceDelayEstimate

STMGT SDSRV ResourceObject

STMGT INGST ResourceObject

6-4 305-CD-024-002

Sender Receiver Event Name

STMGT DDIST ResourceObject

STMGT Admin/OP ResourceReports

SDSRV STMGT Retrieve

DDIST STMGT SetPriority

Admin/OP STMGT ShowConfig

STMGT SDSRV Status

STMGT INGST Status

STMGT DDIST Status

INTOP STMGT Status

SDSRV STMGT Store

Table 6.2-2. CSCI Interfaces (1 of 2)
Interface Input Data Output Data Description

Abort Request RequestID Status This interface provides the capability to
terminate processing of current inactive
requests.

Advertisement
Request

Service Name
Service
Description
Service Provider

Status This interface provides the capability to
request the advertisement of services unique
to the Storage Management CI

Advertisement
Cancellation
Request

Service Name
Service Provider

Status This interface provides the capability to
request the cancellation of advertisement of
services unique to the Storage Management
CI

Allocate Resource
Request

ResourceType
MediaType
RequestID
Priority
Size
Profile Info

Resource
Reference
Status

This interface provides the capability to
allocate resources.

Backup
Request

Backup Type This interface provides the capability to
operations personnel to request the backup
of archive data.

Deallocate
Resource Request

Allocation Identifier Status This interface provides the capability to
deallocate previously allocated resources.

DeleteFile Request Status This interface provides the capability to
delete a file from the archive.

Device Control
Request

Storage Device
Identifier Action

Status This interface provides operations personnel
the capability to control the devices
managed and monitored by storage
management services.

Dismount Request Archive volume Status This interface provides the capability to
operations personnel to request the
dismount of specific media.

Table 6.2-1. STMGT_events Event Flow Summary Table (2 of 2)

6-5 305-CD-024-002

Interface Input Data Output Data Description

EstimateCosts
Request

Size Status This interface provides the capability to
get an estimate of the cost of performing
storage system related services.

EstimateDelay
Request

Status This interface provides the capability to get
an estimate of the time delay to retrieve data
files from the archive.

Event Registration
Request

Event Description
Requester
Identifier

Event
Notification

This interface provides the capability to
request notification of specific archive
related events.

Log Data Access
Request

Log Identifier Log Data
Status

This interface provides the capability to
request access to log data collected by the
Storage Management CI

Mount Request Archive volume Status This interface provides the capability to
operations personnel to request the mount of
specific media.

ReportConfiguration
Request

Status This interface provides the capability to
operations personnel to display or view the
parameters in various storage system
configuration files.

ReportPerformance
Request

Status This interface provides the capability to
operations personnel to get performance
reports on storage system resources.

ReportOperations
Request

Status This interface provides the capability to
operations personnel to get a report of
storage system operations.

Reserve Resource
Request

Resource Identifier
Requester
Identifier Priority

Status This interface provides the capability to
reserve specific resources managed by the
Storage Management CI.

Restore
Request

Restore Type This interface provides the capability to
operations personnel to request the
restoration of archived data which has been
backed up.

Retrieve Request DataName
DestLocation
Size
Priority
RequestID

DataReference
Status
Estimated Cost

This interface provides the capability to
request the retrieval of data objects from
archival storage.

Status Request Request Identifier Status
Information

This interface provides the capability to
request the status of previously submitted
retrieve or insert requests.

Store Request DataName
SourceLocation
Size
Priority
RequestID

Status
Estimated Cost

This interface provides the capability to
request the insertion of data objects to
archival storage.

Table 6.2-2. CSCI Interfaces (2 of 2)

6-6 305-CD-024-002

D
sC

nC
on

fig
ur

at
io

n

D
sS

tR
es

ou
rc

eC
on

fig
D

sS
tC

ac
he

C
on

fig
D

sS
tP

ul
lC

on
fig

D
sS

tS
ch

ed
ul

in
gC

on
fig

O
ffp

ag
e

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

F
ig

u
re

 6
.3

-1
.

D
S

S
T

_C
o

n
fi

g
u

ra
ti

o
n

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

6-7 305-CD-024-002

D
sU

zC
os

tB

D
sU

zR
es

ou
rc

eC
os

tB

D
sU

zU
til

iz
at

io
nT

ab
le

B

D
sU

zD
is

kC
os

tB
D

sU
zC

P
U

C
os

tB
D

sU
zF

ix
ed

C
os

tB
D

sU
zA

rc
hi

ve
C

os
tB

D
sU

zM
ed

ia
C

os
tB

D
sU

zI
O

C
os

tB

D
sS

tR
es

ou
rc

eM
an

ag
er

.

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

ge
t

re
so

ur
ce

s
fr

om

F
ig

u
re

 6
.3

-2
.

D
S

S
T

_C
o

st
U

ti
liz

at
io

n
 O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

6-8 305-CD-024-002

Figure 6.3-3. DSST_DataStorage Object Model Diagram

DsStResource

DsStStorageResource

DsStStagingDisk DsStArchive

EstmateDelayB(Filename: RWCString)

myID
myNumDataTypes
myDataTypeNames
myBackupB
myOffsiteLocationB

CreateCheckSum(filename: RWCString)
GetCheckSum(GIParameterList*)

~DsStArchive(primaryarchive: RWCString, backuparchive: RWCString,
offsitelocation: RWCString)

SetDataTypeName(ndtype: EcTShortInt, dtypename: RWCString)
SetNumDataTypes(numdatatypes: EcTShortInt)
SetID(archiveID: RWCString)
GetID(archiveID: RWCString)
GetNumDataTypes(numdatatypes: EcTShortInt)
ReportPerformanceB()
DeleteFileB(Filename: RWCString)
EstimateDelay(filename: RWCString)
ReportChecksumErrorB()
RestoreFileB(Filename: RWCString)
GetDataTypeName(ndtype: EcTShortInt, dtypename: RWCString *)
DeleteArchiveFileB(filename: RWCString)
Retrieve(RetrieveParams: DsStFileParametersB, Cost, *DsUzCostB)
Store(StoreParams: DsStFileParametersB, Cost, *DsUzCostB)
CopyFileB(SrcFilename: RWCString, DestFilename: RWCString)

DsStArchiveB(primaryarchive: RWCString, backuparchive: RWCString,
offsitelocation: RWCString)

[DISTR OBJ]

[Public]

Offpage

[DISTR OBJ]

[Public]

Offpage [DISTR OBJ]

[Public]

 + : secs:EcTFloat

 + : RWCString
 + : EcTShortInt = 1
 + : RWCString
 - : RWCString
 - : RWCString

 + : EcTLongInt
 + : EcTLongInt

 + : EcTVoid

 - : GlStatus
 - : GlStatus
 - : GlStatus
 + : GlStatus
 - : GlStatus
 - : EcTVoid
 + : GIStatus
 +
 - : EcTVoid
 + : EcUtStatus
 +
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus

 +

6-9 305-CD-024-002

Figure 6.3-4. DSST_DiskMonitoring Object Model Diagram

DsStMonitor

DsStPullMonitor DsStStagingMonitor

myConfirmDeletion
myAlarmThreshold
myConfirmTimeOut
myconfig

ReportStats()
ReclaimSpace()

myconfig

ReportStats()
ReclaimSpace()

DsStPullList

myCurrentSize

GetCurrentSize()
SetCurrentSize(CurrentSize: EcTUShortInt)
ReadNextElement(RequestInfo: structure)
DeleteElement(FileName: RWCString *)
DissociateElement(FileName: RWCString *, RequestID: EcTULongInt)
AssociateElement(FileName: RWCString *, RequestID: EcTULongInt)
AddElement(FileName: RWCString *,FileSize: long, RequestID: unsigned long,
Priority: short, ProfileInfo: ptr)
GetExpiration(FileName: RWCString *)
SetExpiration(FileName: RWCString *, ExpTimeDate: RWCString *)

DsStStagingDataList

myTotalSize
myNextElement
myCurrentSize

GetTotalSize(TotalSize: EcTLongInt)
SetTotalSize(TotalSize: EcTLongInt)
GetCurrentSize(TotalFiles: EcTShortInt)
SetCurrentSize(TotalFiles: EcTShortInt)
SetExpiration(FileName: RWCString *, TimeDate: RWCString *)
DeleteElement(FileName: RWCString *, RequestID: EcTLongInt)
ReadNextElement(NextFile: ptr)
AssociateElement(FileName: RWCString *)
DisassociateElement(FileName: RWCString *)
AddElement(FileName: char *, RequestID: EcTULongInt, Size: EcTLongInt, Priority:
EcTShortInt)

myLowWaterMark
myHighWaterMark
myFreeCache
mySleepTime
myMaxSize

DeleteFile(filename: RWCString)
GetFreeCache()
GetHighWaterMark()
GetLowWaterMark()
GetMaxSize()
GetNumberFiles()
GetSleepTime()
ReclaimSpace()
ReportStats()
SetFreeCache(size: EcTLongInt)
SetHighWaterMark(Percent: EcTFloat)
SetLowWaterMark(Percent: EcTFloat)
SetMaxSize(MaxSize: EcTLongInt)
SetNumberFiles(TotalFiles: EcTLongInt)
SetSleepTime(SleepTime: EcTFloat)
~DsStMonitor()
DsStMonitor()
ShowConfigB()

 - : EcTBoolean = False
 - : EcTFloat
 - : EcTFloat = 60
 - : * DsStPullConfig

 + : EcTVoid
 + : EcTVoid

 - : * DsStCacheConfig

 +
 - : EcTVoid

/- : EcTUShortInt = 0

 - : EcTUShortInt
 - : GlStatus
 - : GlStatus
 - : GlStatus
 - : GlStatus
 - : GlStatus

 - : RWCString *
 - : GlStatus

 - : EcTLongInt = 0
/- : ptr
/- : EcTShortInt = 0

 + : GlStatus
 + : GlStatus
 - : GlStatus
 - : GlStatus
 - : GlStatus
 - : GlStatus
 - : GlStatus
 - : GlStatus
 - : GlStatus

 - : EcTFloat
 - : EcTFloat
 - : EcTLongInt
 - : EcTFloat
 - : EcTLongInt

 + : EcUtStatus
 + : EcTLongInt
 + : EcTFloat
 + : EcTFloat
 + : EcTLongInt
 + : EcTLong
 + : EcTFloat
 - : EcTVoid
 - : outfile&ostream
 - : EcTVoid
 - : EcTVoid
 - : EcTVoid
 - : EcTVoid
 - : EcTVoid
 - : EcTVoid
 + : EctVoid
 + : EctVoid
 + : ostream&outfile

manages pull area via

manages staged data via

6-10 305-CD-024-002

Figure 6.3-5. DSST_FileAccess Object Model Diagram

DsStStagingDisk

DsStStream

myFileName
mySize

~DsStStream()

myAvailableSpace
myPathname
mySize
myMaxSize

ExtendStaging(ExtendSize: EcTShortInt)
SetAvailableSpace(AvailableSpace: EcTLongInt)
GetAvailableSpace(AvailableSpace: EcTLongInt)
SetPathName(PathName: RWCString *)
GetPathName(PathName: RWCString *)
SetMaxSize(MaxSize: EcTLongInt)
GetMaxSize(MaxSize: EcTLongInt)
GetSize(CurrentSize: EcTLongInt)
SetSize(CurrentSize: EcTLongInt)
CopyFile(SourceFile: RWCString *, DestFile: RWCString *)
~DsStStagingDisk()
ReportStatsB()

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

 - : RWCString *
 - : EcTLongInt

 + : EcTVoid

/+ : EcTLongInt = 0
 + : RWCString *
 + : EcTLongInt = 0
 - : EcTLongInt

 - : GlStatus
 - : GlStatus
 + : GlStatus
 + : GlStatus
 + : GlStatus
 - : GlStatus
 + : GlStatus
 + : GlStatus
 - : GlStatus
 - : GlStatus
 + : void
 + : ostream&outfile

6-11 305-CD-024-002

D
sS

tF
ile

Li
st

B

D
sS

tB
ac

ku
pL

is
tB

D
sS

tR
es

to
re

Li
st

B

m
yF

ile
na

m
es

B

m
yP

rim
ar

yA
rc

hi
ve

B

m
yB

ac
ku

pA
rc

hi
ve

B

m
yO

ffs
ite

Lo
ca

tio
nB

D
sS

tF
ile

Li
st

B
(li

st
fil

e:
 R

W
C

S
tr

in
g)

~
D

sS
tF

ile
Li

st
B

()

R
em

ov
eF

ile
B

(f
ile

na
m

e:
 R

W
C

S
tr

in
g)

U
pd

at
eS

ta
tu

sB
(f

ile
na

m
e:

 R
W

C
S

tr
in

g,
 s

ta
te

: E
cT

E
nu

m
)

A
dd

F
ile

B
(f

ile
na

m
e:

 R
W

C
S

tr
in

g,
 p

rim
ar

ya
rc

hi
ve

: R
W

C
S

tr
in

g,
 b

ac
ku

pa
rc

hi
ve

:
R

W
C

S
tr

in
g,

 o
ffs

ite
lo

ca
tio

n:
 R

W
C

S
tr

in
g,

 "
P

en
di

ng
")

m
yS

ta
te

B
m

yS
ta

te
B

m
yO

ffs
ite

V
ol

um
eB

A
dd

F
ile

B
(f

ile
na

m
e:

 R
W

C
S

tr
in

g,
 p

rim
ar

ya
rc

hi
ve

: R
W

C
S

tr
in

g,
 "

W
ai

tin
g

E
xt

er
na

l
S

ou
rc

e"
)

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

+

+

 :

E
cT

V
oi

d

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
E

tC
E

nu
m

 =
 P

en
di

ng
Lo

ca
l

-

 :
E

cT
E

nu
m

 =
 P

en
di

ng
Lo

ca
l

-

 :
R

W
C

S
tr

in
g

+

F
ig

u
re

 6
.3

-6
.

D
S

S
T

_F
ile

L
is

t
O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

6-12 305-CD-024-002

D
sS

tR
es

ou
rc

e

D
sS

tP
hy

si
ca

lR
es

ou
rc

e
D

sS
tN

et
w

or
kR

es
ou

rc
e

D
sS

tP
rin

te
r

P
rin

t(
F

ile
N

am
e:

 R
W

C
S

tr
in

g
*)

~
D

sS
tP

rin
te

r(
)

D
sS

tT
ap

e

D
sS

tF
ax

B

D
sS

tC
D

R
O

M

m
yR

em
ai

ni
ng

S
ec

to
rs

m
yC

ap
ac

ity
m

yN
ex

tF
re

eD
irS

ec
to

r
m

yN
ex

tF
re

eD
at

aS
ec

to
r

m
yF

irs
tU

se
dS

ec
to

r

S
et

R
em

ai
ni

ng
S

ec
to

rs
(A

va
ilS

ec
to

rs
: E

cT
Lo

ng
In

t)
G

et
R

em
ai

ni
ng

S
ec

to
rs

(A
va

ilS
ec

to
rs

: E
cT

Lo
ng

In
t)

G
et

N
ex

tF
re

eD
at

aS
ec

to
r(

N
ex

tS
ec

to
r:

 E
cT

Lo
ng

In
t)

S
et

N
ex

tF
re

eD
at

aS
ec

to
r(

N
ex

tS
ec

to
r:

 E
cT

Lo
ng

In
t)

G
et

F
irs

tU
se

dS
ec

to
r(

F
irs

tS
ec

to
r:

 E
cT

Lo
ng

In
t)

S
et

F
irs

tU
se

dS
ec

to
r(

F
irs

tS
ec

to
r:

 E
cT

Lo
ng

In
t)

G
et

N
ex

tF
re

eD
irS

ec
to

r(
N

ex
tS

ec
to

r:
 E

cT
Lo

ng
In

t)
S

et
N

ex
tF

re
eD

irS
ec

to
r(

N
ex

tS
ec

to
r:

 E
cT

Lo
ng

In
t)

G
et

C
ap

ac
ity

(M
ax

B
yt

es
: E

cT
Lo

ng
In

t)
S

et
C

ap
ac

ity
(M

ax
B

yt
es

: E
cT

Lo
ng

In
t)

D
is

m
ou

nt
(V

ol
N

am
e:

 R
W

C
S

tr
in

g
*)

M
ou

nt
(V

ol
N

am
e:

 R
W

C
S

tr
in

g
*)

~
D

sS
tC

D
R

O
M

()

~
D

sS
tF

ax
B

()

m
yR

em
ai

ni
ng

B
lo

ck
s

m
yB

lo
ck

C
ou

nt
m

yN
ex

tB
lo

ck
m

yB
lo

ck
S

iz
e

m
yT

ap
eT

yp
e

m
yC

ap
ac

ity

S
et

R
em

ai
ni

ng
B

lo
ck

s(
A

va
ilB

lo
ck

s:
 E

cT
Lo

ng
In

t)
G

et
R

em
ai

ni
ng

B
lo

ck
s(

)
R

ew
in

d(
)

D
is

m
ou

nt
(V

ol
N

am
e:

 R
W

C
S

tr
in

g
*)

M
ou

nt
(V

ol
N

am
e:

 R
W

C
S

tr
in

g
*)

G
et

B
lo

ck
S

iz
e(

)
S

et
B

lo
ck

S
iz

e(
B

lo
ck

S
iz

e:
 E

cT
Lo

ng
In

t)
G

et
B

lo
ck

C
ou

nt
()

S
et

B
lo

ck
C

ou
nt

(B
lo

ck
C

ou
nt

: E
cT

Lo
ng

In
t)

S
et

N
ex

tB
lo

ck
(N

ex
tB

lo
ck

: E
cT

Lo
ng

In
t)

~
D

sS
tT

ap
e(

)
G

et
N

ex
tB

lo
ck

()

m
yD

es
tin

at
io

n
m

yS
ou

rc
e

S
et

D
es

tin
at

io
n(

N
od

eN
am

e:
 R

W
C

S
tr

in
g

*)
S

et
S

ou
rc

e(
N

od
eN

am
e:

 R
W

C
S

tr
in

g
*)

G
et

D
es

tin
at

io
n(

)
~

D
sS

tN
et

w
or

kR
es

ou
rc

e(
)

G
et

S
ou

rc
e(

)

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

O
ffp

ag
e

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cT

V
oi

d

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

/
+

 :

E
cT

Lo
ng

In
t =

 0

-
 :

E
cT

Lo
ng

In
t

-

 :
E

cT
Lo

ng
In

t

-
 :

E
cT

Lo
ng

In
t

-

 :
E

cT
Lo

ng
In

t

+

 :

G
lS

ta
tu

s

+

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

+

 :

G
lS

ta
tu

s

-
 :

G
lS

ta
tu

s

+

 :
G

lS
ta

tu
s

+

 :

G
lS

ta
tu

s

+

 :
vo

id

+

 :

vo
id

+

 :

E
cT

Lo
ng

In
t =

 0

+

 :
E

cT
Lo

ng
In

t =
 0

-

 :
E

cT
Lo

ng
In

t =
 0

-

 :
E

cT
Lo

ng
In

t =
 0

+

 :

R
W

C
S

tr
in

g
*

/
+

 :

E
cT

Lo
ng

In
t =

 0

-

 :
E

cT
V

oi
d

+

 :

E
cT

Lo
ng

In
t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
E

cT
V

oi
d

+

 :

E
cU

tS
ta

tu
s

-

 :
E

cT
V

oi
d

-

 :
E

cT
V

oi
d

+

 :

E
ct

V
oi

d

+

 :
E

cT
Lo

ng
In

t

-

 :
R

W
C

S
tr

in
g

*

-
 :

R
W

C
S

tr
in

g
*

+

 :

E
cT

V
oi

d

+

 :
E

cT
V

oi
d

+

 :

R
W

C
S

tr
in

g
*

+

 :

E
ct

V
oi

d

+

 :
R

W
C

S
tr

in
g

*

F
ig

u
re

 6
.3

-7
.

D
S

S
T

_P
er

ip
h

er
al

s
O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

6-13 305-CD-024-002

D
sS

tR
eq

ue
st

M
an

ag
er

D
sS

tR
es

ou
rc

eM
an

ag
er

m
yR

es
er

ve
dR

es
ou

rc
es

m
yM

ax
R

es
ou

rc
es

m
yR

es
ou

rc
eT

yp
e

m
yF

re
eR

es
ou

rc
es

m
yC

on
cu

rr
en

tO
pe

ra
tio

ns
B

m
ys

ta
tQ

si
ze

m
ys

ta
tQ

R
ep

or
tR

es
ou

rc
eI

nf
or

m
at

io
n(

)
G

et
R

es
er

ve
dR

es
ou

rc
es

(N
um

R
es

ou
rc

es
: E

cT
S

ho
rt

In
t)

S
et

F
re

eR
es

ou
rc

es
(N

um
R

es
ou

rc
es

: E
cT

S
ho

rt
In

t)
G

et
F

re
eR

es
ou

rc
es

(N
um

R
es

ou
rc

es
: E

cT
S

ho
rt

In
t)

C
ha

ng
eP

rio
rit

y(
R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t,
P

rio
rit

y:
 E

cT
S

ho
rt

In
t)

C
ha

ng
eD

ev
ic

eS
ta

tu
s(

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t,

N
ew

S
ta

tu
s:

 E
cT

S
ho

rt
In

t)
A

bo
rt

R
eq

ue
st

(R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t)

R
eq

ue
st

S
ta

tu
s(

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t)

A
llo

ca
te

R
es

ou
rc

e(
M

ed
ia

T
yp

e:
 E

tC
E

nu
m

, R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t,

P
rio

rit
y:

E
cT

S
ho

rt
In

t,
S

iz
e:

 E
cT

S
ho

rt
In

t,
P

ro
fil

eI
nf

o:
 p

tr
)

D
ea

llo
ca

te
R

es
ou

rc
e(

R
es

ou
rc

eR
ef

: p
tr

)
M

ou
nt

V
ol

um
e(

V
ol

N
am

e:
 R

W
C

S
tr

in
g*

)
E

st
im

at
eC

os
ts

()
R

ep
or

tR
es

ou
rc

eP
er

fo
rm

an
ce

B
()

R
ep

or
tO

pe
ra

tio
ns

B
()

D
is

m
ou

nt
V

ol
um

e(
V

ol
N

am
e:

 R
W

C
S

tr
in

g*
)

G
et

C
on

cu
rr

en
tO

pe
ra

tio
ns

B
()

E
st

im
at

eD
el

ay
B

()
D

is
pl

ay
C

on
fig

B
()

E
st

im
at

eC
os

tB
(s

er
vi

ce
: R

W
C

S
tr

in
g,

 s
iz

e:
 E

cT
F

lo
at

)
G

et
Q

S
iz

e(
)

B
ac

ku
p(

B
ac

ku
pT

yp
e:

 E
tC

E
nu

m
 (

Lo
ca

l |
 O

ffs
ite

))
R

es
to

re
()

G
et

Q
D

ur
at

io
n(

)

D
sS

tR
es

ou
rc

eQ
ue

ue

D
sS

tR
es

ou
rc

e

D
sS

tP
ul

lL
is

t

D
sS

tS
ta

gi
ng

D
at

aL
is

t

D
sS

tR
es

ou
rc

eS
ch

ed
ul

e

m
yS

ch
ed

ul
eF

ile
N

am
e

m
yP

oo
lN

am
e

$m
yS

ch
ed

ul
in

gC
on

fig
m

yE
nd

D
at

e
m

yc
on

fig
m

yS
ta

rt
D

at
e

C
an

ce
lR

es
er

va
tio

n(
R

es
er

va
tio

nR
ef

: E
cT

U
Lo

ng
In

t,
R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t)
C

re
at

eS
ch

ed
ul

e(
)

R
ep

or
tS

ch
ed

ul
e(

D
ev

ic
eU

se
: E

cT
E

nu
m

, S
ta

rt
T

im
e:

 R
W

C
S

tr
in

g
*,

 E
nd

T
im

e:
 R

W
C

S
tr

in
g

*)
R

es
to

re
S

ch
ed

ul
e(

)
C

al
cu

la
te

S
er

vi
ce

T
im

eB
()

S
av

eS
ch

ed
ul

e(
)

R
ol

lS
ch

ed
ul

e(
N

um
be

rD
ay

s:
 E

cT
U

S
ho

rt
In

t)
F

in
dR

eq
ue

st
(R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t,
R

eq
ue

st
In

fo
: s

tr
uc

tu
re

)
F

in
dR

es
ou

rc
e(

S
ta

rt
T

im
e:

 R
W

C
S

tr
in

g
*,

 E
nd

T
im

e:
 R

W
C

S
tr

in
g

*,
 R

es
ou

rc
eR

ef
:

E
cT

U
Lo

ng
In

t)
A

ct
iv

at
eR

es
er

va
tio

n(
)

B
oo

kR
es

ou
rc

e(
R

es
ou

rc
eR

ef
: E

cT
U

Lo
ng

In
t,

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t,

S
ta

rt
T

im
e:

R
W

C
S

tr
in

g
*,

 E
nd

T
im

e:
,S

iz
e:

un
si

gn
ed

 s
ho

rt
,M

ed
ia

T
yp

e:
en

um
,P

rio
rit

y:
un

si
gn

ed
sh

or
t,P

ro
fil

eI
nf

o:
 p

tr
,T

yp
e:

 E
tC

E
nu

m
)

G
et

C
ur

re
nt

T
im

e(
C

ur
re

nt
T

im
e:

 R
W

C
S

tr
in

g
*)

C
he

ck
R

es
er

va
tio

ns
(C

he
ck

Q
ue

ue
: E

cT
B

oo
le

an
)

R
ec

or
dE

nd
T

im
e(

R
es

ou
rc

eR
ef

: E
cT

U
Lo

ng
In

t,
C

om
pl

et
io

nS
ta

tu
s:

 E
cT

Lo
ng

In
t)

R
ep

or
tO

pe
ra

tio
ns

B
()

S
ho

w
C

on
fig

B
()

D
sS

tR
es

er
va

tio
n

m
yS

ub
m

itT
im

e
m

yR
es

er
va

tio
nR

ef
m

yP
rio

rit
y

m
yE

nd
T

im
e

m
yS

ta
rt

T
im

e
m

yS
iz

e
m

yR
es

ou
rc

eT
yp

e
m

yR
eq

ue
st

er

C
an

ce
l(R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t)
S

et
E

nd
T

im
e(

T
im

eD
at

e:
 R

W
C

S
tr

in
g

*)
S

et
S

ta
rt

T
im

e(
T

im
eD

at
e:

 R
W

C
S

tr
in

g
*)

S
et

R
eq

ue
st

er
(R

eq
ue

st
er

N
am

e:
 R

W
C

S
tr

in
g)

M
ak

e(
)

A
ct

iv
at

e(
R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t,
R

es
ou

rc
eR

ef
: p

tr
)

S
ub

m
it(

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t)

S
et

R
es

S
iz

e(
R

es
er

va
tio

nS
iz

e:
 E

cT
U

S
ho

rt
In

t)
S

et
P

rio
rit

y(
P

rio
rit

y:
 E

cT
U

S
ho

rt
In

t)
S

et
R

es
ou

rc
eT

yp
e(

R
es

ou
rc

eT
yp

e:
 R

W
C

S
tr

in
g

*)

m
yR

eq
ue

st
T

ab
le

m
yN

um
be

rR
eq

ue
st

s

S
ta

rt
S

er
vi

ce
(R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t)
E

nd
S

er
vi

ce
(R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t)
R

ep
or

tR
es

ou
rc

eS
ta

ts
(D

ev
ic

eN
am

e:
 R

W
C

S
tr

in
g

*)
G

et
D

ev
ic

eS
ta

tu
s(

D
ev

ic
eN

am
e:

 R
W

C
S

tr
in

g
*,

D
ev

ic
eS

ta
tu

s:
 R

W
C

S
tr

in
g

*)
C

ha
ng

eD
ev

ic
eS

ta
tu

s(
D

ev
ic

eN
am

e:
 R

W
C

S
tr

in
g

*,
 D

ev
ic

eS
ta

tu
s:

 R
W

C
S

tr
in

g
*)

R
eq

ue
st

S
ta

tu
s(

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t)

Lo
ca

te
M

an
ag

er
(R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t)
C

ha
ng

eR
eq

ue
st

P
rio

rit
y(

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t,

P
rio

rit
y:

 E
cT

S
ho

rt
In

t)
M

ou
nt

V
ol

um
e(

V
ol

N
am

e:
 R

W
C

S
tr

in
g

*)
D

is
m

ou
nt

V
ol

um
e(

V
ol

N
am

e:
 R

W
C

S
tr

in
g

*)
R

ep
or

tR
es

ou
rc

eP
er

fo
rm

an
ce

B
()

E
st

im
at

eC
os

ts
B

(R
eq

ue
st

S
iz

e:
 E

cT
In

t,
S

er
vi

ce
: R

W
C

S
tr

in
g)

E
st

im
at

eS
to

ra
ge

A
cc

es
sD

el
ay

B
(F

ile
na

m
e:

 R
W

C
S

tr
in

g
*)

R
ep

or
tO

pe
ra

tio
ns

B
(R

es
ou

rc
eT

yp
e:

 R
W

C
S

tr
in

g)
R

ep
or

tC
on

fig
B

(C
on

fig
F

ile
: E

cT
P

tr
)

A
bo

rt
(R

eq
ue

st
ID

: E
cT

U
Lo

ng
In

t)

m
yM

ax
S

iz
e

m
yC

ur
re

nt
qu

eu
ed

m
yC

ur
re

nt
Q

ue
ue

T
im

eB
m

yS
ta

tQ
ue

ue
B

m
ys

ta
tQ

S
iz

eB
m

yL
as

tQ
T

im
eB

m
yQ

P
er

io
dB

m
yQ

T
im

eB
m

ym
ax

Q
T

im
eB

m
ym

in
Q

T
im

eB

R
es

to
re

Q
ue

ue
()

G
et

C
ur

re
nt

Q
ue

ue
d(

)
D

eq
ue

ue
(R

eq
ue

st
In

fo
: s

tr
uc

tu
re

)
Q

ue
ue

(R
eq

ue
st

In
fo

: s
tr

uc
tu

re
)

U
pd

at
e(

R
eq

ue
st

In
fo

: s
tr

uc
tu

re
)

G
et

N
ex

tQ
ue

ue
d(

R
eq

ue
st

In
fo

: s
tr

uc
tu

re
)

S
et

P
rio

rit
y(

P
rio

rit
y:

 E
cT

U
S

ho
rt

In
t,

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t)

F
in

dR
eq

ue
st

(R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t)

R
ep

or
tO

pe
ra

tio
ns

B
()

C
al

cu
la

te
Q

ue
ue

T
im

eB
()

G
et

Q
S

iz
e(

)
G

et
A

vg
Q

ue
ue

S
iz

e(
)

G
et

Q
S

iz
eB

()
G

et
La

st
Q

T
im

eB
()

G
et

Q
T

im
eB

()
G

et
M

ax
Q

T
im

eB
()

G
et

M
in

Q
T

im
eB

()
U

pd
at

eQ
S

ta
ts

B
()

m
yS

ta
tu

s
m

yP
rio

rit
y

m
yM

ed
ia

S
iz

e

m
yR

es
ou

rc
eN

am
e

ou
rM

an
ag

er
ou

rS
ch

ed
ul

e

A
llo

ca
te

(R
es

ou
rc

eT
yp

r:
 R

W
C

S
tr

in
g

*,
 M

ed
ia

T
yp

e:
 E

tC
E

nu
m

, R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t,

P
rio

rit
y:

 E
cT

S
ho

rt
In

t,
S

iz
e:

 E
cT

Lo
ng

In
t,

P
ro

fil
eI

nf
o:

 p
tr

)
R

es
to

re
R

es
ou

rc
eI

nf
or

m
at

io
n(

)
~

D
sS

tR
es

ou
rc

e(
)

D
ea

llo
ca

te
(R

es
ou

rc
eR

ef
: p

tr
)

G
et

M
ed

ia
S

iz
e(

)
S

et
M

ed
ia

S
iz

e(
M

ed
ia

S
iz

e:
 E

cT
E

nu
m

)
S

et
P

rio
rit

y(
R

eq
ue

st
ID

: E
cT

In
t,

N
ew

P
rio

rit
y:

 E
cT

S
ho

rt
In

t)
G

et
D

ev
T

im
e(

S
iz

e:
 E

cT
U

Lo
ng

In
t,

M
ed

ia
S

iz
e:

 E
tC

E
nu

m
, D

ev
ic

eT
im

e:
 E

cT
U

S
ho

rt
In

t)
D

is
tF

ro
m

(S
ou

rc
eR

es
ou

rc
e:

 R
W

C
S

tr
in

g
*,

 O
pe

ra
tio

n:
 R

W
C

S
tr

in
g

*,
 D

at
aI

te
m

N
am

e:
R

W
C

S
tr

in
g

*)
S

et
S

ta
tu

s(
D

ev
ic

eS
ta

tu
s:

 R
W

C
S

tr
in

g
*)

G
et

S
ta

tu
s(

)
G

et
R

es
ou

rc
eI

D
()

G
et

P
rio

rit
y(

R
eq

ue
st

ID
: E

cT
U

Lo
ng

In
t)

S
et

R
es

ou
rc

eI
D

(R
es

ou
rc

eN
am

e:
 R

W
C

S
tr

in
g

*)
In

ge
st

F
ro

m
(S

ou
rc

eM
ac

hi
ne

: R
W

C
S

tr
in

g
*,

 S
ou

rc
eD

ire
ct

or
y:

 R
W

C
S

tr
in

g
*,

D
es

tM
ac

hi
ne

: R
W

C
S

tr
in

g)

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

O
ffp

ag
e

-

 :
R

W
C

S
tr

in
g

*

-
 :

R
W

C
S

tr
in

g
*

-

 :
R

W
C

S
tr

in
g

*

-
 :

D
sS

tS
ch

ed
ul

in
gC

on
fig

/
-

 :
R

W
C

S
tr

in
g

*

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

 :
G

lS
ta

tu
s

-

-

 :
os

tr
ea

m
&

ou
tfi

le

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

+

 :

R
W

C
S

tr
in

g
*

+

 :

E
cT

U
Lo

ng
In

t =
 0

+

 :

E
cT

U
S

ho
rt

In
t =

 0

+

 :
R

W
C

S
tr

in
g

*

+

 :
R

W
C

S
tr

in
g

*

+

 :
E

cT
U

S
ho

rt
In

t =
 1

+

 :

R
W

C
S

tr
in

g
*

+

 :

R
W

C
S

tr
in

g
*

+

 :

G
lS

ta
tu

s

+

 :
G

lS
ta

tu
s

+

 :

G
lS

ta
tu

s

+

 :
G

lS
ta

tu
s

+

 :

G
lS

ta
tu

s

+

 :
G

lS
ta

tu
s

+

 :

G
lS

ta
tu

s

+

 :
G

lS
ta

tu
s

+

 :

G
lS

ta
tu

s

+

 :
G

lS
ta

tu
s

-

 :
pt

r

-
 :

E
cT

U
S

ho
rt

In
t =

 0

-

 :
E

cT
V

oi
d

-

 :
E

cT
V

oi
d

+

 :

os
tr

ea
m

&
ou

tfi
le

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

G
lS

ta
tu

s

-
 :

*D
sS

tR
es

ou
rc

eM
an

ag
er

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cT

V
oi

d

+

 :
os

tr
ea

m
&

ou
tfi

le

+

 :
D

sU
zC

os
tB

+

 :

T
im

eD
el

ay
: E

cT
F

lo
at

+

 :

os
tr

ea
m

&
ou

tfi
le

+

 :

os
tr

ea
m

&
ou

tfi
le

+

 :

E
cU

tS
ta

tu
s

-

 :
un

si
gn

ed
 s

ho
rt

/
-

 :
un

si
gn

ed
 s

ho
rt

 =
 0

-

 :
E

cT
F

lo
at

 =
 0

-

 :
R

W
C

ol
le

ct
ib

le

-
 :

E
cT

In
t =

 0

-
 :

R
W

T
im

e

-
 :

E
cT

In
t =

 6
0

-

 :
E

cT
F

lo
at

-

 :
E

cT
F

lo
at

-

 :
E

cT
F

lo
at

-

 :
G

lS
ta

tu
s

-

 :
E

cT
In

t

-
 :

G
lS

ta
tu

s

-
 :

G
lS

ta
tu

s

-
 :

G
lS

ta
tu

s

-
 :

G
lS

ta
tu

s

-
 :

G
lS

ta
tu

s

-
 :

G
lS

ta
tu

s

-
 :

os
tr

ea
m

&
ou

tfi
le

-

 :
E

cT
F

lo
at

+

 :

E
cT

In
t

+

 :

E
cT

F
lo

at

+

 :
E

cT
In

t

+

 :
R

W
T

im
e

+

 :

E
cT

F
lo

at

+

 :
E

cT
F

lo
at

+

 :

E
cT

F
lo

at

+

 :
E

cT
V

oi
d

-

 :
R

W
C

S
tr

in
g

*

-
 :

*D
sS

tR
es

ou
rc

eM
an

ag
er

-

 :
R

W
C

S
tr

in
g

*

+

 :

E
cT

P
tr

-

 :
G

lS
ta

tu
s

+

 :

E
cT

V
oi

d

+

 :
E

cU
tS

ta
tu

s

+

 :
E

cT
E

nu
m

-

 :
E

cT
V

oi
d

-

 :
G

lS
ta

tu
s

-

 :
G

lS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

G
lS

ta
tu

s

-
 :

R
W

C
S

tr
in

g

-
 :

R
W

C
S

tr
in

g

+

 :
E

cT
U

S
ho

rt
In

t

+

 :
G

lS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

sc
he

du
le

s
re

so
ur

ce
s

vi
a

pr
ov

id
es

sc
he

du
lin

g
in

fo
rm

at
io

n
to

ro
ut

es
 r

eq
ue

st
s

to

re
ta

in
s

re
qu

es
ts

qu
eu

ed
 b

y
is

 r
ef

le
ct

ed
 in

m
an

ag
es

ac
ce

ss
 to

F
ig

u
re

 6
.3

-8
.

D
S

S
T

_R
es

o
u

rc
eM

an
ag

em
en

t
O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

6-14 305-CD-024-002

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text

All Attributes inherited from the
parent class (and analogously for operations). If a derived class has additional attributes of its own,
those new attributes are listed, but the attributes from the parent class are not repeated (analogously
for operations).

6.3.1 DsCnConfiguration Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Manages configuration parameters for various data server components in a token-value
style file. Often specialized where needed to provide higher level access to configuration
parameters.

Attributes:

None

Operations:

None

Associations:

The DsCnConfiguration class has associations with the following classes:
None

6.3.2 DsStArchive Class

Parent Class: DsStStorageResource
Public: Yes
Distributed Object: Yes
Persistent Class:
Purpose and Description:
To provide storage for persistent data. The Archive is the repository for all the permanently
stored data in the DataServer.

6-15 305-CD-024-002

Attributes:

myBackupB - The identity of the backup archive.
Data Type: RWCString
Privilege: Private
Default Value:

myDataTypeNames - This attribute identifies the data type serviced by this archive.
Data Type: RWCString
Privilege: Public
Default Value:

myID - This is the Identity of the (primary) archive.
Data Type: RWCString
Privilege: Public
Default Value:

myNumDataTypes - This attribute indicates the number of data types serviced by this
archive.
Data Type: EcTShortInt
Privilege: Public
Default Value:1

myOffsiteLocationB - The name of the offsite location for storage of offsite backups.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

CopyFileB - This operation copies a file from one archive to a different archive.
Arguments: SrcFilename: RWCString, DestFilename: RWCString
Return Type: EcUtStatus
Privilege: Public
PDL:Copy srcfilename to destfilename
return status of copy operation

CreateCheckSum - This service crerates a file checksum.
Arguments: filename: RWCString
Return Type: EcTLongInt
Privilege: Public

6-16 305-CD-024-002

DeleteArchiveFileB - This private service deletes a file from the archive serviced by the
Resource Manager.
Arguments: filename: RWCString
Return Type: EcUtStatus
Privilege: Public

DeleteFileB - This public service provides clients of Storage Management the capability to
delete a data file from the archive.
Arguments: Filename: RWCString
Return Type: GIStatus
Privilege: Public

DsStArchiveB - This is the constructor for archive object.
Arguments: primaryarchive: RWCString, backuparchive: RWCString, offsitelocation:
RWCString
Return Type: Void
Privilege: Public

EstimateDelay - This service provides an estimate of the time delay associated with
accessing the archive. It provides and reports this time in seconds and reflects anticipated
service times.
Arguments: filename: RWCString
Return Type: Void
Privilege: Public

GetCheckSum - This service gets a file's previously calculated checksum.
Arguments: GIParameterList*
Return Type: EcTLongInt
Privilege: Public

GetDataTypeName - This operation gets the name of the data types serviced by this
archive.
Arguments: ndtype: EcTShortInt, dtypename: RWCString *
Return Type: Void
Privilege: Public

GetID - This operation gets the name of this archive.
Arguments: archiveID: RWCString
Return Type: GlStatus
Privilege: Public

GetNumDataTypes - This operation gets the number of data types serviced by the archive.
Arguments: numdatatypes: EcTShortInt
Return Type: GlStatus
Privilege: Private

6-17 305-CD-024-002

ReportChecksumErrorB - This service reports gathered statistics on check sum errors
encountered while retrieving data files from the archive.
Arguments:
Return Type: EcTVoid
Privilege: Private

ReportPerformanceB - This service reports performance statistics gathered for the
requests accessing the archive.
Arguments:
Return Type: EcTVoid
Privilege: Private

RestoreFileB - This operation restores a file in a designated archive.
Arguments: Filename: RWCString
Return Type: EcUtStatus
Privilege: Public
PDL:Copy filename to archive
return status of copy operation

Retrieve - This operation retrieves specified files from the archive.
Arguments: RetrieveParams: DsStFileParametersB, Cost, *DsUzCostB
Return Type: EcUtStatus
Privilege: Public

SetDataTypeName - This operation sets the name(s) of the data types serviced by this
archive.
Arguments: ndtype: EcTShortInt, dtypename: RWCString
Return Type: GlStatus
Privilege: Private

SetID - This operation sets the name of the archive.
Arguments: archiveID: RWCString
Return Type: GlStatus
Privilege: Private

SetNumDataTypes - This operation sets the number of data types serviced by this archive.
Arguments: numdatatypes: EcTShortInt
Return Type: GlStatus
Privilege: Private

Store - This operation stores data files into the archive.
Arguments: StoreParams: DsStFileParametersB, Cost, *DsUzCostB
Return Type: EcUtStatus
Privilege: Public

6-18 305-CD-024-002

~DsStArchive - This is the destructor for the archive object.
Arguments: primaryarchive: RWCString, backuparchive: RWCString, offsitelocation:
RWCString
Return Type: EcTVoid
Privilege: Public

Associations:

The DsStArchive class has associations with the following classes:
None

6.3.3 DsStBackupListB Class

Parent Class: DsStFileListB
Public: No
Distributed Object:No
Purpose and Description:
This is a specialization of the DsStFileListB class. This specialization supports the list of
files which have been designated for backup by operations personnel.

Attributes:

myStateB - This attribute indicates the current state of the backup operation. The default
is "PendingLocal". Other states are "PendingOffsite","LocalInProgress",
"OffsiteInProgress"
Data Type: EtCEnum
Privilege: Private
Default Value:PendingLocal

Operations:

All Operations inherited from parent class
Associations:
The DsStBackupListB class has associations with the following classes:
None

6-19 305-CD-024-002

6.3.4 DsStCDROM Class

Parent Class: DsStPhysicalResource
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class provides an interface to the CD-ROM resource. The Ingest Client to Storage
Management can use CDROM devices for ingesting data. The Data Distribution Client to
Storage Managment can use these same resources for distributing data to requesting users.

Attributes:

myCapacity - This attribute indicates the capacity (in KBYTES) of the media currently
mounted.
Data Type: EcTLongInt
Privilege: Private
Default Value:

myFirstUsedSector - This attribute indicates the first used sector on the volume currently
mounted in the CDROM.
Data Type: EcTLongInt
Privilege: Private
Default Value:

myNextFreeDataSector - This attribute indicates the next free data sector on the volume
currently mounted in the CDROM.
Data Type: EcTLongInt
Privilege: Private
Default Value:

myNextFreeDirSector - This attribute indicates the next free directory sector on the
volume currently mounted in the CDROM.
Data Type: EcTLongInt
Privilege: Private
Default Value:

myRemainingSectors - This attribute indicates the number of unused (i.e., unwritten)
sectors remaining on the media.
Data Type: EcTLongInt
Privilege: Public
Default Value:0
This is a Derived Attribute.

6-20 305-CD-024-002

Operations:

Dismount - This public operation dismounts the specified volume from a CDROM
resource.
Arguments: VolName: RWCString *
Return Type: GlStatus
Privilege: Public

GetCapacity - This operation gets the capacity of the volume currently mounted in the
CDROM resource.
Arguments: MaxBytes: EcTLongInt
Return Type: GlStatus
Privilege: Public

GetFirstUsedSector - This operation gets the value of the first used sector on the volume
currently mounted in the CDROM.
Arguments: FirstSector: EcTLongInt
Return Type: GlStatus
Privilege: Private

GetNextFreeDataSector - This operation gets the next free data sector on the volume
currently mounted in the CDROM.
Arguments: NextSector: EcTLongInt
Return Type: GlStatus
Privilege: Private

GetNextFreeDirSector - This operation gets the next free directory sector on the volume
currently mounted in the CDROM resource.
Arguments: NextSector: EcTLongInt
Return Type: GlStatus
Privilege: Private

GetRemainingSectors - This public service gets the number of free unwritten sectors on
the media currently mounted in the allocated CDROM device.
Arguments: AvailSectors: EcTLongInt
Return Type: GlStatus
Privilege: Public

Mount - This public operation mounts the specified volume on the CDROM resource.
Arguments: VolName: RWCString *
Return Type: GlStatus
Privilege: Public

6-21 305-CD-024-002

SetCapacity - This operation sets the capacity (in KBYTES) of the media currently
mounted in the CDROM resource.
Arguments: MaxBytes: EcTLongInt
Return Type: GlStatus
Privilege: Private

SetFirstUsedSector - This operation sets the first used sector used on the volume currently
mounted in the CDROM.
Arguments: FirstSector: EcTLongInt
Return Type: GlStatus
Privilege: Private

SetNextFreeDataSector - This operation sets the value of the next free data sector of the
volume currently mounted in the CDROM.
Arguments: NextSector: EcTLongInt
Return Type: GlStatus
Privilege: Private

SetNextFreeDirSector - This operation sets the value of the next free sector on the volume
currently mounted in the CDROM resource.
Arguments: NextSector: EcTLongInt
Return Type: GlStatus
Privilege: Private

SetRemainingSectors - This operation sets the number of free and unwritten sectors
remaining on the media currently mounted on the CDROM device.
Arguments: AvailSectors: EcTLongInt
Return Type: GlStatus
Privilege: Public

~DsStCDROM - This is the destructor for the CDROM object.
Arguments:
Return Type: void
Privilege: Public

Associations:

The DsStCDROM class has associations with the following classes:
None

6-22 305-CD-024-002

6.3.5 DsStCacheConfig Class

Parent Class: DsCnConfiguration

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsStCacheConfig class has associations with the following classes:
None

6.3.6 DsStFaxB Class

Parent Class: DsStPhysicalResource
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class provides an interface to FAX resources managed by the Resource Manager.

Attributes:

All Attributes inherited from parent class

Operations:

~DsStFaxB - This is the destructor for the FAX interface object.
Arguments:
Return Type: void
Privilege: Public

Associations:
The DsStFaxB class has associations with the following classes:
None

6-23 305-CD-024-002

6.3.7 DsStFileListB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This is an abstract base class which is used to collect a set of files for backup and restore.
Most likely implemented as a wrapper to a file, but could be a database. Each entry will be
a tuple of (filename, primaryarchive, backuparchive, offsitelocation state), augmented by
specializations.

Attributes:

myBackupArchiveB - The identity of the backup archive.
Data Type: RWCString
Privilege: Private
Default Value:

myFilenamesB - list of filenames
Data Type: RWCString
Privilege: Private
Default Value:

myOffsiteLocationB - The designation of the offsite location for the offsite backup
volume.
Data Type: RWCString
Privilege: Private
Default Value:

myPrimaryArchiveB - list of primary archives for files on list
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

AddFileB
Arguments: filename: RWCString, primaryarchive: RWCString, backuparchive:
RWCString, offsitelocation: RWCString, "Pending"
Return Type: EcUtStatus
Privilege: Public

6-24 305-CD-024-002

DsStFileListB - The class constructor. The sole argument is the name of the file containing
the list.
Arguments: listfile: RWCString
Return Type: Void
Privilege: Public
PDL:OPEN listfile

RemoveFileB - Remove a file from the list.
Arguments: filename: RWCString
Return Type: EcUtStatus
Privilege: Public
PDL:Locate filename entry
Remove entry from list

UpdateStatusB - Update the status of an entry on the list.
Arguments: filename: RWCString, state: EcTEnum
Return Type: EcUtStatus
Privilege: Public
PDL:Locate entry for filename
Change status to state

~DsStFileListB - The class destructor.
Arguments:
Return Type: EcTVoid
Privilege: Public
PDL:CLOSE listfile

Associations:
The DsStFileListB class has associations with the following classes:
None

6.3.8 DsStMonitor Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
To provide a mechanism to delete files for the monitored magnetic disk area.

6-25 305-CD-024-002

Attributes:

myFreeCache - This attribute indicates the amount of available (i.e., currently unused)
disk space (in KBytes).
Data Type: EcTLongInt
Privilege: Private
Default Value:

myHighWaterMark - This attribute indicates the percentage utilization of disk space
which determines when file deletion operations begin.
Data Type: EcTFloat
Privilege: Private
Default Value:

myLowWaterMark - This attribute indicates the percentage utilization of disk space
which nominally determines when file deletion operations cease.
Data Type: EcTFloat
Privilege: Private
Default Value:

myMaxSize - This attribute indicates the size (in KBytes).
Data Type: EcTLongInt
Privilege: Private
Default Value:

mySleepTime - This attribute indicates the time (in seconds) that the monitor sleeps before
starting an attempt to delete files.
Data Type: EcTFloat
Privilege: Private
Default Value:

Operations:

DeleteFile - This operation deletes a file from the designated monitored area on a disk.
Arguments: filename: RWCString
Return Type: EcUtStatus
Privilege: Public

DsStMonitor - This is the constructor for the DsStMonitor class.
Arguments:
Return Type: EctVoid
Privilege: Public

6-26 305-CD-024-002

GetFreeCache - This operation gets the amount of unused disk space.
Arguments:
Return Type: EcTLongInt
Privilege: Public
PDL:Return myfreecache

GetHighWaterMark - This operation gets the high water mark for the monitored disk
area.
Arguments:
Return Type: EcTFloat
Privilege: Public

GetLowWaterMark - This operation gets the low water mark for the monitored disk area.
Arguments:
Return Type: EcTFloat
Privilege: Public

GetMaxSize - This operation gets the maximum size of the monitored disk area.
Arguments:
Return Type: EcTLongInt
Privilege: Public

GetNumberFiles - This operation gets the total number of files currently resident in the
monitored area.
Arguments:
Return Type: EcTLong
Privilege: Public

GetSleepTime - This operation gets the time (in seconds) that the monitor sleeps before
starting an attempt to delete files.
Arguments:
Return Type: EcTFloat
Privilege: Public

ReclaimSpace - This service searches the list of files in the monitored disk area and
identifies those which are candidates for deletion.
Arguments:
Return Type: EcTVoid
Privilege: Private

ReportStats - This operation reports disk space utilization statistics.
Arguments:
Return Type: outfile&ostream
Privilege: Private

6-27 305-CD-024-002

SetFreeCache - This operation sets the amount of unused disk space in the monitored area.
Arguments: size: EcTLongInt
Return Type: EcTVoid
Privilege: Private

SetHighWaterMark - This operation sets the high water mark for the monitored area.
Arguments: Percent: EcTFloat
Return Type: EcTVoid
Privilege: Private

SetLowWaterMark - This operation sets the low water mark for the monitored area.
Arguments: Percent: EcTFloat
Return Type: EcTVoid
Privilege: Private

SetMaxSize - This operation sets the maximum size of the monitored disk area.
Arguments: MaxSize: EcTLongInt
Return Type: EcTVoid
Privilege: Private

SetNumberFiles - This operation sets the number of files currently resident in the
monitored disk area.
Arguments: TotalFiles: EcTLongInt
Return Type: EcTVoid
Privilege: Private

SetSleepTime - This operation sets the time (in seconds) that the monitor sleeps before
attempting to delete files from the monitored disk area.
Arguments: SleepTime: EcTFloat
Return Type: EcTVoid
Privilege: Private

ShowConfigB - This service displays parameters and information contained in the
configuration file.
Arguments:
Return Type: ostream&outfile
Privilege: Public
PDL:Display configuration parameters and their current values
Return

~DsStMonitor - This is the destructor for the DsStMonitor class.
Arguments:
Return Type: EctVoid
Privilege: Public

6-28 305-CD-024-002

Associations:

The DsStMonitor class has associations with the following classes:
None

6.3.9 DsStNetworkResource Class

Parent Class: DsStResource
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class provides a push/pull interface to the network for transferring data for both ingest
and data distribution operations.

Attributes:

myDestination - This attribute identifies the destination machine for the network data
transfer.
Data Type: RWCString *
Privilege: Private
Default Value:

mySource - This attribute identifies the source machine for the network data transfer.
Data Type: RWCString *
Privilege: Private
Default Value:

Operations:

GetDestination - This operation gets the name of the destination machine for the network
data transfer.
Arguments:
Return Type: RWCString *
Privilege: Public

GetSource - This operation gets the name of the source machine for the network data
transfer.
Arguments:
Return Type: RWCString *
Privilege: Public

6-29 305-CD-024-002

SetDestination - This operation sets the name of the destination machine for the network
data transfer.
Arguments: NodeName: RWCString *
Return Type: EcTVoid
Privilege: Public

SetSource - This operation sets the name of the source machine for the network data
transfer.
Arguments: NodeName: RWCString *
Return Type: EcTVoid
Privilege: Public

~DsStNetworkResource - This is the destructor for the DsStNetworkResource class.
Arguments:
Return Type: EctVoid
Privilege: Public

Associations:

The DsStNetworkResource class has associations with the following classes:
None

6.3.10 DsStPhysicalResource Class

Parent Class: DsStResource
Public: No
Distributed Object:No
Purpose and Description:
This class provides a generic interface to all services provided by the physical ingest and
data distribution resources of the Data Server.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

6-30 305-CD-024-002

Associations:

The DsStPhysicalResource class has associations with the following classes:
None

6.3.11 DsStPrinter Class

Parent Class: DsStPhysicalResource
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class provides an interface to the resource pool of printers used by data distribution to
produce shipping labels, packing slips and media labels.

Attributes:

All Attributes inherited from parent class

Operations:

Print - This operation writes text to the printer.
Arguments: FileName: RWCString *
Return Type: EcUtStatus
Privilege: Public

~DsStPrinter - This operation destroys the Printer object.
Arguments:
Return Type: EcTVoid
Privilege: Public

Associations:

The DsStPrinter class has associations with the following classes:
None

6-31 305-CD-024-002

6.3.12 DsStPullConfig Class

Parent Class: DsCnConfiguration
Public: No
Distributed Object:No
Purpose and Description:
This class is a specialization of the DsCnConfiguration base class. It manages configuration
parameters for the designated electronic "pull" area on magnetic disk.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsStPullConfig class has associations with the following classes:
None

6.3.13 DsStPullList Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
This class provides a mechanism for tracking the contents of the area on magnetic disk
designated as the electronic "pull" area. The dynamic record of the data files currently in
the pull area allows the Data Server to more efficiently and more quickly provide access to
files which users have indicated they desire to electronically pull to their own workstations/
workareas.

Attributes:

myCurrentSize - This attribute indicates the size (in KBYTES) of all files currently in the
distribution "pull" list (i.e., those data files that will be pulled by their respective requester).
Data Type: EcTUShortInt

6-32 305-CD-024-002

Privilege: Private
Default Value:0
This is a Derived Attribute.

Operations:

AddElement - This operation adds a file to the distribution "pull" list.
Arguments: FileName: RWCString *,FileSize: long, RequestID: unsigned long,
Priority: short, ProfileInfo: ptr

AssociateElement - This operation searches the distribution "pull" list for a specific file
that has been previously distributed. If the file is found, the reference count for the file is
incremented by 1.
Arguments: FileName: RWCString *, RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Private

DeleteElement - This operation removes the entry associated with a specific file from the
distribution "pull" list.
Arguments: FileName: RWCString *
Return Type: GlStatus
Privilege: Private

DissociateElement - This operation decrements the reference count for a specific file and
a specific user in the distribution "pull" list.
Arguments: FileName: RWCString *, RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Private

GetCurrentSize - This operation gets the total size (in KBYTES) of all files in the
distribution "pull" list.
Arguments:
Return Type: EcTUShortInt
Privilege: Private

GetExpiration - This operation gets the expiration time and date for a specific file in the
distribution "pull" list.
Arguments: FileName: RWCString *
Return Type: RWCString *
Privilege: Private

ReadNextElement - This operation provides access to the next entry for a file in the
distribution "pull" list.

6-33 305-CD-024-002

Arguments: RequestInfo: structure
Return Type: GlStatus
Privilege: Private

SetCurrentSize - This operation sets the total size (in KBYTES) of all files in the
distribution "pull" list.
Arguments: CurrentSize: EcTUShortInt
Return Type: GlStatus
Privilege: Private

SetExpiration - This operation appropriately sets the expiration date for a file which has
been temporarily stored in the distribution "pull" list.
Arguments: FileName: RWCString *, ExpTimeDate: RWCString *
Return Type: GlStatus
Privilege: Private

Associations:

The DsStPullList class has associations with the following classes:
Class: DsStResource
Class: DsStPullMonitor managespullareavia

6.3.14 DsStPullMonitor Class

Parent Class: DsStMonitor
Public: No
Distributed Object:No
Purpose and Description:
To provide a mechanism to delete data objects appropriately from the electronic "pull" data
area and to report utilization of the pull area. The Pull Monitor performs these functions
by constantly monitoring the contents of the pull area and uses information contained in the
list of files contained in the pull area.

Attributes:

myAlarmThreshold - This attribute indicates the percent utilization of the pull area at
which operations personnel will be notified.
Data Type: EcTFloat
Privilege: Private
Default Value:

6-34 305-CD-024-002

myConfirmDeletion - This attribute indicates operations personnel to confirm or not to
confirm deletion of files in the pull area.
Data Type: EcTBoolean
Privilege: Private
Default Value:False

myConfirmTimeOut - This attribute indicates the maximum time (in seconds) to allow
operations personnel to respond to a file deletion confirmation message.
Data Type: EcTFloat
Privilege: Private
Default Value:60

myconfig - This attribute identifies the configuration file for the disk area designated as the
pull area for electronically distributed files.
Data Type: * DsStPullConfig
Privilege: Private
Default Value:

Operations:

ReclaimSpace - This service searches the list of files which are indicated in the pull list for
files and identifies those which are candidates for deletion. A file which has a reference
count of zero is a candidate for deletion. A file whose expiration date has been past is also
a candidate for deletion. Before candidates are actually deleted their deletion may or may
not be explicitly confirmed by operations staff.
Arguments:
Return Type: EcTVoid
Privilege: Public

ReportStats - This operation reports disk space utilization statistics for the disk space
designated as the "pull" area for electronically distributed data files.
Arguments:
Return Type: EcTVoid
Privilege: Public

Associations:

The DsStPullMonitor class has associations with the following classes:
Class: DsStPullList managespullareavia

6-35 305-CD-024-002

6.3.15 DsStRequestManager Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class services selected service requests from operations staff and clients. It insures
that the service requests are properly routed to the appropriate resource manager(s).

Attributes:

myNumberRequests - This attribute indicates the number of requests for service which
have been received but are still in progress.
Data Type: EcTUShortInt
Privilege: Private
Default Value:0

myRequestTable - This attribute identifies the table of outstanding requests.
Data Type: ptr
Privilege: Private
Default Value:

Operations:

Abort - This public service causes the termination of processing of the specified request if
the request is currently queued.
Arguments: RequestID: EcTULongInt
Return Type: EcUtStatus
Privilege: Public

ChangeDeviceStatus - This public service provides operations staff the capability to
change the operational status of a specific resource device under control of the Storage
Management CI.
Arguments: DeviceName: RWCString *, DeviceStatus: RWCString *
Return Type: EcUtStatus
Privilege: Public

ChangeRequestPriority - This public service changes the priority of a queued request for
service. It has no effect on the request if the request is not currently queued.
Arguments: RequestID: EcTULongInt, Priority: EcTShortInt
Return Type: EcUtStatus
Privilege: Public

6-36 305-CD-024-002

DismountVolume - This operation dismounts a specific volume.
Arguments: VolName: RWCString *
Return Type: EcTVoid
Privilege: Public

EndService - This operation marks the end of service of a request. It removes the entry in
the request table which corresponds to the specified request id.
Arguments: RequestID: EcTULongInt
Return Type: EcTVoid
Privilege: Private

EstimateCostsB - This service provides an estimate of the cost in resources for requests
received from Storage Management clients.
Arguments: RequestSize: EcTInt, Service: RWCString
Return Type: DsUzCostB
Privilege: Public

EstimateStorageAccessDelayB - This service provides an estimate of the time delay to
retrieve a file from the archive. The reported units are in seconds.
Arguments: Filename: RWCString *
Return Type: TimeDelay: EcTFloat
Privilege: Public

GetDeviceStatus - This public service gets the operational status of a specific resource
device.
Arguments: DeviceName: RWCString *,DeviceStatus: RWCString *
Return Type: EcUtStatus
Privilege: Public

LocateManager - This operation identifies and provides the appropriate resource manager
for requests which are still in-progress.
Arguments: RequestID: EcTULongInt
Return Type: *DsStResourceManager
Privilege: Private

MountVolume - This operation mounts a specific volume.
Arguments: VolName: RWCString *
Return Type: EcUtStatus
Privilege: Public

ReportConfigB - This public service displays information contained in a specified
configuration file.
Arguments: ConfigFile: EcTPtr
Return Type: ostream&outfile
Privilege: Public

6-37 305-CD-024-002

PDL:Display configuration parameters and their current values
Return

ReportOperationsB - This service provides a report on queuing and/or scheduling
operations performed by the Resource Manager.
Arguments: ResourceType: RWCString
Return Type: ostream&outfile
Privilege: Public

ReportResourcePerformanceB - This service provides a performance report for specified
resources managed by the Recource Manager.
Arguments:
Return Type: ostream&outfile
Privilege: Public

ReportResourceStats - This public service provides various resource related reports for
all or specific devices managed by the Resource Manager.
Arguments: DeviceName: RWCString *
Return Type: ostream&outfile
Privilege: Public

RequestStatus - This public service requests the status of a previously submitted data store
or data retrieve request.
Arguments: RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Public

StartService - This operation marks the start of service for a request. It places an entry in
the Request Table which corresponds to the specified request id.
Arguments: RequestID: EcTULongInt
Return Type: EcTVoid
Privilege: Private

Associations:

The DsStRequestManager class has associations with the following classes:
Class: DsStResourceManager routesrequeststo

6-38 305-CD-024-002

6.3.16 DsStReservation Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:Yes
Persistent Class:
Purpose and Description:
This class requests preallocation aand/or reservation of a resource. The Reservation is an
internal mechanism to allocate a resource at some future time. The reservation request
identifies the requestor, the resource to be allocated and the future time the resource will is
required.

Attributes:

myEndTime - This attribute indicates the end time and date for the reservation.
Data Type: RWCString *
Privilege: Public
Default Value:

myPriority - This attribute indicates the priority of the reservation request.
Data Type: EcTUShortInt
Privilege: Public
Default Value:0

myRequester - This attribute identifies the reservation requester.
Data Type: RWCString *
Privilege: Public
Default Value:

myReservationRef - This attribute identifies the reservation confirmation number for the
resource.
Data Type: EcTULongInt
Privilege: Public
Default Value:0

myResourceType - This attribute indicates the kind of resource that is being reserved.
Possible values include Staging Disk, Network Resource, 4mm Tape, 8mm Tape and CD-
ROM.
Data Type: RWCString *
Privilege: Public
Default Value:

mySize - This attribute indicates the size (in the case of staging disk) or number of a
specific resource desired to be reserved.

6-39 305-CD-024-002

Data Type: EcTUShortInt
Privilege: Public
Default Value:1

myStartTime - This attribute indicates the start time and date of the reservation.
Data Type: RWCString *
Privilege: Public
Default Value:

mySubmitTime - This is the time that the reservation request is submitted.
Data Type: RWCString *
Privilege: Public
Default Value:

Operations:

Activate - This public service activates the resource reservation (i.e., exchanges the
resource reservation for a resource allocation).
Arguments: RequestID: EcTULongInt, ResourceRef: ptr
Return Type: GlStatus
Privilege: Public

Cancel - This public service cancels a previously made reservation for a resource.
Arguments: RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Public

Make - This public service creates an initial blank reservation request.
Arguments:
Return Type: GlStatus
Privilege: Public

SetEndTime - This public operation sets the desired end time and date for the resource
reservation.
Arguments: TimeDate: RWCString *
Return Type: GlStatus
Privilege: Public

SetPriority - This public service sets the priority of the reservation request.
Arguments: Priority: EcTUShortInt
Return Type: GlStatus
Privilege: Public

6-40 305-CD-024-002

SetRequester - This operation sets the name of the requester of the resource reservation.
Arguments: RequesterName: RWCString
Return Type: GlStatus
Privilege: Public

SetResSize - This public service sets the anticipated size of data (in KBYTES) to be
transferred/handled by the resource being reserved.
Arguments: ReservationSize: EcTUShortInt
Return Type: GlStatus
Privilege: Public

SetResourceType - This public service sets the kind of resource that is being reserved.
Arguments: ResourceType: RWCString *
Return Type: GlStatus
Privilege: Public

SetStartTime - This operation sets the start time and date for the resource reservation.
Arguments: TimeDate: RWCString *
Return Type: GlStatus
Privilege: Public

Submit - This public service submits the completed reservation request to reserve a
resource for some time into the future.
Arguments: RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Public

Associations:

The DsStReservation class has associations with the following classes:
Class: DsStResourceSchedule isreflectedin

6.3.17 DsStResource Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:Yes
Persistent Class:
Purpose and Description:
To provide an interface to the services provided by the resources of the data server. The
Resource is the generic interface to the specific resources within the Data Server.

6-41 305-CD-024-002

Attributes:

myResourceName - This attribute uniquely identifies the specific device in the resource
pool.
Data Type: RWCString *
Privilege: Private
Default Value:

ourManager - This attribute indicates the Resource Manager for this resource pool.
Data Type: *DsStResourceManager
Privilege: Private
Default Value:

ourSchedule - This attribute indicates the name of the resource pool schedule file.
Data Type: RWCString *
Privilege: Private
Default Value:

Operations:

Allocate - This public service allocates a specific device from a pool of resources.
Arguments: ResourceTypr: RWCString *, MediaType: EtCEnum, RequestID:
EcTULongInt, Priority: EcTShortInt, Size: EcTLongInt, ProfileInfo: ptr
Return Type: EcTPtr
Privilege: Public
PDL:Log allocation request received.
Project a device use time for the allocation
If there are no available devices
Queue request in resource queue
else
Check the resource schedule for an available device in the
projected time period
If such a device is found

Place an entry in the schedule for this device
allocation
Decrement and set the number of available devices

else
Queue request in the resource queue

return

Deallocate - This public service releases or frees a previously allocated resource.
Arguments: ResourceRef: ptr

6-42 305-CD-024-002

Return Type: EcUtStatus
Privilege: Public

DistFrom - This public service supports the transfer of data files from internal storage to
specific distribution devices.
Arguments: SourceResource: RWCString *, Operation: RWCString *, DataItemName:
RWCString *
Return Type: EcUtStatus
Privilege: Public

GetDevTime - This operation gets a projected service time for an allocation of a resource.
This service time is used in determining if the allocation request for a resource is queued or
the resource is allocated.
Arguments: Size: EcTULongInt, MediaSize: EtCEnum, DeviceTime: EcTUShortInt
Return Type: GlStatus
Privilege: Private

GetMediaSize - This public service provides the size of the media for the allocated
resource device.
Arguments:
Return Type: EcTEnum
Privilege: Public

GetPriority - This operation gets the current priority of the resource.
Arguments: RequestID: EcTULongInt
Return Type: EcTUShortInt
Privilege: Public

GetResourceID - This public service provides the name of the resource allocated.
Arguments:
Return Type: RWCString
Privilege: Private

GetStatus - This public service gets the status of a device in the resource pool.
Arguments:
Return Type: RWCString
Privilege: Private

IngestFrom - This public service transfers data files from specific ingest devices to an
internal ECS storage device.
Arguments: SourceMachine: RWCString *, SourceDirectory: RWCString *,
DestMachine: RWCString
Return Type: EcUtStatus
Privilege: Public

6-43 305-CD-024-002

RestoreResourceInformation - This service will restore configurable parameters to preset
values. This will be used in restart or cold start situations.
Arguments:
Return Type: GlStatus
Privilege: Private

SetMediaSize - This operation sets the size of the media for the current allocation of the
resource device.
Arguments: MediaSize: EcTEnum
Return Type: EcTVoid
Privilege: Private

SetPriority - This operation sets the current priority of the resource to a specified value.
The initial priority is set to the scheduling priority of the request.
Arguments: RequestID: EcTInt, NewPriority: EcTShortInt
Return Type: GlStatus
Privilege: Private

SetResourceID - This operation sets the name of the resource allocated.
Arguments: ResourceName: RWCString *
Return Type: GlStatus
Privilege: Public

SetStatus - This operation sets the status of a specific device of the resource.
Arguments: DeviceStatus: RWCString *
Return Type: GlStatus
Privilege: Public

~DsStResource - This is the destructor for the resource object.
Arguments:
Return Type: EcTVoid
Privilege: Public

Associations:

The DsStResource class has associations with the following classes:
Class: DsStPullList
Class: DsStStagingDataList
Class: DsStResourceManager managesaccessto
Class: DsStResourceSchedule providesschedulinginformationto

6-44 305-CD-024-002

6.3.18 DsStResourceConfig Class

Parent Class: DsCnConfiguration
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class is a specialization of the DsCnConfiguration base class. It manages
configuration parameters for resources managed by the Storage Management CI.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsStResourceConfig class has associations with the following classes:
None

6.3.19 DsStResourceManager Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
To manage and monitor the resources of the data server. The ResourceManager allocates
resources that it controls during the processing of requests.

Attributes:

myConcurrentOperationsB - This attribute indicates the number of current service
requests.

myFreeResources - This attribute indicates the current number of available devices (i.e.,
devices which are operational and can be allocated or reserved) in a resource pool.

6-45 305-CD-024-002

myMaxResources - This attribute indicates the maximum number of devices in the
resource pool. In the case of staging disk it indicates the amount (in KBYTES) of disk
space available for workarea allocations and/or reservations.

myMediaSize

myPriority

myReservedResources - This attribute indicates the current number of reservations for
devices in the resource pool. In the case of staging disk, it indicates the total current amount
of disk space (in KBYTES) for which there is a reservation.

myResourceType - This attribute indicates the name of the resource pool.

myStatus

mystatQ

mystatQsize

Operations:

AbortRequest - This service causes the abort and/or cancellation of a resource request
which has been queued. This service will not cause an abort of a request which is currently
active.
Arguments: RequestID: EcTULongInt

AllocateResource - This service allocates a device from a resource pool.
Arguments: MediaType: EtCEnum, RequestID: EcTULongInt, Priority:EcTShortInt,
Size: EcTShortInt, ProfileInfo: ptr

Backup
Arguments: BackupType: EtCEnum (Local | Offsite)

ChangeDeviceStatus - This operation enables operations personnel to change the
operational status of a specific resource device.
Arguments: RequestID: EcTULongInt, NewStatus: EcTShortInt

ChangePriority - This public service enables the changing of a resource request's priority.
This service will only change the priority of a request which is queued.
Arguments: RequestID: EcTULongInt, Priority: EcTShortInt
PDL:// Log change priority request received
// Search the resource queue for a specific requestID

6-46 305-CD-024-002

// If the request was found in the queue
// Set the new priority for the request
// Notify requester that priority was changed
// Log priority changed for request
// else
// Search the resource schedule to ascertain if this is an active request
// If the request was found in the schedule
// Notify requester that priority is not changed for active requests
// else
// Notify requester that priority is not changed for requests which have completed
//
// Log change priority request completed
// return

DeallocateResource - This operation deallocates a previously allocated device in the
resource pool.
Arguments: ResourceRef: ptr

DismountVolume - This operation enables operations personnel to dismount specific
volumes.
Arguments: VolName: RWCString*

DisplayConfigB - This service reports configuration information used by the Resource
Manager.
Arguments:
PDL:Display configuration parameters and their respective current values

EstimateCostB
Arguments: service: RWCString, size: EcTFloat

EstimateCosts
Arguments:

EstimateDelayB
Arguments:

GetConcurrentOperationsB - This service gets the number of requests being serviced by
the Resource Manager.
Arguments:

GetFreeResources - This operation gets the current number of free resources in the
resource pool.
Arguments: NumResources: EcTShortInt

6-47 305-CD-024-002

GetQDuration -
Arguments:

GetQSize
Arguments:

GetReservedResources - This operation gets the current number of reservations for
devices in the resource pool.
Arguments: NumResources: EcTShortInt

MountVolume
Arguments: VolName: RWCString*

ReportOperationsB -
Arguments:

ReportResourceInformation - This service reports information concerning devices in the
resource pool.
Arguments:

ReportResourcePerformanceB
Arguments:

RequestStatus - This operation provides a response to queries received requesting the
status of previously submitted store and retrieval requests.
Arguments: RequestID: EcTULongInt

Restore
Arguments:

SetFreeResources - This operation sets the current number of available (i.e, unallocated)
devices.
Arguments: NumResources: EcTShortInt

Associations:

The DsStResourceManager class has associations with the following classes:
Class: DsStResource managesaccessto
Class: DsStResourceQueue retainsrequestsqueuedby
Class: DsStRequestManager routesrequeststo
Class: DsStResourceSchedule schedulesresourcesvia

6-48 305-CD-024-002

6.3.20 DsStResourceManager. Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:

Attributes:

None

Operations:

None

Associations:

The DsStResourceManager. class has associations with the following classes:
Class: DsUzCostB

6.3.21 DsStResourceQueue Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
This class maintains a list of pending resource requests. Outstanding requests for
allocation of resources are queued based upon their respective priority. These requests are
dequeued based upon this same priority and resource availability. Each Resource Manager
maintains a unique queue for the resources it manages.

Attributes:

myCurrentQueueTimeB - This attribute indicates the current calculated average queue
time that has been observed. This average time is expressed in seconds.
Data Type: EcTFloat
Privilege: Private
Default Value:0

6-49 305-CD-024-002

myCurrentqueued - This attribute indicates the current number of entries in the resource
queue.
Data Type: unsigned short
Privilege: Private
Default Value:0
This is a Derived Attribute.

myLastQTimeB - The time of the last entry made in the queue statistics collection.
Data Type: RWTime
Privilege: Private
Default Value:

myMaxSize - This is the maximum size of the Resource Queue.
Data Type: unsigned short
Privilege: Private
Default Value:

myQPeriodB - The number of minutes used for queue statistics collection.
Data Type: EcTInt
Privilege: Private
Default Value:60

myQTimeB - The accumulated total of all entries in the queue statistics collection.
Data Type: EcTFloat
Privilege: Private
Default Value:

myStatQueueB - The collection of statistics for requests which have been queued and
dequeued.
Data Type: RWCollectible
Privilege: Private
Default Value:

mymaxQTimeB - The maximum queue time observed during the current queue statistics
collection period.
Data Type: EcTFloat
Privilege: Private
Default Value:

myminQTimeB - The minimum queue time observed during the current queue statistics
collection period.
Data Type: EcTFloat
Privilege: Private
Default Value:

6-50 305-CD-024-002

mystatQSizeB - Number of entries in the collection maintained for statistics accumulation
reporting of requests which have been queued.
Data Type: EcTInt
Privilege: Private
Default Value:0

Operations:

CalculateQueueTimeB - This service calculates the time delay for allocating read/write
staging disk based upon the number of queued requests and the average queue time.
Arguments:
Return Type: EcTFloat
Privilege: Private

Dequeue - This service will remove an entry from the queue.
Arguments: RequestInfo: structure
Return Type: GlStatus
Privilege: Private

FindRequest - This operation locates a specific request in the resource queue.
Arguments: RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Private

GetAvgQueueSize - This convenience operation gets the calculated average queue size of
requests which have been queued into and removed from the resource queue.
Arguments:
Return Type: EcTFloat
Privilege: Public

GetCurrentQueued - This operation indicates the number of requests currently in the
resource queue.
Arguments:
Return Type: EcTInt
Privilege: Private

GetLastQTimeB - This operation gets the time of the last entry made to the queue statistics
collection.
Arguments:
Return Type: RWTime
Privilege: Public
PDL:return myLastQtime

6-51 305-CD-024-002

GetMaxQTimeB - This operation gets the maximum observed queue time of all current
entries in the collection of queue statistics.
Arguments:
Return Type: EcTFloat
Privilege: Public
PDL:return mymaxQtime

GetMinQTimeB - This operation gets the minimum queue time of all current entries in the
collection of queue statistics.
Arguments:
Return Type: EcTFloat
Privilege: Public
PDL:return myminQtime

GetNextQueued - This operation provides information about the next element in the
resource queue.
Arguments: RequestInfo: structure
Return Type: GlStatus
Privilege: Private

GetQSize - This operation gets the value of the current number of entries in the collection
of queue statistics.
Arguments:
Return Type: EcTInt
Privilege: Public

GetQSizeB - This operation gets the value of the current number of entries in the collection
of queue statistics.
Arguments:
Return Type: EcTInt
Privilege: Public
PDL:return mystatQsize

GetQTimeB - This operation gets the total queued time of all current entries in the
collection of queue statistics.
Arguments:
Return Type: EcTFloat
Privilege: Public
PDL:return myQtime

Queue - This operation will add an item to the queue.
Arguments: RequestInfo: structure
Return Type: GlStatus
Privilege: Private

6-52 305-CD-024-002

ReportOperationsB - This service reports statistics gathered on queuing of requests for
the pool of resources managed by the Resource Manager.
Arguments:
Return Type: ostream&outfile
Privilege: Private

RestoreQueue - This service will restore queue information to a previously checkpointed
condition.
Arguments:
Return Type: GlStatus
Privilege: Private

SetPriority - This operation sets the priority of a specific request in the resource queue.
Arguments: Priority: EcTUShortInt, RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Private

Update - This service will update information about an element in the queue.
Arguments: RequestInfo: structure
Return Type: GlStatus
Privilege: Private

UpdateQStatsB - This updates the appropriate data structures when an entry is added to
the queue statistics collection.
Arguments:
Return Type: EcTVoid
Privilege: Public
PDL:Remove appropriate entries from statistics collection
Update min and max queue time
Update min and max # in queue
Calculate average queue times
Calculate average # in queue
return

Associations:

The DsStResourceQueue class has associations with the following classes:
Class: DsStResourceManager retainsrequestsqueuedby

6-53 305-CD-024-002

6.3.22 DsStResourceSchedule Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
To schedule the usage of resources of the data server. The ResourceSchedule is a
compilation of all future resource requirements.

Attributes:

$mySchedulingConfig - This attribute identifies the configuration file containing unique
information used in the scheduling of resources.

myEndDate - This attribute indicates the end time and date of the current view of the
schedule. This time and date are changed on a daily basis.
Data Type: RWCString *
Privilege: Private
Default Value:

myPoolName - This attribute indicates the name of the resource pool (e.g., Staging disk,
CDROM, Archive, Tape).
Data Type: RWCString *
Privilege: Private
Default Value:

myScheduleFileName - This is the external filename of the resource schedule for all
devices in the resource pool.
Data Type: RWCString *
Privilege: Private
Default Value:

myStartDate - This attribute indicates the start time and date of the current view of the
resource schedule. This time and date are changed appropriately on a daily basis.
Data Type: RWCString *
Privilege: Private
Default Value:
This is a Derived Attribute.

myconfig - This attribute identifies the configuration file containing unique information
used in the scheduling of devices in this resource pool.
Data Type: DsStSchedulingConfig

6-54 305-CD-024-002

Privilege: Private
Default Value:

Operations:

ActivateReservation - This operation confirms a resource reservation and provides a
unique reference to the reserved resource. It in effect, exchanges a reservation for a
resource for the actual resource object.
Arguments:
Return Type: GlStatus
Privilege: Private

BookResource
Arguments: ResourceRef: EcTULongInt, RequestID: EcTULongInt, StartTime:
RWCString *, EndTime:,Size:unsigned short,MediaType:enum,Priority:unsigned
short,ProfileInfo: ptr,Type: EtCEnum

CalculateServiceTimeB - This service estimates the current average service time for
allocations of read/write staging disk.
Arguments:
Return Type: GlStatus
Privilege: Private

CancelReservation - This public service cancels a previously made reservation for a
resource. Before cancelling a reservation, this service confirms that this is a valid request
(i.e., only the requester may cancel the reservation).
Arguments: ReservationRef: EcTULongInt, RequestID: EcTULongInt
Return Type: GlStatus
Privilege: Private

CheckReservations - This service checks the schedule for the next reservation for a
specific resource. It determines if there is sufficient time to dequeue a request and allocate
the resource based upon the time available between now and the scheduled reservation and
the projected use time of the resource by the requester.
Arguments: CheckQueue: EcTBoolean
Return Type: GlStatus
Privilege: Private

CreateSchedule - This operation creates the initial schedule for all devices in a resource
pool.
Arguments:
Return Type: GlStatus
Privilege: Private

6-55 305-CD-024-002

FindRequest - This operation searches the current view of the resource schedule for a
specific in-progress request. If the request is found the information about that request and
its resource usage is provided.
Arguments: RequestID: EcTULongInt, RequestInfo: structure
Return Type: GlStatus
Privilege: Private

FindResource - This operation searched the resource schedule for the first device which is
available (i.e., that is not currently allocated or reserved) in a designated timeframe. If such
a device is found, then a unique reference to the resource is provided.
Arguments: StartTime: RWCString *, EndTime: RWCString *, ResourceRef:
EcTULongInt
Return Type: GlStatus
Privilege: Private

GetCurrentTime - This operation gets the current system time and puts it into the needed
format.
Arguments: CurrentTime: RWCString *
Return Type: GlStatus
Privilege: Private

RecordEndTime - This operation records into the resource schedule the actual time at
which a resource is freed and released for subsequent use by another requester.
Arguments: ResourceRef: EcTULongInt, CompletionStatus: EcTLongInt
Return Type: GlStatus
Privilege:

ReportOperationsB - This service reports statistics gathered on servicing requests (e.g.,
allocating, deallocating and reserving devices) for the pool of storage system resources
managed by the Resource Manager.
Arguments:
Return Type: Void
Privilege: Private

ReportSchedule - This operation reports scheduling information about resources in the
current view of the resource schedule.
Arguments: DeviceUse: EcTEnum, StartTime: RWCString *, EndTime: RWCString *
Return Type: GlStatus
Privilege: Private

RestoreSchedule - This operation restores a previously checkpointed resource schedule.
Arguments:
Return Type: GlStatus
Privilege: Private

6-56 305-CD-024-002

RollSchedule - This operation sets the current view of the resource schedule. The current
view of the schedule is defined by the start time and end time attributes.
Arguments: NumberDays: EcTUShortInt
Return Type: GlStatus
Privilege: Private

SaveSchedule - This service will checkpoint a resource schedule.
Arguments:
Return Type: GlStatus
Privilege: Private

ShowConfigB - This service displays parameters contained in the configuration file
designated for resource scheduling parameters.
Arguments:
Return Type: ostream&outfile
Privilege: Private
PDL:Display configuration parameters and their current values
Return

Associations:

The DsStResourceSchedule class has associations with the following classes:
Class: DsStReservation isreflectedin
Class: DsStResource providesschedulinginformationto
Class: DsStResourceManager schedulesresourcesvia

6.3.23 DsStRestoreListB Class

Parent Class: DsStFileListB
Public: No
Distributed Object:No
Purpose and Description:
This is a specialization of the DsStFileListB class. This specialization supports the list of
files designated for archive restoration by operations personnel.

Attributes:

myOffsiteVolumeB - This attribute indicates the name of the volume which the file was
backed up on.
Data Type: RWCString

6-57 305-CD-024-002

Privilege: Private
Default Value:

myStateB - This attribute indicates the state of the file restoration. The default state is
"PendingLocal".
Data Type: EcTEnum
Privilege: Private
Default Value:PendingLocal

Operations:

AddFileB
Arguments: filename: RWCString, primaryarchive: RWCString, "Waiting External
Source"
Return Type: Void
Privilege: Public

Associations:
The DsStRestoreListB class has associations with the following classes:
None

6.3.24 DsStSchedulingConfig Class

Parent Class: DsCnConfiguration
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class is a specialization of the DsCnConfiguration base class. It manages configuration
parameters for scheduling resources managed by the Storage Management CI. Resources
currently managed by the CI include 4mm Tape, 8mm Tape, 3480 tape, 3490 tape,
CDROM, FAX, Staging Disk, the ECS Archive and the ECS communications network.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

6-58 305-CD-024-002

Associations:

The DsStSchedulingConfig class has associations with the following classes:
None

6.3.25 DsStStagingDataList Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
This class provides an mechanism for tracking the contents of non-work areas of staging
disk used by the Data Server. The dynamic record of the data objects currently on staging
disk allows the Data Server to cache data files on staging disk and subsequently provide
quicker retrieval access to those data files.

Attributes:

myCurrentSize - This attribute indicates the current number of files resident in staging
disk cache.
Data Type: EcTShortInt
Privilege: Private
Default Value:0
This is a Derived Attribute.

myNextElement - This attribute indicates the next file on the staging data list.
Data Type: ptr
Privilege: Private
Default Value:
This is a Derived Attribute.

myTotalSize - This attribute indicates the total size (in KBYTES) of all files currently in
staging disk cache.
Data Type: EcTLongInt
Privilege: Private
Default Value:0

6-59 305-CD-024-002

Operations:

AddElement
Arguments: FileName: char *, RequestID: EcTULongInt, Size: EcTLongInt, Priority:
EcTShortInt

AssociateElement - This operation searches the staging disk cache list for a specific file.
If the file is found, the reference count for the file is incremented by 1 to reflect an
additional request for the file.
Arguments: FileName: RWCString *
Return Type: GlStatus
Privilege: Private

DeleteElement - This operation removes a file from the staging disk cache list.
Arguments: FileName: RWCString *, RequestID: EcTLongInt
Return Type: GlStatus
Privilege: Private

DisassociateElement - This operation decrements the reference count for a specified file
by one. This decrementing indicates that the need for the file by the requester has been
satisfied.
Arguments: FileName: RWCString *
Return Type: GlStatus
Privilege: Private

GetCurrentSize - This operation gets the total size (in KBYTES) of all files currently in
the staging disk cache area.
Arguments: TotalFiles: EcTShortInt
Return Type: GlStatus
Privilege: Private

GetTotalSize - This operation gets the total size (in KBYTES) of all files currently in
staging disk cache.
Arguments: TotalSize: EcTLongInt
Return Type: GlStatus
Privilege: Public

ReadNextElement - This operation provides access to the next file in the staging data
cache list. This operation will be used while searching the staging data cache list for files
to delete.
Arguments: NextFile: ptr
Return Type: GlStatus
Privilege: Private

6-60 305-CD-024-002

SetCurrentSize - This operation sets the total size (in KBYTES) of all files currently in the
staging disk cache area.
Arguments: TotalFiles: EcTShortInt
Return Type: GlStatus
Privilege: Private

SetExpiration - This operation sets the file expiration time and date. At this time the file
becomes eligible for deletion from staging disk cache.
Arguments: FileName: RWCString *, TimeDate: RWCString *
Return Type: GlStatus
Privilege: Private

SetTotalSize - This operation sets the total size (in KBYTES) of all files currently in
staging disk cache.
Arguments: TotalSize: EcTLongInt
Return Type: GlStatus
Privilege: Public

Associations:

The DsStStagingDataList class has associations with the following classes:
Class: DsStResource
Class: DsStStagingMonitor managesstageddatavia

6.3.26 DsStStagingDisk Class

Parent Class: DsStStorageResource
Public: Yes
Distributed Object:Yes
Persistent Class:
Purpose and Description:
To provide an interface to the staging disk resource for the temporary storage of data. The
StagingDisk provides temporary and buffer storage.

Attributes:

myAvailableSpace - This attribute indicates the amount of free disk space (in KBYTES)
remaining for usage.
Data Type: EcTLongInt
Privilege: Public

6-61 305-CD-024-002

Default Value:0
This is a Derived Attribute.

myMaxSize - This attribute indicates the maximum size (in KBYTES) of staging disk that
can be allocated to the user at any one time.
Data Type: EcTLongInt
Privilege: Private
Default Value:

myPathname - This is the pathname to the root directory associated with this allocation
of staging disk.
Data Type: RWCString *
Privilege: Public
Default Value:

mySize - This attribute indicates the size (in KBYTES) of the staging disk allocated.
Data Type: EcTLongInt
Privilege: Public
Default Value:0

Operations:

CopyFile - This operation copies a file on staging disk.
Arguments: SourceFile: RWCString *, DestFile: RWCString *
Return Type: GlStatus
Privilege: Private

ExtendStaging - This operation extends the size of an allocation of staging disk up to but
not exceeding a hard limit. This hard limit is predetermined and set by operations
personnel.
Arguments: ExtendSize: EcTShortInt
Return Type: GlStatus
Privilege: Private

GetAvailableSpace - This operation gets the amount of available disk space for an
allocation.
Arguments: AvailableSpace: EcTLongInt
Return Type: GlStatus
Privilege: Public

GetMaxSize - This operation gets the maximum size of the staging disk allocation.
Arguments: MaxSize: EcTLongInt
Return Type: GlStatus

6-62 305-CD-024-002

Privilege: Public

GetPathName - This operation gets the path name for the allocation of staging disk.
Arguments: PathName: RWCString *
Return Type: GlStatus
Privilege: Public

GetSize - This operation gets the current size of the staging disk allocation.
Arguments: CurrentSize: EcTLongInt
Return Type: GlStatus
Privilege: Public

ReportStatsB
Arguments: size: EcTInt

SetAvailableSpace - This operation sets the amount of available disk space for the
allocation.
Arguments: AvailableSpace: EcTLongInt
Return Type: GlStatus
Privilege: Private

SetMaxSize - This operation sets the maximum size for the allocation of staging disk.
Arguments: MaxSize: EcTLongInt
Return Type: GlStatus
Privilege: Private

SetPathName - This operation sets the path name for the allocation of staging disk.
Arguments: PathName: RWCString *
Return Type: GlStatus
Privilege: Public

SetSize - This operation sets the current size of the staging disk allocation.
Arguments: CurrentSize: EcTLongInt
Return Type: GlStatus
Privilege: Private

~DsStStagingDisk - This operation is the destructor for the StagingDisk object.
Arguments:
Return Type: void
Privilege: Public

6-63 305-CD-024-002

Associations:

The DsStStagingDisk class has associations with the following classes:
None

6.3.27 DsStStagingMonitor Class

Parent Class: DsStMonitor
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
To privde a mechanism to delete data objects appropriately from non-work areas of staging
disk and to report utilization of staging disk. The StagingMonitor performs these functions
by constantly monitoring the contents of staging disk. Via informa- tion contained in
theStagedDataList, it determines the correct time to delete files which have been placed on
staging to be electronically pulled by requesters but which have not been pulled by the
requesting user by a previously indicated date and time. It also deletes other data objects
which have been distributed via electronic push and/or physical media.

Attributes:

myconfig - This attribute identifies the configuration file for the staging disk cache.
Data Type: * DsStCacheConfig
Privilege: Private
Default Value:

Operations:

ReclaimSpace - This operation searches the list of files currently resident in the read/only
staging disk area for files which can be deleted. Files identified are deleted.
Arguments:
Return Type: EcTVoid
Privilege: Private

ReportStats - This operation provides reports on staging disk cache statistics.
Arguments:
Return Type: Void
Privilege: Public

6-64 305-CD-024-002

Associations:

The DsStStagingMonitor class has associations with the following classes:
Class: DsStStagingDataList managesstageddatavia

6.3.28 DsStStorageResource Class

Parent Class: DsStResource
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
To provide an interface to the services provided by the set of storage resources utilized by
the DataServer. The StorageResource is a type of resource that is used for providing
persistent storage devices for the DataServer.

Attributes:

All Attributes inherited from parent class

Operations:

EstmateDelayB - This service provides an estimate of the time delay associated with
retrieving a file from the archive.
Arguments: Filename: RWCString
Return Type: secs:EcTFloat
Privilege: Public

Associations:

The DsStStorageResource class has associations with the following classes:
None

6.3.29 DsStStream Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:Yes

6-65 305-CD-024-002

Purpose and Description:
This class provides access to the standard UNIX Fstreams.

Attributes:

myFileName - This attribute indicates the name of the file created in the staging disk read/
write area.
Data Type: RWCString *
Privilege: Private
Default Value:

mySize - This attribute indicates the size of the file in Kbytes.
Data Type: EcTLongInt
Privilege: Private
Default Value:

Operations:

~DsStStream - This is the destructor for the DsStStream object.
Arguments:
Return Type: EcTVoid
Privilege: Public

Associations:

The DsStStream class has associations with the following classes:
DsStStagingDisk (Aggregation)

6.3.30 DsStTape Class

Parent Class: DsStPhysicalResource
Public: Yes
Distributed Object:Yes
Purpose and Description:
This class provides an interface to tape resources managed by Storage Management. The
Ingest Client to Storage Management can use tape resources to ingest data files. The Data
Distribution Client to Storage Management can use tape resources to distribute data files to
requesting users.

6-66 305-CD-024-002

Attributes:

myBlockCount - This attribute indicates the current number of blocks which have been
read from or written to the media currently mounted on the tape device.
Data Type: EcTLongInt
Privilege: Public
Default Value:0

myBlockSize - This attribute indicates the block size (in bytes) used for reading and
writing to tape.
Data Type: EcTLongInt
Privilege: Private
Default Value:0

myCapacity - This attribute indicates the capacity (in KBYTES) of the media currently
mounted in the tape resource.
Data Type: EcTLongInt
Privilege: Public
Default Value:0
This is a Derived Attribute.

myNextBlock - This attribute indicates the next block on the media which can be read or
written to.
Data Type: EcTLongInt
Privilege: Private
Default Value:0

myRemainingBlocks - This attribute indicates the number of blocks remaining on the
media.
Data Type: EcTLongInt
Privilege: Public
Default Value:0

myTapeType - This attribute identifies the type of tape resource (e.g., 4mm, 8mm, 9track,
3480, 3490).
Data Type: RWCString *
Privilege: Public
Default Value:

Operations:

Dismount - This public operation dismounts the specified volume from a tape device.
Arguments: VolName: RWCString *

6-67 305-CD-024-002

Return Type: EcUtStatus
Privilege: Public

GetBlockCount - This operation gets the current number of blocks which have been read
or written to the media currently mounted on the tape device.
Arguments:
Return Type: EcUtStatus
Privilege: Public

GetBlockSize - This operation gets the block size (in bytes) used for read and write
operations to the tape device.
Arguments:
Return Type: EcUtStatus
Privilege: Public

GetNextBlock - This operation gets the next block to be read or written from the volume
currently mounted on the tape resource.
Arguments:
Return Type: EcTLongInt
Privilege: Public

GetRemainingBlocks - This public service gets the number of blocks remaining on the
tape media which can be used to record data files.
Arguments:
Return Type: EcTLongInt
Privilege: Public

Mount - This public service mounts the specified volume onto a tape device.
Arguments: VolName: RWCString *
Return Type: EcUtStatus
Privilege: Public

Rewind - This public service rewinds the media currently mounted on the tape device.
Arguments:
Return Type: EcUtStatus
Privilege: Public

SetBlockCount - This operation sets the number of blocks which have been currently read
or written from or to the media currently mounted.
Arguments: BlockCount: EcTLongInt
Return Type: EcTVoid
Privilege: Private

SetBlockSize - This operation sets the block size (in bytes) for read and write operations to
the tape resource.

6-68 305-CD-024-002

Arguments: BlockSize: EcTLongInt
Return Type: EcTVoid
Privilege: Private

SetNextBlock - This operation sets the next block to be read or written from the volume
currently mounted on the tape resource.
Arguments: NextBlock: EcTLongInt
Return Type: EcTVoid
Privilege: Private

SetRemainingBlocks - This operation sets the number of blocks remaining which have
been read from or written to the tape media.
Arguments: AvailBlocks: EcTLongInt
Return Type: EcTVoid
Privilege: Private

~DsStTape - This is the destructor for the DsStTape class.
Arguments:
Return Type: EctVoid
Privilege: Public

Associations:

The DsStTape class has associations with the following classes:
None

6.3.31 DsUzArchiveCostB Class

Parent Class: DsUzResourceCostB
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for Archive Resources. Given a size in
megabytes, it will retain a utilization cost, in megabytes. These costs may be passed to the
BAAS component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

6-69 305-CD-024-002

Operations:

All Operations inherited from parent class
Associations:
The DsUzArchiveCostB class has associations with the following classes:
None

6.3.32 DsUzCPUCostB Class

Parent Class: DsUzResourceCostB
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for CPU Resources. Given a size in megabytes,
it will retain a utilization cost, in mflops. These costs may be passed to the BAAS
component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class
Associations:
The DsUzCPUCostB class has associations with the following classes:
None

6.3.33 DsUzCostB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This class represents the collection of resource usage information which is provided to
determine the cost of executing a given service.

6-70 305-CD-024-002

Attributes:

None

Operations:

None
Associations:
The DsUzCostB class has associations with the following classes:
Class: DsStResourceManager.
Class: DsUzUtilizationTableB getresourcesfrom

6.3.34 DsUzDiskCostB Class

Parent Class: DsUzResourceCostB
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for Disk Resources. Given a size in megabytes,
it will retain a utilization cost, in megabytes. These costs may be passed to the BAAS
component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class
Associations:
The DsUzDiskCostB class has associations with the following classes:
None

6.3.35 DsUzFixedCostB Class

Parent Class: DsUzResourceCostB
Public: No
Distributed Object:No
Purpose and Description:

6-71 305-CD-024-002

This class represents the Utilization Costs for Fixed Personnel Resources. Given a size in
megabytes, it will retain a utilization cost, in person-hours. These costs may be passed to
the BAAS component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class
Associations:
The DsUzFixedCostB class has associations with the following classes:
None

6.3.36 DsUzIOCostB Class

Parent Class: DsUzResourceCostB
Public: No
Distributed Object:No
Purpose and Description:
This class represents the utilization costs for IO resources. Given a size in megabytes, it
will retain a utilization cost in megabytes. These costs may be passed to the BAAS
component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class
Associations:
The DsUzIOCostB class has associations with the following classes:
None

6-72 305-CD-024-002

6.3.37 DsUzMediaCostB Class

Parent Class: DsUzResourceCostB
Public: No
Distributed Object:No
Purpose and Description:
This class represents the utilization costs for hard media resources. Given a size in
megabytes, it will retain a utilization cost in media. These costs may be passed to the
BAAS component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class
Associations:
The DsUzMediaCostB class has associations with the following classes:
None

6.3.38 DsUzResourceCostB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This abstract base class provides the interface for all resource cost utilizations.

Attributes:

None

Operations:

None
Associations:
The DsUzResourceCostB class has associations with the following classes:
DsUzCostB (Aggregation)

6-73 305-CD-024-002

6.3.39 DsUzUtilizationTableB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This class represents the mapping of all costed services and the resources that they use.
This will most likely be implemented as a wrapper to a database. This will be comprised
of tuples containing (application, service, resource).

Attributes:

None

Operations:

None
Associations:
The DsUzUtilizationTableB class has associations with the following classes:
Class: DsUzCostB getresourcesfrom

6.4 CSCI Dynamic Model
This section describes several scenarios for the Storage Management CSCI. A scenario delineates
the steps that occur in a particular execution through the system.

The scenarios address the following topics:

Resources

• Allocation of a Physical Resource

• Deallocation of a Physical Resource

• Deletion of Staging Disk Data

• Deletion of Pull Disk Data With Confirmation by Operations Personnel

• Setting the state of a Tape Device to Off-line

• Submitting a Resource Reservation

• Activating a Resource Reservation

• Canceling a Resource Reservation

• Creating Safe-Store Archive Backup Media

• Displaying Configuration Parameters

• Monitoring Check Sum Errors

6-74 305-CD-024-002

Requests

• Aborting a Request

• Insert Data Requests

• Restore Archived Data Requests

• Delete Archived Data Requests

• Estimating File Retrieval Delay Requests

• Estimating Service Cost Requests

• Creating Local Backup

• Creating Offsite Backup

• Restoring File from Local Backup

• Restoring File from Local Backup - Failure

6.4.1 Aborting a Request for Service

Summary

The calling object issues a request to abort a previous request. The abort request is received and
logged. The request to be aborted is located in the resource queue and subsequently removed. The
abort is logged and a notification of abnormal termination is sent to the requester. Figure 6.4.1-1
shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors.

Figure 6.4.1-1. Abort_Request Dynamic Model

Calling Object
DsStRequestManagerC

DsStRequestManagerS DsStResourceQueue

MSLog

EcNotifyDsStResourceManager.

Abort

AbortRequest

StartService

EndService

return
status

return
status

AbortRequest

EndService

FindRequest

Dequeue

Log request abort

Notify requester that request was aborted

6-75 305-CD-024-002

6.4.2 Activating a Resource Reservation

Summary

The calling object submits a request to allocate the resource it has previously reserved. The request
is received and the reservation for the resource is confirmed by examining the resource schedule.
Appropriate counters are subsequently updated and the calling object receives a distributed object
indicated by the resource reference. Figure 6.4.2-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors.

Figure 6.4.2-1. Activate_Reservation Dynamic Model

DsStResourceSchedule DsStResourceManagerCallingObject

DsStReservationC

DsStReservationS
DsStRequestManagerS

MSLog

Activate

Activate
StartService

ActivateReservation

GetFreeResources

SetFreeResources

GetReservedResources

SetReservedResources

Log reservation activation

EndService

return
resource

object

return
resource

object

6-76 305-CD-024-002

6.4.3 Allocation of a Physical Resource, No Resource Available

Summary

The calling object indicates the type of resource desired in the allocate request. The allocation
request is received and based upon input parameters in the request a projected end time for the
allocation is made. No device of the desired resource type is found which satisfies the time
constraints for the request. The request is queued. Figure 6.4.3-1 shows the event trace for this
scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that all devices of the desired
resource type are unavailable (i.e., they are all currently allocated and/or reserved for some other
client for a portion of the time period projected for the allocation request).

Figure 6.4.3-1. ALLOCATEPHYSRES_NORESAVAIL Dynamic Model

DsStResourceManager
Calling Object DsStResourceC

DsStResourceS

DsStResourcePolicy

DsStResourceQueue

DsStRequestManagerS

ProjectDuration

AllocateResource

GetFreeResources

Queue

Allocate
Allocate

StartService

GetDevTime

6-77 305-CD-024-002

6.4.4 Allocation of a Physical Resource, Resource Available

Summary

The calling object indicates the type of resource desired in the allocate request. The allocation
request is received and based upon input parameters in the request a projected end time for the
allocation is made. The first device of the desired resource type is found which satisfies the time
constraints for the request. The schedule is updated to reflect the specific resource allocated. The
calling object receives a distributed object indicted by the resource reference. Figure 6.4.4-1 shows
the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that a device of the desired resource
type is available for allocation to a client.

Figure 6.4.4-1. ALLOCATEPHYSRES_RESAVAIL Dynamic Model

DsStResourceManager

ResourceSchedule

Calling Object

DsStResourceC

DsStResourceS

DsStResourcePolicy

MSLog

DsStRequestManagerS

Allocate

Allocate

ProjectDuration

AllocateResource

GetFreeResources

FindResource

GetCurrentTime

BookResource

SetFreeResources

Log resource allocation

return
resource

object

StartService

GetDevTime

return
resource

object

6-78 305-CD-024-002

6.4.5 Inserting Data into the Archive

Summary

The calling object requests that a specified file be inserted into the archive. The archive object
copies the file into the archive and returns a status to the caller. Figure 6.4.5-1 shows the event
trace for this scenario.

Assumptions

This scenario assumes that there are no errors.

Figure 6.4.5-1. Archive_Insert Dynamic Model

Calling Object DsStArchiveSDsStArchiveC DsStRequestManagerS MSLog

return
status

CreateCheckSum

Archive File

Store

store

EndService

StartService

Log successful data store operation
return
status

ctor

dtor

6-79 305-CD-024-002

6.4.6 Retrieving Data from the Archive, Checksum Error

Summary

The calling object requests that a specified file be retrieved from the archive. The archive object
checks to see if the requested file is already located on the staging disk. If the file is not already
present, the file is retrieved from the archive. After retrieval of the file, a checksum is performed
and the results are compared to the checksum performed when the file was originally archived.
After the checksum error is detected proper notifications are sent and the error logged. The file is
not placed in the staging disk cache list. Figure 6.4.6-1 shows the event trace for this scenario.

Assumptions

There is only one file to be retrieved indicated in the request. The retrieve operation will succeed.
The requested file is not already on the staging disk.

6.4.7 Retrieving Data from the Archive, File not in Cache

Summary

The calling object requests that a specified file be retrieved from the archive. The archive object
checks to see if the requested file is already located on the staging disk. If the file is not already
present, the file is retrieved from the archive. After retrieval of the file, a checksum is performed
and the results are compared to the checksum performed when the file was originally archived.
Additionally, the file is now placed in the staging disk cache list. Figure 6.4.7-1 shows the event
trace for this scenario.

Assumptions

There is only one file to be retrieved indicated in the request. The retrieve operation will succeed.
The requested file is not already on staging disk.

6-80 305-CD-024-002

This page intentionally left blank.

6-81 305-CD-024-002

C
al

lin
g

O
bj

ec
t

D
sS

tA
rc

hi
ve

S
D

sS
tS

ta
gi

ng
D

at
aL

is
t

M
S

Lo
g

D
sS

tA
rc

hi
ve

C

D
sS

tS
ta

gi
ng

D
is

kS

E
cN

ot
ify

D
sS

tR
eq

ue
st

M
an

ag
er

S

R
et

rie
ve

re
po

rt
er

ro
r

G
et

C
he

ck
su

m

no
t f

ou
nd

C
op

yF
ile

re
po

rt
 c

he
ck

su
m

 e
rr

or

R
et

rie
ve

S
ta

rt
S

er
vi

ce

re
po

rt
 c

he
ck

su
m

 e
rr

or

re
po

rt
er

ro
r

E
nd

S
er

vi
ce

ct
or

dt
or

A
ss

oc
ia

te
dE

le
m

en
t

F
ig

u
re

 6
.4

.6
-1

.
A

rc
h

iv
e_

R
et

ri
ev

e_
C

H
E

C
K

S
U

M
E

R
R

O
R

 D
yn

am
ic

 M
o

d
el

6-82 305-CD-024-002

Place holder for 11 x17 drawing.

6-83 305-CD-024-002

C
al

lin
gO

bj
ec

t
D

sS
tA

rc
hi

ve
S

D
sS

tS
ta

gi
ng

D
at

aL
is

t
D

sS
tR

eq
ue

st
M

an
ag

er
S

D
sS

tS
ta

gi
ng

D
is

k
D

sS
tA

rc
hi

ve
C

M
S

Lo
g

fil
e

no
t f

ou
nd

R
et

rie
ve

R
et

rie
ve

re
po

rt
er

ro
r

G
et

C
he

ck
su

m

A
dd

E
le

m
en

t

re
po

rt
er

ro
r

A
ss

oc
ia

te
E

le
m

en
t

ct
or

S
ta

rt
S

er
vi

ce

C
op

yF
ile

E
nd

S
er

vi
ce

Lo
g

su
cc

es
sf

ul
 r

et
rie

ve
 o

pe
ra

tio
n

dt
or

F
ig

u
re

 6
.4

.7
-1

.
A

rc
h

iv
e_

R
et

ri
ev

e_
N

O
C

A
C

H
E

H
IT

 D
yn

am
ic

 M
o

d
el

6-84 305-CD-024-002

Place holder for 11 x17 drawing.

6-85 305-CD-024-002

6.4.8 Canceling a Resource Reservation

Summary

The calling object decides to cancel a previously made resource reservation. The cancellation
request is received and the reservation reference is verified. Appropriate counters are updated.
Figure 6.4.8-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors.

Figure 6.4.8-1. Cancel_Reservation Dynamic Model

DsStRequestManagerS

DsStResourceSchedule

DsStResourceManager
CallingObject

DsStReservationC

DsStReservationS

MSLog

Cancel

Cancel

StartService

CancelReservation

GetReservedResources

SetReservedResources

Log cancellation of a reservation

EndService

return
status

return
status

ctor

dtor

6-86 305-CD-024-002

6.4.9 Creating Local Backup

Summary

The calling object from within the operator GUI issues a request to create local backup tapes. The
request is received and routed to the appropriate Archive Resource Manager. The first entry on the
backup list with a state of "Pending Local" is read and the following information is retained:
filename, primary archive, backup archive offsite location. The state is updated to "Local In
Progress". The resource manager, after creation of an interface to the backup archive, issues a
request to copy the file to the backup archive. Upon completion of the backup creation on archive
media, a successful local backup of the file is logged and the backup list entry is removed from the
backup list or updated to change the status to "Pending Offsite". Figure 6.4.9-1 shows the event
trace for this scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that the operator GUI interface
displays to operations personnel the current list of files to be backed up.

Figure 6.4.9-1. Creating_Local_Backup Dynamic Model

ArchiveAdministrationoperatorGUI DsStResourceManager DsStBackupListB DsStArchive

BackupB(Local)

UpdateStatusB

ctor

CopyFileB

dtor

RemoveFileB

6-87 305-CD-024-002

6.4.10 Creating Offsite Backup

Summary

The calling object from within the operator GUI issues a request to create offsite backup tapes. The
request is received and routed to the appropriate Archive Resource Manager. The first entry on the
backup list with a state of "Pending Offsite" is read and the following information is retained:
filename, primary archive, backup archive offsite location. The state is updated to "Offsite In
Progress". After creation of an interface to the primary archive, the resource manager issues a
request to copy the file to the appropriate safe-store archive media. Upon completion of the copy
of the file to the safe-store archive media, a successful offsite backup of the file is logged. The
status of the entry in the backup list is updated to "Pending MetaData Update" and the volume
name is added to the entry. After the SDSRV metadata database for the file has been updated to
indicate the offsite volume name for the file, the entry is removed from the backup list. Figure
6.4.10-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that the operator GUI interface
displays to operations personnel the current list of files to be backed up.

Figure 6.4.10-1. Creating_Offsite_Backup Dynamic Model

ArchiveAdministrationOperatorGUI DsStResourceManager DsStBackupListB DsStArchive

Operations Personnel Initiate Metadata Upodate

BackupB(Offsite)

UpdateStatusB

ctor

CopyFileB

dtor

RemoveFileB

UpdateStatusB

BackupB(Offsite)

6-88 305-CD-024-002

6.4.11 Deallocation of a Physical Resource, Queued Requests

Summary

The calling object has completed its use of the physical resource and indicates this completion by
deallocating the resource. The deallocation request is received and the actual end time for the use
of the resource is recorded in the schedule. To prevent idle resources, the queue of requests for this
resource type is searched after determining that there is no imminent reservation for a resource of
the type deallocated. The highest priority queued request which can be satisfied is dequeued.
Figure 6.4.11-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that there is no reservation for the
device just deallocated.

Figure 6.4.11-1. DEALLOCATEPHYSRES_Queued_Requests Dynamic Model

DsStResourceManager

DsStResourceScheduleCalling Object

DsStResourceC

DsStResourceS

MSLog
DsStResourceQueue

DsStRequestManagerS

Deallocate
Deallocate

DeallocateResource

GetFreeResources

SetFreeResources

Log resource deallocation

CheckReservations

GetNextQueued

FindResource

BookResource

Dequeue

return()

RecordEndTime

EndService

return()

dtor

6-89 305-CD-024-002

6.4.12 Deallocation of a Physical Resource, Imminent Reservation for Resource

Summary

The calling object has completed its use of the physical resource and indicates this completion by
deallocating the resource. The deallocation request is received and the actual end time for the use
of the resource is recorded in the schedule. It is determined that there is pending reservation for
this device such that there is insufficient time to service any queued requests for this resource.
Hence, the resource queue is not searched for a request to satisfy in the available time between now
and when the reservation is scheduled to start. Figure 6.4.12-1 shows the event trace for this
scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that there is a queue of requests for
the resource type just deallocated.

Figure 6.4.12-1. DEALLOCATEPHYSRES_Reservation Dynamic Model

DsStResourceManager

DsStResourceScheduleCalling Object

DsStResourceC

DsStResourceS

MSLogDsStRequestManagerS

Deallocate

Deallocate

DeallocateResource

SetFreeResources

Log resource deallocation

RecordEndTime

return()

CheckReservations

EndService

GetFreeResources

return()

dtor

6-90 305-CD-024-002

6.4.13 Deletion of Pull Disk Data with Operations Confirmation

Summary

The Pull Monitor periodically wakes up and checks the need to delete files in the pull disk area.
This initial check is to determine if the high water mark (highest desired percent utilization of the
pull area) has been reached. If it has been reached or surpassed the Pull Monitor searches through
the pull data list for files it can delete. It deletes eligible files found until all files on the list have
been checked or the low water mark (lowest desired percent utilization of the cache area) is
reached, whichever comes first. Before deleting a file, the Pull Monitor confirms the desire of
Operations personnel to actually delete the file. After confirmation is obtained, the Pull Monitor
deletes the file. After deleting appropriate files, the Pull Monitor returns to a hibernation state.
Figure 6.4.13-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors, that Operation has set the confirm delete flag, that
the high water mark has been surpassed, and that the operator immediately confirms the deletion
of the one file that was found eligible for deletion.

Figure 6.4.13-1. Delete_PULLDISKDATA_Confirmed Dynamic Model

DsStPullMonitor DsStPullList EcNotify

Monitor awakes

Monitor goes
back to sleep

MSLog

File is Deleted

Send Operations a message to confirm deletion

ReadNextElement

Confirmation is received

Log file deleted from Pull Area

DeleteElement

GetCurrentSize

SetCurrentSize

GetNumberFiles

SetNumberFiles

6-91 305-CD-024-002

6.4.14 Deletion of Staging Disk Data

Summary

The Staging Monitor periodically wakes up and checks the need to delete files in the staging disk
cache. This initial check is to determine if the high water mark (highest desired percent utilization
of the cache area) has been reached. If it has been reached or surpassed the Staging Monitor
searches through the staging data list for files it can delete. It deletes eligible files until all files on
the list have been checked or the low water mark (lowest desired percent utilization of the cache
area) is reached, whichever comes first. After deleting appropriate files, the Staging Monitor
returns to a hibernation state. Figure 6.4.14-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that the high water mark has been
surpassed and that only one file is eligible for deletion.

Figure 6.4.14-1. Delete_STAGINGDISKDATA Dynamic Model

DsStStagingMonitor DsStResourceManager DsStStagedDataList MSLog DsStStagingDisk

Monitor awakes

Monitor goes
back to sleep

GetCurrentSize

ReadNextElement

Delete

SetCurrentSize

Log file deletion from staging disk cache

DeleteElement

6-92 305-CD-024-002

6.4.15 Failure Restoring Locally Backed Up File
Summary
The calling object from within the operator GUI sends a request to restore files. The request is
received and logged by the Archive Resource Manager. The first entry on the restore list with a
state of "Pending Local" is read and the following information is retained: filename, primary
archive, backup archive, offsite location, offsite volume. The state is updated to "Local In
Progress". The resource manager, after creation of an interface to the backup archive, issues a
request to retrieve the file. The file retrieval fails and the failure is logged. The state of the entry
is changed to "Pending Offsite" and notification is sent to operations personnel requesting the
transmittal of the designated safe-store archive volume from the offsite location.. Upon arrival of
the safe-store archive media, operations personnel physically place the safe-store volume in an
appropriate ATL. Operations personnel once again initiate a request to restore files and the target
entry is accessed and its state changed to "Offsite in Progress". After successful restoration of the
file to the primary and backup archives, the target entry is removed from the restore list and a
successful offsite restoration of the file is logged. Figure 6.4.15-1 shows the event trace for this
scenario.
Assumptions
This scenario assumes that there are no errors. The file was backed up locally and to an offsite
location. The operator GUI also provides a constant display of the contents of the restore list.

6.4.16 Rejecting Service Request Due to Insufficient ECS Funds

Summary
The calling object sends an allocation request for staging disk work area. The request is received
by the Staging Disk Resource Manager. The resource manager object gets an estimate of the cost
of this allocation given the size of the working storage requested. This resource manager also gets
the current account balance for the requesting user. The resource manager subsequently gets the
price estimate for this allocation of working storage and ascertains that the user has insufficient
funds in his/her account. The Staging Disk Resource Manager logs the failure of the allocation
request and returns this failure status to the calling object. Figure 6.4.16-1 shows the event trace
for this scenario.
Assumptions
This scenario assumes that there are no errors.

6.4.17 Restoring a Locally Backed Up File

Summary
The calling object from within the operator GUI sends a request to restore files. The request is
received and logged by the Archive Resource Manager. The first entry on the restore list with a
state of "Pending Local" is read and the following information is retained: filename, primary
archive, backup archive, offsite location, offsite volume. The state is updated to "Local In
Progress". The resource manager, after creation of an interface to the backup archive, issues a
request to retrieve the file. The file retrieval succeeds and the file is restored to the primary archive.
After successful restoration of the file to the primary the target entry is removed from the restore
list and a successful local restoration of the file is logged. Figure 6.4.17-1 shows the event trace
for this scenario.
Assumptions
This scenario assumes that there are no errors. The file was backed up locally. The operator GUI
also provides a constant display of the contents of the restore list.

6-93 305-CD-024-002

A
rc

hi
ve

A
dm

in
is

tr
at

io
nO

pe
ra

to
rG

U
I

D
sS

tR
es

ou
rc

eM
an

ag
er

D
sS

tA
rc

hi
ve

D
sS

tA
rc

hi
ve

D
sS

tR
es

to
re

Li
st

B
M

sL
og

O
P

E
R

A
T

IO
N

S
 P

E
R

S
O

N
N

E
L

R
E

Q
U

E
S

T
 T

R
A

N
S

M
IT

T
A

L
O

F
 B

A
C

K
U

P
S

, W
A

IT
 F

O
R

 T
H

E
IR

 A
R

R
IV

A
L

LO
A

D
T

A
P

E
S

 IN
T

O
 A

T
L

W
H

E
N

 T
H

E
Y

 A
R

R
IV

E
.

"P
rim

ar
y"

"B
ac

ku
p"

E
cN

ot
ify

R
es

to
re

B

U
pd

at
eS

ta
tu

sB

ct
or

R
et

rie
ve

dt
or

U
pd

at
eS

ta
tu

sB

R
es

to
re

B

U
pd

at
eS

ta
tu

sB

ct
or

R
es

to
re

F
ile

B

dt
or

ct
or

R
es

to
re

F
ile

B

dt
or

Lo
g

Lo
ca

l B
ac

ku
p

F
ai

le
d

N
ot

ify
 O

P
S

 to
 r

eq
ue

st
 T

ra
ns

m
itt

al
 o

f B
ac

ku
ps

 fr
om

 O
ffs

ite
 L

oc
at

io
n

R
em

ov
eF

ile
B Lo

g
O

ffs
ite

 R
es

to
re

 S
uc

ce
ss

fu
l

Lo
gR

es
to

re
R

eq
ue

st
R

ec
ei

ve
d

F
ig

u
re

 6
.4

.1
5-

1.
 F

ai
lu

re
_R

es
to

ri
n

g
_L

o
ca

l_
B

ac
ku

p
 D

yn
am

ic
 M

o
d

el

6-94 305-CD-024-002

C
al

lin
gO

bj
ec

t
D

sS
tR

es
ou

rc
eM

an
ag

er
D

sU
zC

os
tB

D
sU

zU
til

iz
at

io
nT

ab
le

B
D

sU
zD

is
kC

os
tB

M
sA

cU
sr

P
ro

fil
eM

gr
M

sA
cU

sr
P

ro
fil

e
E

cP
ric

eT
ab

le
M

S
Lo

g

(a
pp

lic
at

io
n,

se
rv

ic
e,

si
ze

)

(a
pp

lic
at

io
n,

se
rv

ic
e)

(s
iz

e)

(u
se

rid
)

(u
se

rid
,

ac
ct

B
al

an
ce

)

(r
eq

ue
st

id
,D

sU
zC

os
tB

,
us

er
id

)

A
llo

ca
te

R
es

ou
rc

e

ct
or

G
et

R
es

ou
rc

es
B

ct
or

ct
or

R
eq

ue
st

B
al

an
ce

G
et

A
cc

ou
nt

B
al

an
ce

dt
or

R
eq

ue
st

P
ric

eE
st

im
at

e

dt
or

dt
or

Lo
gA

llo
ca

tio
nF

ai
le

dD
ue

T
oI

ns
uf

fic
ie

nt
F

un
ds

F
ig

u
re

 6
.4

.1
6-

1.
 R

ej
ec

ti
n

g
_S

er
vi

ce
_I

n
su

ff
ic

ie
n

t_
F

u
n

d
s

D
yn

am
ic

 M
o

d
el

6-95 305-CD-024-002

A
rc

hi
ve

A
dm

in
is

tr
at

io
nO

pe
ra

to
rG

U
I

D
sS

tR
es

ou
rc

eM
an

ag
er

D
sS

tA
rc

hi
ve

D
sS

tA
rc

hi
ve

D
sS

tR
es

to
re

Li
st

B

"P
rim

ar
y"

"B
ac

ku
p"

M
sL

og

R
es

to
re

B

U
pd

at
eS

ta
tu

sB

ct
or

R
et

rie
ve

dt
or

ct
or

R
es

to
re

F
ile

B

dt
or

R
em

ov
eF

ile
B

Lo
gR

es
to

re
R

eq
ue

st
R

ec
ei

ve
d

Lo
gS

uc
ce

ss
fu

lF
ile

re
st

or
at

io
n

F
ig

u
re

 6
.4

.1
7-

1.
 R

es
to

ri
n

g
_L

o
ca

l_
B

ac
ku

p
 D

yn
am

ic
 M

o
d

el

6-96 305-CD-024-002

6.4.18 Setting the Operational State of a Tape Device

Summary

Operations personnel have determined that a specific tape device needs to be taken off-line. The
operator issues the appropriate request. The request is received and before setting the new
operational state, the current operational state is checked to verify that the state change is not illegal
or inappropriate. Figure 6.4.18-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that the specific tape device designated to be taken off-line is on-line. The
system is quiescent.

Figure 6.4.18-1. Set_TAPESTATE Dynamic Model

DsStRequestManagerS
DsStResourceManager

DsStTapeCallingObject
DsStRequestManagerC

ChangeDeviceStatus

ChangeDeviceStatus

StartService

ChangeDeviceStatus

GetStatus

SetStatus

EndService

return status
return status

6-97 305-CD-024-002

6.4.19 Submitting a Resource Reservation

Summary

The resource reservation request is received and based upon input parameters in the request a
search of the resource's schedule is performed. The first device of the desired resource type is
found which satisfies the time constraints for the reservation request. The schedule is updated to
reflect a reservation for that specific device. The calling object receives a reservation reference
(confirmation number) to document the reservation for the resource. Figure 6.4.19-1 shows the
event trace for this scenario.

Assumptions

This scenario assumes that there are no errors. It also assumes that a device of the desired resource
type is available for allocation to a client.

Figure 6.4.19-1. Submit_Reservation Dynamic Model

DsStResourceSchedule
DsStResourceManager MSLog

CallingObject
DsStReservationC

DsStReservationS
DsStRequestManagerS

DsStResourceS

Submit
Reservation

Submit

StartService

FindResource

GetCurrentTime

BookResource

GetReservedResources

SetReservedResources

Log resource reservation made

return
reservation
reference

EndService

GetStatus

return
reservation
reference

ctor

dtor

6-98 305-CD-024-002

6.4.20 Backing Up Archive Data Initiation

Summary

The calling object issues a request to store a data file. The store request is received and logged.
After the data file has been archived and the checksum for the file has been computed, an entry is
placed on the backup list for the file. Appropriate information (filename, primary archive, backup
archive, and offsite location) are included in addition to the state, which will be "Pending Local".
A successful status is returned to the calling object after logging a successful data store operation.
Figure 6.4.20-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors. The file indicated in the store request is designated
for local and offsite backup.

Figure 6.4.20-1. Backup_Archive_Data Dynamic Model

CallingObject DsStArchiveC DsStArchiveS DsStRequestManagerS MSLogDsStBackupList

Store

Store

StartService

Archive File

CreateCheckSum

return
status

return
status

AddFileB

RecordPerformanceB

EndService

Log successful data store operation

6-99 305-CD-024-002

6.4.21 Deleting Files from the Archive

Summary

The calling object requests that a specified file be deleted from the archive. The archive object
receives the delete request and deletes the file from the archive. The process continues with the
deletion of the entry for the file which is contained in the file directory. The last step in the process
is the logging of the file's deletion from the archive. A successful status is returned to the calling
object. Figure 6.4.21-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors.

Figure 6.4.21-1. Delete_Archived_File Dynamic Model

CallingObject DsStArchiveC DsStArchiveS
DsStRequestManagerS MSLog

DeleteFileB

DeleteFileB

StartService

DeleteArchiveFileB

EndService

return

return

Log deletion of file from Archive

6-100 305-CD-024-002

6.4.22 Estimating Cost of Storage Allocation

Summary

The calling object requests an estimate of the cost of performing allocation of staging disk. The
request manager object receives the estimate cost request and requests cost estimation from the
staging disk resource manager. The resource manager inputs the application, service and size of
the allocation request and the response received from the DsUzCost object reflects an estimated
cost of this allocation of staging disk. Figure 6.4.22-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors.

Figure 6.4.22-1. Estimate_Storage_Allocation_Cost Dynamic Model

Calling Object DsStRequestManagerC DsStRequestManagerS
Staging Disk

DsStResourceManager DsUzCostB DsUzUtilizationTable DsUzDiskCostB

(application,
service, size)

application,
service

EstimateCostsB
(size)

EstimateCostsB
(size)

EstimateCostB
(size)

StartService

return

return

GetResourcesB

ctor

ctor (size)

dtor

dtor

EndService

6-101 305-CD-024-002

6.4.23 Estimating Time Delay to Retrieve Files from the Archive

Summary

The calling object requests an estimate of the time delay to retrieve several data files from the
archive. The request manager object receives this request and requests time delay estimations
respectively from the Archive Resource Manager and the Staging Disk Resource Manager. The
Archive Resource Manager bases its estimate on the number of current requests it is servicing and
the current average service time. The Staging Disk Resource Manager bases its estimate largely
on the current average queue and service times. The estimate responses from both resource
managers are consolidated and returned to the calling process along with a successful status.
Figure 6.4.23-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors.

6-102 305-CD-024-002

C
al

lin
gO

bj
ec

t
D

sS
tA

rc
hi

ve
D

sS
tR

es
ou

rc
eM

an
ag

er
S

D
sS

tR
eq

ue
st

M
an

ag
er

S
D

sS
tR

eq
ue

st
M

an
ag

er
C

D
sS

tR
es

ou
rc

eM
an

ag
er

S

A
rc

hi
ve

R
es

ou
rc

e
M

an
ag

er
S

ta
gi

ng
 D

is
k

R
es

ou
rc

e
M

an
ag

er

D
sS

tR
es

ou
rc

eQ
ue

ue
D

sS
tR

es
ou

rc
eS

ch
ed

ul
e

E
st

im
at

eS
to

ra
ge

A
cc

es
sD

el
ay

B
E

st
im

at
eS

to
ra

ge
A

cc
es

sD
el

ay
B

E
st

im
at

eD
el

ay
B

C
al

cu
la

te
S

er
vi

ce
T

im
eB

re
tu

rn

E
st

im
at

eD
el

ay
B

G
et

C
on

cu
rr

en
t

O
pe

ra
tio

ns
B

E
st

im
at

eD
el

ay
B

S
ta

rt
S

er
vi

ce

re
tu

rn

E
nd

S
er

vi
ce

E
st

im
at

eS
to

ra
ge

A
cc

es
sD

el
ay

B

re
tu

rn
E

nd
S

er
vi

ce

G
et

C
on

cu
rr

en
t

O
pe

ra
tio

ns
B

C
al

cu
la

te
Q

ue
ue

T
im

eB

S
ta

rt
S

er
vi

ce

F
ig

u
re

 6
.4

.2
3-

1.
 E

st
im

at
e_

T
im

e_
D

el
ay

 D
yn

am
ic

 M
o

d
el

6-103 305-CD-024-002

6.4.24 Monitoring CheckSum Errors

Summary

The calling object requests a report of the check sum errors encountered while retrieving files from
the archive. The request manager object receives this request and routes the request to the Archive
Resource Manager process. A report is produced of check sum errors which have occurred. A
successful status is returned to the calling object. Figure 6.4.24-1 shows the event trace for this
scenario.

Assumptions

This scenario assumes that there are no errors. Additionally this scenario assumes that the
produced report is displayed on an operations terminal.

Figure 6.4.24-1. Monitor_CHECKSUM_Errors Dynamic Model

Calling Object DsStRequestManagerC DsStRequestManagerS DsStResourceManagerS DsStArchive

Archive Resource Manager

ReportResource
PerformanceB

ReportResource
PerformanceB

StartService

ReportResource
PerformanceB

ReportChecksumErrorB

EndService

return

return

6-104 305-CD-024-002

6.4.25 Show Staging Disk Cache Configuration Parameters

Summary

The calling object requests a configuration report for the staging disk cache area. The request
manager object routes the request to the Staging Monitor process. A report is produced of the
current value of parameters contained in the configuration file. A successful status is returned to
the calling object. Figure 6.4.25-1 shows the event trace for this scenario.

Assumptions

This scenario assumes that there are no errors. Additionally, this scenario assumes that the
produced configuration report is displayed on an operations terminal.

Figure 6.4.25-1. Show_Staging_Disk_Cache_Config Dynamic Model

Calling Object DsStRequestManagerC DsStRequestManagerS DsStStagingMonitor

ReportConfigB

ReportConfigB

ShowConfigB

StartService

EndService

return

return

6-105 305-CD-024-002

6.5 CSCI Structure
Table 6.5-1 shows the components (CSCs) of the CSCI. Each CSC is described and designated as
being custom developed code (DEV), off-the-shelf (OTS) or a combination of the two (DEV/
OTS). If the custom developed code will be used for integration purposes, it is identified as
WRAPPER.

6.5.1 CSC Definitions

6.5.1.1 Service Clients CSC

Purpose and Description

All of the classes contained in this CSC, with the exception of one (DsStArchive) are products
custom developed by the Storage Management CSCI. These classes collectively provide an
interface to Data Server Subsystem resources and are categorized into four different groups, each
providing an interface for a different type of client.

Classes

Archive Clients will primarily want access to the ECS archives for storing or retrieving data files.
The SDSRV and DDSRV CSCIs are placed in this category.

The following are classes contained in the Archive Client category of the Service Clients CSC:

DsStArchive
DsStStagingDisk
DsStResource

The DsStArchive class encapsulates the AMASS File Storage Management System OTS product.

Peripheral Clients will similarly want access to the peripheral devices managed by the Storage
Management CI. The INGST Subsystem and the DDIST CSCI are placed in this category. The
following classes are contained in the Peripheral Clients category of the Service Clients CSC:

DsStResource
DsStTape
DsStCDROM
DsStPrinter
DsStFax

Table 6.5-1. STMGT's Components

CSC Description Type

Service Clients Provides client interface to ECS archives and the peripheral devices
used for data ingest and distribution

DEV/OTS

Resource
Management

Provides capability to manage all resources of the Data Server
Subsystem

DEV

Data Storage Provides capability to store and provide access to earth science data DEV/OTS

Peripherals Provides access to devices used for data ingest and distribution DEV

File Provides file level access to data on staging disk DEV

6-106 305-CD-024-002

DsStNetworkResource
DsStReservation

The DsStNetworkResource class encapsulates the CSS supplied API which supports the OTS FTP
product.

In addition to their primary needs for either access to data files in the ECS archive or devices which
will be used to ingest or distribute data files, clients will also have a need for storing data, hence,
the third category of client, Storage Resources. The following classes are contained in the Storage
Resources category of the Service Clients CSC:

DsStResource
DsStStagingDisk
DsStArchive

The fourth client category, OP-ADMIN, reflects the needs of Operations staff and/or
administrative users to interface with the Storage Management CSCI. The following classes are
contained in the OP-ADMIN category of the Service Clients CSC:

DsStResourceManager
DsStRequestManager

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.1.2 Resource Management CSC

Purpose and Description

The following classes provide the capability to manage all resources of the Data Server. The
classes contained in this CSC are products custom developed by the Storage Management CSCI.

Classes

DsStResourceManager
DsStResourceQueue
DsStResourceSchedule
DsStResourcePolicy
DsStStagingDataList
DsStStagingMonitor
DsStPullList
DsStPullMonitor
DsStResource
DsStReservation
DsStSCacheConfig
DsStPullConfig
DsStSchedulingConfig
DsStResourceConfig
DsStResourceMonitor

6-107 305-CD-024-002

DsStBackupList
DsStRestoreList
DsStFileList

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.1.3 Data Storage CSC

Purpose and Description

The classes in this CSC provide the capability to store data on a persistent or non-persistent basis
and access it. These classes, with the exception of DsStArchive as indicated previously, are
products custom developed by the Storage Management CSCI.

Classes

DsStResource
DsStStorageResource
DsStStagingDisk
DsStArchive

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.1.4 Peripherals CSC

Purpose and Description

The classes in this CSC represent the devices used to ingest and distribute data. These classes, with
one exception (DsStNetworkResource), are products custom developed by the Storage
Management CSCI. The DsStNetworkResource class encapsulates the CSS supplied API which
supports the OTS FTP product.

Classes

DsStResource
DsStPhysicalResource
DsStPrinter
DsStTape
DsStFax
DsStCDROM
DsStNetworkResource

Candidate products

Not Applicable

6-108 305-CD-024-002

ECS white paper references

Not Applicable

6.5.1.5 File CSC

Purpose and Description

The classes in this CSC provide clients file granularity level of access to data files on staging disk.
These classes are products custom developed by the Storage Management CSCI.

Classes

DsStStream
DsStStagingDisk

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.2 CSCI Dynamic Architecture

Storage Management will consist of two distinct types of processes: resource managers, and disk
monitors. There are two disk monitors, a staging monitor, and a pull monitor.

Resource Manager Processes

The ResourceManager processes will be responsible for maintaining a schedule of current and
proposed resource activity and for distributing resource access keys which will allow resource
access. Each type of resource pool will have its own resource manager. Eleven individual resource
manager processes have been identified: network, staging disk, archive, 8-mm tape, 4-mm tape,
3480 tape, 3490 tape, 9-track tape, CD ROM, FAX and printers. The ResourceManager process
comprises the following CSCs:

Resource Management
Service Clients
Peripherals

StagingMonitor Process

The Staging Monitor will be responsible for managing the group of data files that have been
retrieved from the archive and placed into a cache area on staging disk. A list of these data files
will be maintained so that subsequent data retrieval requests can be fulfilled immediately without
requiring an additional archive access. The Staging Monitor will also be responsible for deleting
old or seldom accessed files in order to prevent the cache area from becoming too full. Several
potential algorithms are available for monitoring and maintaining the data levels at a desired
capacity. The StagingMonitor process comprises the following CSC s:

File
Data Storage
Resource Management

6-109 305-CD-024-002

PullMonitor Process

The Pull Monitor will be responsible for managing the files in the user pull area. As files are
retrieved (i.e., electronically pulled) from the user pull area by respective ECS users or as the files
become stale (their time-out periods have expired) then the Pull Monitor will delete them. Several
potential algorithms are available for monitoring and maintaining the data levels at a desired
capacity. The PullMonitor process comprises the following CSCs:

Service Clients
Resource Management

6.6 CSCI Management and Operation

The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

6.6.1 System Management Strategy

The STMGT CSCI is designed to provide robust data storage, retrieval, and distribution services
to external data providers and requesters. Specifically, the design goal of the STMGT CSCI is to
always return status (successful or unsuccessful) for every received request. To accomplish that
goal, the CSCI follows ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery

6.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown. The
StorageResourceManagement SDSRV processes act as an object factory. As such each process
instantiates objects in process threads (pthreads) when a request is serviced. At STMGT system
startup, 13 required processes are launched: 11 StorageResourceManagement processes (one per

type

 of resource), StagingMonitor, and PullMonitor. The StorageResourceManagement processes
are started as standalone processes. The primary role of the StorageResourceManagement
processes are to maintain a schedule of current and proposed resource activity and to distribute
resource access keys which will allow resource access. Each type of resource pool will have its
own StorageResourceManager. Currently, 11 StorageResourceManager processes have been
identified: network, staging disk, archive, CD ROM, FAX, printers, 8-mm tape, 4-mm tape, 3480
tape, 3490 tape, and 9-track tape.

The StagingMonitor process will also routinely be started at system startup. This process will be
responsible for managing the files that have been retrieved from the archive and placed into a cache
area on staging disk. A list of the data files in this cache will be maintained so that subsequent
requests can be fulfilled immediately without requiring an additional archive access. The
StagingMonitor will also be responsible for deleting old or seldom accessed files in order to
prevent the cache area from becoming too full. Several potential algorithms are available for
monitoring and maintaining files at a desired level.

6-110 305-CD-024-002

The Pull Monitor will be responsible for managing the files in the user pull area. As files are
retrieved from the user pull area or as the files become stale (their time-out periods have expired)
the Pull Monitor will delete them. It too will have several potential algorithms available for
monitoring and maintaining files at a desired level.

6.6.1.2 Error Detection and Reporting

The STMGT CSCI is designed for primarily automated operations with little need for operations
involvement short of tuning and critical error conditions. CSS and MSS jointly provide event
logging services for logging and reporting errors and faults, for browsing error/status logs, and for
detecting and reporting critical errors. The STMGT CSCI will fully use these services during
operations. Errors/status may be reported in two error logs. MSS maintains the first log, the MSS
event log. It contains errors/status of interest to operations staff to evaluate system status and to
perform trend analysis. The STMGT subsystem maintains the second log. The STMGT event log
contains selected errors/status from the MSS event log (for context) plus highly-detailed debug
events. Software maintenance personnel use the STMGT event log to diagnose system and
software problems in response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in Table
6.6.1.2-1.

6.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client process (client being defined as any service
requester), it is the STMGT design goal to complete the request processing and return status
(successful or unsuccessful) to the requester. The STMGT CSCI is built on the model of check
pointing processing at four points: the request, the staging data list, pull data list, and resource
tables. During restart or recovery operations the CSCI will restore all checkpointed data and
resume processing at the last unprocessed command. In the case of data retrieval, any data that has
been staged will be identified via the staging data list and not be retrieved a second time. Resources
that have been allocated to other processes will remain in that state until deallocation. Pull data
will be checked at startup for expiration and clean up operations.

Failure scenarios with recovery methods:

a. Failure of a STMGT executable. Any failed process is immediately restarted as a Unix
standalone process. The persistent data associated with the process is restored from their
checkpointed states. Any requests outstanding are then executed.

b. Loss of the data base tables used for check pointing. The data base used for persistent data
is actually outside of this CSCI. The data base management system will automatically log
transactions to allow restorations of table information. This feature, coupled with DBA
generated Data Base backups, provide for recovery. Since high reliability is required in this
area, the Data Base tables will be stored on RAID.

6-111 305-CD-024-002

c. Failure of the processor on which a STMGT process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one
or more of the above process restarts. If the processor is disabled, the disablement is
detected by MSS SNMP services and a backup processor is restarted. The backup
processor has full access to the data base tables used for check pointing. Again, restart of
individual processes is handled as described above.

d. Failure of an external application. After a given number of retries to transmit data or via
DCE services that alert us of failure of the recipient process, operations staff are notified
by means of an alert message. The DAAC operations staff will coordinate to diagnose the
failure.

6.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 6.6.2-1 highlights the critical
STMGT GUI screens.

Table 6.6.1.2-1. STMGT Error Categories
Error Category Actions to Be Taken

Initialization File/
Environment Corrupt

This would be seen during a system startup process and would result in one or
more executables not starting. Operations staff evaluate the condition and
correct.

Unable to archive data Internal Data Server fault. Log errors to the event log and return status to the
external data provider. Report alert to operations staff. Operations staff evaluate
errors off-line and request re-ingest as necessary. (Note: Data Server will re-
vector ingested data to a different device in the event of a single device failure.)

Unable to read
peripheral media

Internal Data Server fault. Log errors to the event log and return status to the
external data provider. Report alert to operations staff. Operations staff evaluate
errors off-line and request re-ingest as necessary. (Note: if a peripheral device
fails, Data Server will revector the media to a different peripheral.)

Unable to transfer data
to be archived

After a system-tunable number of retries, log errors to the event log and return
status to the external data provider. Report alert to operations staff. Operations
staff evaluate errors off-line to evaluate and correct communications network
problems.

Internal queue
overflow

Errors reported along these lines represent a very poorly tuned and/or faulty
system. This type error would represent potential loss of service requests.
Operations staff would immediately throttle back system processing thresholds
and write a trouble ticket for future off line analysis and tuning.

Unable to allocate disk
space

Unable to allocate working storage space using Data Server STMGT CSCI
services. This is another symptom of a poorly tuned system. Report alert to
operations staff who would immediately lower system thresholds for requests.
Operations staff would analyze system off-line and tune.

Unable to set up
external data requester
session

Limit exceeded for allowable number of external data provider sessions. Log
errors to the event log and return status to the external data provider, indicating
that the session connection should be re-attempted later. (Note: based on the
modeled transaction load, this error condition is expected to occur very rarely, if
at all.)

6-112 305-CD-024-002

6.6.3 Standard STMGT Reports

DAAC operations personnel will have the capability to request standard reports which provide
insight into the resources managed by the Storage Management CSCI. Table 6.6.3-1 briefly
describes these standards reports.

Table 6.6.2-1. Storage Management GUI
GUI Description Data Operations

Storage
Management
GUI

Primary Screen for
Storage Management
GUIs

References to:
 Request,
 Log & Reports,
 Configuration,
 Client Management and
 Resource Management GUIs.

Logon
Realizes and/or makes
the GUIs visible.

Archive
Administration
GUI

Allows operators to
manage non-COTS
storage resources

Resource Utilization information View
Backup
Restore
Retrieve

Device Control
GUI

Allows operators to
manage various
available media
devices

Device information
Device alarms

View
Mount
Dismount
Bring on-line
Put off-line

COTS Archive
GUIs

COTS provided GUI(s)
that support
management of the
COTS archive product

Device Information
File Information
Volume Information
File System Information

Information Display
ATL Control
Report Generation

Table 6.6.3-1. Standard Storage Management Reports (1 of 2)
Report Type Report Description Intended Audience

Received
Service
Requests

Provides a chronological listing of requests. Each entry includes:
Request Identifier, date/time stamp, requested operation, and
request completion status.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Device Failure Provides a Chronological listing of device failures. Each entry
includes: device identifier, date/time stamp, error code, failure
message.

System Operator
Maintenance
Technician
Maintenance
Supervisor
Operations Supervisor
DAAC Manager

Archive
Activity Log

Provides a chronological listing of all archive activities, requests,
and failures.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

6-113 305-CD-024-002

Report Type Report Description Intended Audience

Selected
Archive
Activity

Based on the information in the Archive Activity Log, this report
allows operations personnel to select, and sort log entries by
start/stop time, operation requested, and/or request completion
status.

System Operator
Performance Analyst
Maintenance
Technician
Maintenance
Supervisor
Operations Supervisor
DAAC Manager

Intermediate
Activity Log

Provides a listing of the resource activity that occurs between
the receipt of a Request and Request Completion. Information
includes: a date/time stamp, operation identifier, affiliated
request identifier, disk space utilization (allocate/deallocate),
media utilization (mount/ dismount), file utilization, (read/write/
copy/ delete)

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Selected
Intermediate
Activity

Based on the information in the Intermediate Activity Log, this
report allows operations personnel to select, and sort log entries
by start/stop time, operation id, affiliated request identifier.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Inventory
Update Report

Provides a record of new data files added to the DAAC, and
provides summary information associated with the addition of
new data files based on the reporting period which is either the
last 24 hours, the previous 7 days, previous 30 days, or number
since a given date. Associated information includes: number of
requests received, number of successful and unsuccessful
requests, volume of data archived, average volume of data
archived per request, current number of archived files, and
average number of files per request.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Archive
Resource

Provides a current status of utilized and available resources
within the archive. Report includes: a date/time stamp, the total
unallocated media volumes by type and capacity, and the total
number of unpopulated media locations (slots) for each archive
unit.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Archive Error Is a summary report of the frequency of errors encountered
during archive processing. The reporting period is either the last
24 hours, the previous 7 days, previous 30 days, or number since
a given date. Information for each unsuccessful request
includes: date/time stamp, request identifier, error code, error
message.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Pull Area
Utilization

Provides information on the total staged data volume in
Gigabytes, and the number of product instances staged.

System Operator
Sr. Science
Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Table 6.6.3-1. Standard Storage Management Reports (2 of 2)

6-114 305-CD-024-002

This page intentionally left blank.

7-1 305-CD-024-002

7. DDIST - Data Distribution CSCI

7.1 CSCI Overview
The Data Distribution CSCI provides the Data Server and Operations users the capability to mon-
itor and control processing for distribution requests. Data Distribution processing mainly consists
of preparing requested data objects for distribution on specified media or via the network and sub-
sequently delivering or causing the delivery of data products to requesting clients.

In addition to preparing the data, Data Distribution will also generate the necessary packaging ma-
terials if the data is to be distributed on media and distribution metadata if the data is to be distrib-
uted via the network. The packaging materials include the packing list, showing all data objects
stored on the delivery media, media labels to be affixed to physical media, and shipping labels for
routing of physical media. The physical media include CD ROM and tape of various formats
(8mm, 4mm, 3480/3490, and 6250 bpi 9-track).

7.2 CSCI Context
The Data Distribution CSCI maintains interfaces with three other Data Server Subsystem (DSS)
CSCIs and well as the Administration and Operations (Admin/OPS) personnel. The Document
Data Server (DDSRV) CSCI, Science Data Server (SDSRV) CSCI and the Admin/OPS personnel
have direct interfaces to the Data Distribution (DDIST) CSCI for various data distribution services.
DDIST has a direct interface with the Storage Management (STMGT) CSCI for its services.
Figure 7.2-1 provides a context diagram for the DDIST CSCI, which illustrates the interfaces with
DDSRV, SDSRV, STMGR and Admin/OPS. Table 7.2-1 summarizes the event flows depicted in
Figure 7.2-1 by service name.

Table 7.2-2 provides a mapping for the DDIST CI interfaces provided to other ECS CSCI's. The
table provides descriptions of the interfaces in terms of the DDIST-provided service to be used to
accomplish the specified exchanges of information and/or control.

7.3 CSCI Object Model
This section provides object models for the Data Distribution (DDIST) CSCI. Each object model
diagram in this section illustrates a different aspect of the DDIST CSCI design. Some classes may
appear on multiple diagrams in this section to set context. Readers should also be aware that some
views of the detailed design of a CSCI can be complex. In order for the object models to be
readable, some views are broken into multiple models with “offpage” references between them.
When a model is broken into parts the figure descriptions will site that is a part of the whole model
(e.g. Part 1 of 2). For the purpose of setting context, it is also possible that some views of a given
class may not provide all possible detail in order to focus the reader’s attention on the classes the
diagram is meant to illustrate. At least one view of each of the classes that is significant to this
design will contain all of the detail that is needed by the reader.

7-2 305-CD-024-002

Figure 7.2-1. DDIST Event Flow Diagram

Table 7.2-1. DDIST Event Flow Summary Table (1 of 2)
Sender Receiver Event Name

DDIST STMGT Abort

DDSRV DDIST Abort

SDSRV DDIST Abort

Admin/OPS DDIST Abort

DDIST STMGT Allocate

DDIST STMGT Deallocate

DDIST STMGT DistFrom

DDSRV DDIST Distribute

SDSRV DDIST Distribute

DDIST STMGT Estimate

DDSRV DDIST Estimate

SDSRV DDIST Estimate

DDIST STMGT Retrieve

DDIST

DDSRV

SDSRV

STMGT

Admin/OPS
Distribute, Abort,

WaitForCompletion,
Estimate

Distribute, Abort,
WaitForCompletion,

Estimate

Abort, SetPriority

Allocate, Deallocate,
Abort, SetPriority,

DistFrom, GetResourceID,
Retrieve, Estimate

7-3 305-CD-024-002

The first object model, DsDdOverview, depicts the relationships between the high level classes
which make up the design of the DDIST CSCI. The subsequent object models provide the design
detail of the high level classes that were illustrated in the overview diagram. The object model
diagrams and their corresponding detailed design descriptions are provided in the following
paragraphs.

The DsDdOverview object model can be found in Figure 7.3-1. This model provides a high level
view of the relationships between the DsDdRequestManager, DsDdDistRequest,
DsDdRequestList, DsDdRequestProcessor, DsDdDistList, and DsDdMedia classes, which are key
components of the DDIST CSCI design. Many of these classes facilitate interfaces to other DSS
CSCIs. These interface classes are designed as distributed objects and can be identified on the
diagrams via the annotation [DISTR OBJ].

When studying the overview object model it is important to know that some of the relationships
shown are loose associations (i.e. friend associations). Some objects have both a client and a server
representation which together act as a single object. In other words, an operation requested via the
client object results in action upon the server object. It is also important to note that distributed
objects have client and server specializations (designated via a suffix of C or S, respectively, for
the class name) of a common base class. Additionally, a distributed object may have different
representations for different clients. For example, since an operator can perform operations which

Sender Receiver Event Name

DDSRV DDIST WaitForCompletion

SDSRV DDIST WaitForCompletion

Table 7.2-2. DDIST CI Interfaces
Interface Input Data Output Data Description

Distribute Media Type,
User Profile

Distribution
Request

Request distribution of the items specified in the
distribution list. SDSRV will create the list of items to be
distributed and invoke this service to start the
distribution; the service asynchronously returns a
distribution request, which can then be used to perform
additional operation upon the request.

Estimate Media Type,
User Profile

Cost and time
estimates

Provides the client with estimates of the cost of and time
it will take to process a distribution request.

WaitFor
Completion

none Completion
Status

Wait for a distribution request to complete. This service
will block the calling thread.

Abort none Completion
Status

Abort processing of a distribution request. If
WaitForCompletion has also been called, this service
would be called from a separate thread.

SetPriority Priority none Change the priority of a distribution request.

Delimit B Cursor
Position

None Delimit the division of a subrequest within a request.

Create
Subrequest B

Delimited
Request

Subrequest Submit for processing a subrequest delimited within a
request

Table 7.2-1. DDIST Event Flow Summary Table (2 of 2)

7-4 305-CD-024-002

are not available to a user, separate operator and user client specializations exist (e.g.
DsDdOpsRequestC and DsDdDistRequestC, respectively). The detailed object models will
illustrate how these specializations and the friend relationships between the objects make the
design flexible and reusable.

The DsDdDistRequest and DsDdRequestProcessor object models, shown in Figure 7.3-2 and
Figure 7.3-3 respectively, depict the classes involved in the request management aspect of the
distribution server. As such, they contain (in addition to its other classes) server specializations of
distributed objects. The corresponding generalized objects are shown on the DsDdOverview
object model in Figure 7.3-1.

The DsDdDistRequest object model shows the detailed relationships between the
DsDdRequestManager, DsDdDistRequest and DsDdRequestList objects. Together these classes
support the control and tracking of distribution requests. A distribution request comes from a client
process in the form of a distribution list, shown in Figure 7.3-4. Upon receipt of the distribution
list the DsDdRequestManager creates and maintains a reference to the DsDdDistRequest object
until the request has been satisfied. References to the DsDdDistRequest objects are maintained by
the DsDdRequestManager via the DsDdRequestList.

The DsDdRequestProcessor base class, shown in detail in the DsDdRequestProcessor object
model in Figure 7.3-3, is a friend to the DsDdDistRequest object. This means that it provides to
the distribution request a specialized class with the correct ServiceRequest operation to perform
the processing for the media specified in the distribution request. The request processor has a
reference back to the distribution request to allow it to access request attributes. Multiple
definitions of the constructor operation exist so that the appropriate specialized
DsDdRequestProcessor object can be instantiated based on the media type in the request. This
design promotes flexibility in that additional media type definitions do not perturb the design. This
enhancement would only require a new constructor in the base class and a specialized class for the
new media type.

The DsDdDistList object model, shown in Figure 7.3-4, depicts the relationship between the
DsDdDistRequest class and the DsDdDistList class as well as the aggregation hierarchy of the
DsDdDistList class. This hierarchy illustrates how the data distribution list that is supplied by a
calling object is broken down into components that DDIST needs to satisfy the request. The data
distribution list, represented by DsDdDistList, is made up of one or more granules, represented in
the model by the DsDdGranuleB class. A granule is made up of one or more data items,
represented in the model by DsDdDataItem. DsDdDataItem can be further described as a
generalization of a file that can be distributed and is depicted in the diagram as DsDdDistFile. This
file is modeled as residing on a staging disk under the management of the STMGT CSCI. The
DsDdDistList object model shows an offpage reference to DsStStagingDisk. For further
information about the DsStStagingDisk class, refer to the Storage Management Detailed Design in
section 6.0 of this document.

The DsDdDistList class has an association with the DsSrCost class. This class facilitates the return
of estimated or actual cost data to the SDSRV. This class is defined by SDSRV and its detailed
design is described in the Science Data Server Detailed Design in section 4.0 of this document.

7-5 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dR
eq

ue
st

M
an

ag
er

D
sD

dD
is

tL
is

t<
R

W
V

ec
to

r>

D
sD

dG
ra

nu
le

B

D
sD

dD
at

aI
te

m

D
sD

dM
ed

ia

D
sD

dR
eq

ue
st

LI
st

D
sD

dR
eq

ue
st

P
ro

ce
ss

or

m
yR

eq
ue

st

D
sD

dR
eq

ue
st

P
ro

ce
ss

or
(M

ed
ia

:M
ed

ia
T

yp
e,

 R
eq

ue
st

:D
sD

dD
is

tR
eq

ue
st

S
)

D
sD

dR
eq

ue
st

P
ro

ce
ss

or
(M

ed
ia

: M
ed

ia
T

yp
e,

 R
eq

ue
st

: D
sD

dD
is

tR
eq

ue
st

S
,

E
le

cD
es

tin
at

io
n:

 R
W

C
S

tr
in

g,
 P

as
sw

or
d:

 R
W

C
S

tr
in

g)
C

re
at

eN
ot

ifi
ca

tio
nM

sg
()

C
re

at
eM

ed
ia

()
S

er
vi

ce
R

eq
ue

st
()

m
yI

D
m

yC
om

pr
es

si
on

T
yp

eB
m

yW
he

th
er

C
om

pr
es

se
dB

m
yU

nc
om

pr
es

se
dS

iz
eB

m
yC

om
pr

es
se

dS
iz

eB

C
om

pr
es

sB
(T

yp
e:

 R
W

C
S

tr
in

g
*)

m
yT

yp
eo

fC
on

ve
rs

io
n

C
on

ve
rt

()

C
re

at
eD

is
tR

eq
ue

st
(L

is
t:

D
is

tL
is

t,
M

ed
ia

: R
W

C
S

tr
in

g
*,

 U
se

r:
 M

sU
sP

ro
fil

e,
 F

or
m

at
:

R
W

C
S

tr
in

g
*)

C
re

at
eD

is
tR

eq
ue

st
(L

is
t:

D
is

tL
is

t,
M

ed
ia

: R
W

C
S

tr
in

g
*,

 U
se

r:
 M

sU
sP

ro
fil

e,
E

le
cD

es
tn

tn
: R

W
C

S
tr

in
g

*,
 P

as
sw

or
d:

 R
W

C
S

tr
in

g
*,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

In
ve

nt
or

yR
eq

ue
st

s(
)

C
re

at
eD

is
tS

ub
R

eq
ue

st
B

(li
st

: D
sD

dD
is

tL
is

t,
m

ed
ia

: R
W

C
S

tr
in

g,
 u

se
r:

M
sU

sU
se

rP
ro

fil
e,

 fo
rm

at
: R

W
C

S
tr

in
g)

C
re

at
eD

is
tS

ub
R

eq
ue

st
B

(li
st

: D
sD

dD
is

tL
is

t,
m

ed
ia

: R
W

C
S

tr
in

g,
 u

se
r:

M
sU

sU
se

rP
ro

fil
e,

 d
es

t:
R

W
C

S
tr

in
g,

 p
w

or
d:

 R
W

C
S

tr
in

g,
 fo

rm
at

: R
W

C
S

tr
in

g)
D

el
et

eD
is

tS
ub

R
eq

ue
st

B
(id

: u
ui

d_
t)

D
el

et
eD

is
tR

eq
ue

st
(id

: u
ui

d_
t)

m
yC

om
pr

es
si

on
T

yp
eB

m
yD

is
tS

iz
e

D
is

tr
ib

ut
e(

M
ed

ia
: R

W
C

S
tr

in
g

*,
 U

se
r:

 M
sU

sP
ro

fil
e,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

E
st

im
at

e(
)

S
um

T
he

S
iz

e(
E

cT
In

t)
C

om
pr

es
sB

()
R

et
rie

ve
B

()
F

la
tte

n(
)

D
is

tr
ib

ut
e(

M
ed

ia
: R

W
C

S
tr

in
g

*,
 U

se
r:

 M
sU

sP
ro

fil
e,

 E
le

cD
es

tn
: R

W
C

S
tr

in
g

*,
P

as
sw

or
d:

 R
W

C
S

tr
i n

g
*,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

A
bo

rt
()

D
el

im
itB

()
C

re
at

eS
ub

re
qu

es
tB

()
G

et
S

ta
te

()
S

ub
m

it(
(M

ed
ia

: R
W

C
S

tr
in

g
*,

 U
se

r:
 M

sU
sP

ro
fil

e,
 E

le
cD

es
tn

: R
W

C
S

tr
in

g
*,

 P
as

sw
or

d:
R

W
C

S
tr

in
g

*,
 F

or
m

at
: R

W
C

S
tr

in
g

*
)

S
ub

m
it(

M
ed

ia
: R

W
C

S
tr

in
g

*,
 U

se
r:

 M
sU

sP
ro

fil
e,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

W
ai

tF
or

C
om

pl
et

e(
)

m
yC

os
tB

m
yE

rr
or

T
hr

es
ho

ld
B

m
yD

at
eC

re
at

ed
m

yD
is

tr
ib

ut
io

nL
is

t
m

yF
ile

Li
st

P
tr

m
yM

ed
ia

T
yp

e
m

yN
um

be
rO

fIt
em

s
m

yP
ac

ki
ng

S
lip

m
yR

eq
ue

st
m

yR
es

ou
rc

e
m

yT
im

eB

C
re

at
eF

ile
LI

st
()

~
D

sD
dM

ed
ia

()
D

sD
dM

ed
ia

(D
is

tr
ib

ut
io

nL
is

t:D
sD

dD
is

tL
is

t &
, R

eq
ue

st
:D

sD
dR

eq
ue

st
P

ro
ce

ss
or

 &
,

P
ac

ki
ng

S
lip

:D
sD

dP
ac

ki
ng

S
lip

 &
, R

es
ou

rc
e:

D
sS

tR
es

ou
rc

eC
 &

, M
ed

ia
T

yp
e:

M
ed

ia
T

yp
e)

C
al

cu
la

te
C

os
tB

()
E

st
im

at
eC

os
tB

()
E

st
im

at
eT

im
eB

()
T

ra
ns

fe
rF

ile
s(

D
is

tF
m

t:
R

W
C

S
tr

in
g

*)

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[P
ub

lic
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[P
ub

lic
]

[P
ub

lic
]

O
ffp

ag
e

-

 :
D

sD
dD

is
tR

eq
ue

st
S

+

+

-

 :
R

W
C

S
tr

in
g

-

 {
ab

st
ra

ct
}

+

 :

G
lS

ta
tu

s

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

=
 "

no
ne

"

-
 :

R
W

B
oo

le
an

 =
 fa

ls
e

-

 :
E

cT
In

t =
 0

-

 :
E

cT
In

t =
 0

+

 :

E
cU

tS
ta

tu
s

{a
bs

tr
ac

t}

-

 :
R

W
C

S
tr

in
g

+

 :

E
cU

tS
ta

tu
s

+

 :

D
C

E
O

bj
R

ef
T

+

 :

D
sD

dR
eq

ue
st

Li
st

+

 :

D
C

E
O

bj
R

ef
T

+

 :

D
C

E
O

bj
R

ef
T

+

 :

E
cU

tS
ta

tu
s

+

-

 :
R

W
C

S
tr

in
g

=
 "

N
on

e"

-
 :

E
cT

In
t =

 0

+

 :

D
sD

dD
is

tR
eq

ue
st

-

 :
D

sU
zC

os
t

-

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

D
is

tL
is

t

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cT

In
t

-

 :
E

cS
ta

tu
s

+

 :

D
is

tS
ta

te

-

+

 :

E
cU

tS
ta

tu
s

-

-

-

 :
G

lD
at

e

-
 :

D
sD

dD
is

tL
is

t &

-
 :

R
W

C
S

tr
in

g
*

-

 :
M

ed
ia

T
yp

e

-
 :

E
cT

In
t

-

 :
D

sD
dP

ac
ki

ng
S

lip

-
 :

D
sD

dR
eq

ue
st

P
ro

ce
ss

or
 &

-

 :
D

sS
tR

es
ou

rc
eC

-

-

$
+

+

 :

D
sU

zC
os

t

+

 :
D

sU
zC

os
t

+

 :

E
cT

F
lo

at

+

 {
ab

st
ra

ct
}

re
qu

es
ts

di
st

rib
ut

io
n

of
 it

em
s

in

is
 w

rit
te

n
to

su
bm

its
re

qu
es

ts
 to

al
lo

ca
te

s

w
or

ks
re

qu
es

ts
of

f o
f

re
ce

iv
es

cr
ea

te
s

m
an

ag
es

is
 e

xe
cu

te
d

by

1+ 1+

F
ig

u
re

 7
.3

-1
.

D
sD

d
O

ve
rv

ie
w

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

7-6 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dD
is

tR
eq

ue
st

C
D

sD
dP

riv
R

eq
ue

st

D
sD

dD
is

tR
eq

ue
st

C
()

R
es

ta
rt

O
ut

pu
t(

)
S

et
P

rio
rit

y(
P

rio
rit

y:
D

is
tP

rio
rit

y)

D
sD

dD
is

tS
ub

R
eq

ue
st

B

m
yS

ub
re

qu
es

tid

S
en

dN
ot

ifi
ca

tio
nB

()

D
sD

dR
eq

ue
st

M
an

ag
er

C
re

at
eD

is
tR

eq
ue

st
(L

is
t:

D
is

tL
is

t,
M

ed
ia

: R
W

C
S

tr
in

g
*,

 U
se

r:
 M

sU
sP

ro
fil

e,
 F

or
m

at
:

R
W

C
S

tr
in

g
*)

C
re

at
eD

is
tR

eq
ue

st
(L

is
t:

D
is

tL
is

t,
M

ed
ia

: R
W

C
S

tr
in

g
*,

 U
se

r:
 M

sU
sP

ro
fil

e,
E

le
cD

es
tn

tn
: R

W
C

S
tr

in
g

*,
 P

as
sw

or
d:

 R
W

C
S

tr
in

g
*,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

In
ve

nt
or

yR
eq

ue
st

s(
)

C
re

at
eD

is
tS

ub
R

eq
ue

st
B

(li
st

: D
sD

dD
is

tL
is

t,
m

ed
ia

: R
W

C
S

tr
in

g,
 u

se
r:

M
sU

sU
se

rP
ro

fil
e,

 fo
rm

at
: R

W
C

S
tr

in
g)

C
re

at
eD

is
tS

ub
R

eq
ue

st
B

(li
st

: D
sD

dD
is

tL
is

t,
m

ed
ia

: R
W

C
S

tr
in

g,
 u

se
r:

M
sU

sU
se

rP
ro

fil
e,

 d
es

t:
R

W
C

S
tr

in
g,

 p
w

or
d:

 R
W

C
S

tr
in

g,
 fo

rm
at

: R
W

C
S

tr
in

g)
D

el
et

eD
is

tS
ub

R
eq

ue
st

B
(id

: u
ui

d_
t)

D
el

et
eD

is
tR

eq
ue

st
(id

: u
ui

d_
t)

D
sD

dO
ps

R
eq

ue
st

C

D
sD

dO
ps

R
eq

ue
st

C
()

D
sD

dD
is

tR
eq

ue
st

S

m
yR

eq
ue

st
Id

m
yS

ta
te

m
yT

im
eO

fS
ub

m
is

si
on

m
yU

se
rI

nf
o

m
yS

iz
e

m
yD

is
tF

or
m

at
m

yD
is

tL
is

t
m

yR
eq

ue
st

P
ro

ce
ss

or
m

yA
bo

rt
F

la
g

m
yM

ed
ia

m
yP

rio
rit

y

E
st

im
at

eB
()

S
um

th
eS

iz
eB

()
C

om
pr

es
sB

()
R

et
rie

ve
B

()
ch

an
ge

S
ta

te
(s

ta
te

: E
cT

E
nu

m
)

D
el

im
itB

()
C

re
at

eS
ub

re
qu

es
tB

()
S

en
dN

ot
ifi

ca
tio

nB
()

D
sD

dR
eq

ue
st

Li
st

<
R

W
V

ec
to

r>

S
or

t(
K

ey
:S

or
tT

yp
es

)

D
sD

dO
ps

In
te

rv
en

tio
nL

is
tB

D
sD

dR
eq

ue
st

M
an

ag
er

C
D

sD
dR

eq
ue

st
M

an
ag

er
S

m
yS

ub
re

qu
es

tL
is

t
m

yR
eq

ue
st

Li
st

E
st

im
at

eB
()

A
bo

rt
()

D
el

im
itB

()
C

re
at

eS
ub

re
qu

es
tB

()
G

et
S

ta
te

()
S

ub
m

it(
(M

ed
ia

: R
W

C
S

tr
in

g
*,

 U
se

r:
 M

sU
sP

ro
fil

e,
 E

le
cD

es
tn

: R
W

C
S

tr
in

g
*,

 P
as

sw
or

d:
R

W
C

S
tr

in
g

*,
 F

or
m

at
: R

W
C

S
tr

in
g

*
)

S
ub

m
it(

M
ed

ia
: R

W
C

S
tr

in
g

*,
 U

se
r:

 M
sU

sP
ro

fil
e,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

W
ai

tF
or

C
om

pl
et

e(
)

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

[P
ub

lic
]

+

 :

D
C

E
O

bj
R

ef
T

+

 :

E
cU

tS
ta

tu
s

+

-

 :
uu

id
_t

+

 :

E
cU

tS
ta

tu
s

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

+

 :

D
C

E
O

bj
R

ef
T

+

 :

D
sD

dR
eq

ue
st

Li
st

+

 :

D
C

E
O

bj
R

ef
T

+

 :

D
C

E
O

bj
R

ef
T

+

 :

E
cU

tS
ta

tu
s

+

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

+

 :

D
C

E
O

bj
R

ef
T

[D
IS

T
R

 O
B

J]
[P

E
R

S
IS

T
E

N
T

 C
LA

S
S

]

-

 :
R

W
C

S
tr

in
g

*

-
 :

D
is

tS
ta

te
 =

 p
en

di
ng

-

 :
R

W
D

at
e

-

 :
M

sU
sP

ro
fil

e
*

-

 :
E

cT
In

t

-
 :

R
W

C
S

tr
in

g
*

-

 :
D

sD
dD

is
tL

is
t *

-

 :
D

sD
dR

eq
ue

st
P

ro
ce

ss
or

 *

-
 :

R
W

B
oo

le
an

 =
 F

al
se

-

 :
R

W
C

S
tr

in
g

*

-
 :

D
is

tP
rio

rit
y

=
 m

ed
iu

m

+

 :

D
zU

zC
os

t

+

 :
E

cT
In

t

+

 :
E

cU
tS

ta
tu

s

+

 :
E

cU
tS

ta
tu

s

+

 :
E

cU
tS

ta
tu

s

+

 :
E

cT
In

t

+

 :
E

cU
tS

ta
tu

s

+

 :
E

cU
tS

ta
tu

s

[P
ub

lic
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

+

 :

D
sD

dR
eq

ue
st

Li
st

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

[D
IS

T
R

 O
B

J]

-

 :
*D

sD
dO

ps
In

te
rv

en
tio

nL
is

tB

-
 :

D
sD

dR
eq

ue
st

Li
st

+

 :

D
sU

zC
os

t

+

 :
E

cU
tS

ta
tu

s

+

 :
E

cT
In

t

-
 :

E
cS

ta
tu

s

+

 :
D

is
tS

ta
te

-

+

 :

E
cU

tS
ta

tu
s

cr
ea

te
s

m
an

ag
es

F
ig

u
re

 7
.3

-2
.

D
sD

d
R

eq
u

es
t

O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

7-7 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dR
eq

ue
st

M
an

ag
er

D
sD

dM
ed

ia

D
sD

dR
eq

ue
st

LI
st

D
sD

dR
eq

ue
st

P
ro

ce
ss

or

m
yR

eq
ue

st

D
sD

dR
eq

ue
st

P
ro

ce
ss

or
(M

ed
ia

:M
ed

ia
T

yp
e,

 R
eq

ue
st

:D
sD

dD
is

tR
eq

ue
st

S
)

D
sD

dR
eq

ue
st

P
ro

ce
ss

or
(M

ed
ia

: M
ed

ia
T

yp
e,

 R
eq

ue
st

: D
sD

dD
is

tR
eq

ue
st

S
,

E
le

cD
es

tin
at

io
n:

 R
W

C
S

tr
in

g,
 P

as
sw

or
d:

 R
W

C
S

tr
in

g)

C
re

at
eN

ot
ifi

ca
tio

nM
sg

()
C

re
at

eM
ed

ia
()

S
er

vi
ce

R
eq

ue
st

()

M
sU

tL
og

ge
r

E
cN

ot
ifi

ca
tio

n

D
sD

dC
D

P
ro

ce
ss

or
D

sD
dT

ap
eP

ro
ce

ss
or

D
sD

dP
us

hP
ro

ce
ss

or
D

sD
dP

ul
lP

ro
ce

ss
or

D
sD

dP
ac

ki
ng

S
lip

D
sD

dP
us

hP
ro

ce
ss

or
(E

le
cD

es
tin

at
io

n:
 R

W
C

S
tr

in
g,

 P
as

sw
or

d:
 R

W
C

S
tr

in
g)

m
yD

es
ig

na
te

dP
rin

te
r

m
yI

te
m

Li
st

m
yF

ile
N

am
e

m
yN

um
V

ol
um

es

C
re

at
eP

ac
kS

lip
()

D
sD

dP
ac

ki
ng

S
lip

(I
te

m
Li

st
:D

sD
dD

is
tL

is
t&

)
~

D
sD

dP
ac

ki
ng

S
lip

()
P

rin
t(

)

S
er

vi
ce

R
eq

ue
st

()
S

er
vi

ce
R

eq
ue

st
()

m
yD

es
tin

at
io

nA
dd

re
ss

m
yP

as
sw

or
d

S
er

vi
ce

R
eq

ue
st

()

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

O
ffp

ag
e

O
ffp

ag
e

O
ffp

ag
e

-

 :
D

sD
dD

is
tR

eq
ue

st
S

+

+

-

 :
R

W
C

S
tr

in
g

-

 {
ab

st
ra

ct
}

+

 :

G
lS

ta
tu

s

O
ffp

ag
e

O
ffp

ag
e

+

-

 :
R

W
C

S
tr

in
g

*

-
 :

D
sD

dD
is

tL
is

t &

-
 :

F
ile

N
am

e

-
 :

E
cT

In
t =

 0

+

 :

G
lS

ta
tu

s

+

+

 :

G
IS

ta
tu

s

+

 :
G

lS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

+

 :

E
cU

tS
ta

tu
s

w
or

ks
re

qu
es

ts
of

f o
f

su
bm

its
re

qu
es

ts
 to

is
 e

xe
cu

te
d

by

cr
ea

te
s

m
an

ag
es

al
lo

ca
te

s
lo

gs
ev

en
ts

 v
ia

pr
ep

ar
es

no
tif

ie
s

us
er

s
vi

a

F
ig

u
re

 7
.3

-3
.

D
sD

d
R

eq
u

es
tP

ro
ce

ss
o

r
O

b
je

ct
 M

o
d

el
 D

ia
g

ra
m

7-8 305-CD-024-002

D
sD

dD
is

tL
is

t
<

R
W

V
ec

to
r>

D
sD

dG
ra

nu
le

B

D
sD

dD
at

aI
te

m

m
yI

D
m

yC
om

pr
es

si
on

T
yp

eB
m

yW
he

th
er

C
om

pr
es

se
dB

m
yU

nc
om

pr
es

se
dS

iz
eB

m
yC

om
pr

es
se

dS
iz

eB

C
om

pr
es

sB
(T

yp
e:

 R
W

C
S

tr
in

g
*)

D
sD

dD
is

tF
ile

m
yR

et
rie

ve
dF

la
gB

m
yP

at
h

C
om

pr
es

sB
()

F
la

tte
n(

)

D
sS

tS
ta

gi
ng

D
is

k

D
sS

rC
os

t

D
sD

dD
is

tR
eq

ue
st

E
st

im
at

eB
()

A
bo

rt
()

D
el

im
itB

()
C

re
at

eS
ub

re
qu

es
tB

()
G

et
S

ta
te

()
S

ub
m

it(
(M

ed
ia

: R
W

C
S

tr
in

g
*,

 U
se

r:
 M

sU
sP

ro
fil

e,
 E

le
cD

es
tn

: R
W

C
S

tr
in

g
*,

 P
as

sw
or

d:
R

W
C

S
tr

in
g

*,
 F

or
m

at
: R

W
C

S
tr

in
g

*
)

S
ub

m
it(

M
ed

ia
: R

W
C

S
tr

in
g

*,
 U

se
r:

 M
sU

sP
ro

fil
e,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

W
ai

tF
or

C
om

pl
et

e(
)

m
yC

om
pr

es
si

on
T

yp
eB

m
yD

is
tS

iz
e

D
is

tr
ib

ut
e(

M
ed

ia
: R

W
C

S
tr

in
g

*,
 U

se
r:

 M
sU

sP
ro

fil
e,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

E
st

im
at

e(
)

S
um

T
he

S
iz

e(
E

cT
In

t)
C

om
pr

es
sB

()
R

et
rie

ve
B

()
F

la
tte

n(
)

D
is

tr
ib

ut
e(

M
ed

ia
: R

W
C

S
tr

in
g

*,
 U

se
r:

 M
sU

sP
ro

fil
e,

 E
le

cD
es

tn
: R

W
C

S
tr

in
g

*,
P

as
sw

or
d:

 R
W

C
S

tr
i n

g
*,

 F
or

m
at

: R
W

C
S

tr
in

g
*)

m
yT

yp
eo

fC
on

ve
rs

io
n

C
on

ve
rt

()

[P
ub

lic
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

<
R

W
V

ec
to

r>

[P
ub

lic
]

[P
ub

lic
]

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

=
 "

no
ne

"

-
 :

R
W

B
oo

le
an

 =
 fa

ls
e

-

 :
E

cT
In

t =
 0

-

 :
E

cT
In

t =
 0

+

 :

E
cU

tS
ta

tu
s

{a
bs

tr
ac

t}

[P
ub

lic
]

[P
E

R
S

IS
T

E
N

T
 C

LA
S

S
]

-

 :
R

W
B

oo
le

an
 =

 fa
ls

e

-
 :

R
W

C
S

tr
in

g
*

+

 :

E
cU

tS
ta

tu
s

+

 :

D
is

tF
ile

O
ffp

ag
e

O
ffp

ag
e

[D
IS

T
R

 O
B

J]

[P
ub

lic
]

+

 :

D
sU

zC
os

t

+

 :
E

cU
tS

ta
tu

s

+

 :
E

cT
In

t

-
 :

E
cS

ta
tu

s

+

 :
D

is
tS

ta
te

-

+

 :

E
cU

tS
ta

tu
s

-

 :
R

W
C

S
tr

in
g

=
 "

N
on

e"

-
 :

E
cT

In
t =

 0

+

 :

D
sD

dD
is

tR
eq

ue
st

-

 :
D

sU
zC

os
t

-

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

D
is

tL
is

t

-

 :
R

W
C

S
tr

in
g

+

 :

E
cU

tS
ta

tu
s

1+ 1+

re
si

de
s

up
on

ca
lc

ul
at

es
ha

s
a

F
ig

u
re

 7
.3

-4
.

D
sD

d
D

is
tL

is
t

O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

7-9 305-CD-024-002

The DsDdMedia object model, shown in Figure 7.3-5, depicts the inheritance hierarchy of the
DsDdMedia base class. This hierarchy supports the specialized processing necessary for the
various distribution media supported by DDIST. The base class is first specialized into electronic
and labeled media. Each of those classes is further specialized depending on the types of
electronic and labeled media that is supported. To illustrate how each of these specialized media
types is supported, the DsDdLabeledMedia object model is provided in Figure 7.3-6.

The DsDdLabeledMedia object model, shown in Figure 7.3-6, illustrates the relationships that
exist between a specialized type of media and other objects. For example, labeled media requires
a media label for the tape or CD for example that is prepared for distribution, as well as a shipping
label for outer packaging. A packing slip is also prepared that lists the content of the outer package.
This packing slip is modeled in association with the DsDdRequestProcessor since that object
would be aware of multiple tapes, CDs or a combinations thereof that will be shipped in the same
outer package.

The DsUzResourceCost class is also associated with the media classes. DsUzResourceCost is a
generalization of several different types of cost that are calculated in association with a data
distribution, and has a friend relationship with DsDdMedia. Depending on the type of media used
for a given distribution, different component costs need to be calculated. In this example, a labeled
media distribution carries with it shipping and handling costs as well as costs for the medium itself.
Electronic distributions would incur these costs. Input/Output (I/O) costs, on the other hand, are
common to both electronic and labeled media distributions and are calculated in the same way for
each type of distribution. DsUzResourceCost shown in further detail in Figure 7.3-7.

The DsUzResourceCost class represents one of the costs (DsUzCostB) associated with services
provided by the Data Server Subsystem. DsUzResourceCost is a generalization of several
different types of cost that are calculated in association with a data distribution. Depending on the
type of media used for a given distribution, CPU, Archive, Media and I/O costs for example may
need to be calculated. The DsUzResourceCost hierarchy is provided in Figure 7.3-7.

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text “All Attributes inherited from the
parent class” (and analogously for operations). If a derived class has additional attributes of its
own, those new attributes are listed, but the attributes from the parent class are not repeated
(analogously for operations).

The Object Classes in the Object Model diagrams and descriptions each have an identified set of
attributes and public operations. In most cases the listed public services do not include two
operations: a constructor (often referred to as “Create”) and a destructor (often referred to as
òDestroyó). For most Object Classes in these models the constructor and destructor operations are
not listed; however, they are shown if they perform special processing beyond normal construction
and destruction, or if they are overloaded to allow for differing signatures.

7-10 305-CD-024-002

D
sD

dM
ed

ia

D
sD

dE
le

ct
ro

ni
cM

ed
ia

D
sD

dL
ab

el
ed

M
ed

ia

D
sD

dP
ul

lM
ed

ia
D

sD
dP

us
hM

ed
ia

D
sD

dC
D

M
ed

ia
D

sD
dT

ap
eM

ed
ia

D
sD

dF
ax

M
ed

ia
B

m
yS

ou
rc

eD
ire

ct
or

y

m
yC

ap
ac

ity

D
sD

dE
le

ct
ro

ni
cM

ed
ia

()

~
D

sD
dE

le
ct

ro
ni

cM
ed

ia
()

C
re

at
eC

pi
oF

ile
()

C
re

at
eT

ar
F

ile
()

C
re

at
eO

ut
pu

tF
ile

(D
is

tF
m

t:
R

W
C

S
tr

in
g

*)

m
yC

os
tB

m
yE

rr
or

T
hr

es
ho

ld
B

m
yD

at
eC

re
at

ed

m
yD

is
tr

ib
ut

io
nL

is
t

m
yF

ile
Li

st
P

tr

m
yM

ed
ia

T
yp

e

m
yN

um
be

rO
fIt

em
s

m
yP

ac
ki

ng
S

lip

m
yR

eq
ue

st

m
yR

es
ou

rc
e

m
yT

im
eB

C
re

at
eF

ile
LI

st
()

~
D

sD
dM

ed
ia

()

D
sD

dM
ed

ia
(D

is
tr

ib
ut

io
nL

is
t:D

sD
dD

is
tL

is
t &

, R
eq

ue
st

:D
sD

dR
eq

ue
st

P
ro

ce
ss

or
 &

,

P
ac

ki
ng

S
lip

:D
sD

dP
ac

ki
ng

S
lip

 &
, R

es
ou

rc
e:

D
sS

tR
es

ou
rc

eC
 &

, M
ed

ia
T

yp
e:

M
ed

ia
T

yp
e)

C
al

cu
la

te
C

os
tB

()

E
st

im
at

eC
os

tB
()

E
st

im
at

eT
im

eB
()

T
ra

ns
fe

rF
ile

s(
D

is
tF

m
t:

R
W

C
S

tr
in

g
*)

m
yF

A
X

N
um

be
r

D
ia

lN
um

be
r(

)

P
os

tT
ra

ns
fe

rC
le

an
up

()

T
ra

ns
fe

rF
ile

s(
)

D
sS

tR
es

ou
rc

eC
on

fig

m
yN

um
V

ol
um

es

m
yC

ap
ac

ity
B

m
yS

hi
pp

in
gL

ab
el

B

P
rin

tM
ed

ia
La

be
l()

C
op

yF
ile

s(
D

is
tF

m
t:

R
W

C
S

tr
in

g
*)

~
D

sD
dL

ab
el

ed
M

ed
ia

()

D
sD

dL
ab

el
ed

M
ed

ia
(S

hi
pp

in
gL

ab
el

:D
sD

dS
hi

pp
in

gL
ab

el
 &

)

C
re

at
eC

pi
oC

m
d(

)

C
re

at
eT

ar
C

m
d(

)

C
re

at
eS

he
llC

m
d(

D
is

tF
m

t:
R

W
C

S
tr

in
g

*)

C
al

cu
la

te
V

ol
um

es
B

()

T
ra

ns
fe

rF
ile

s(
D

is
tF

m
t:

R
W

C
S

tr
in

g
*)

D
sD

dP
ul

lM
ed

ia
()

~
D

sD
dP

ul
lM

ed
ia

()

G
et

P
ac

ki
ng

Li
st

F
ile

()

P
ul

lF
ile

s(
)

T
ra

ns
fe

rF
ile

s(
D

is
tF

m
t:

R
W

C
S

tr
in

g
*)

P
ul

lF
m

tF
ile

s(
F

ile
N

am
e:

F
ile

N
am

e)

m
yR

em
ot

eN
od

e

m
yD

ire
ct

or
y

m
yL

og
in

~
D

sD
dP

us
hM

ed
ia

()

P
us

hF
ile

s(
)

D
sD

dP
us

hM
ed

ia
(N

od
e:

E
cT

C
ha

r*
,

Lo
gi

n:
Lo

gi
n,

 D
ire

ct
or

y:
E

cT
C

ha
r*

)

P
us

hF
m

tF
ile

(F
ile

N
am

e:
ch

ar
*)

T
ra

ns
fe

rF
ile

s(
D

is
tF

m
t:

R
W

C
S

tr
in

g
*)

P
rin

tM
ed

ia
La

be
l()

m
yD

en
si

ty

D
sD

dT
ap

eM
ed

ia
(D

en
si

ty
: R

W
C

S
tr

in
g

*)

P
rin

tM
ed

ia
La

be
l()

~
D

sD
dT

ap
eM

ed
ia

()

-

 :
R

W
C

S
tr

in
g

*

-

 :
in

t

+

+

-

-

-

 :
F

ile
N

am
e:

 R
W

C
S

tr
in

g
*

-

-

-

 :
G

lD
at

e

-

 :
D

sD
dD

is
tL

is
t &

-

 :
R

W
C

S
tr

in
g

*

-

 :
M

ed
ia

T
yp

e

-

 :
E

cT
In

t

-

 :
D

sD
dP

ac
ki

ng
S

lip

-

 :
D

sD
dR

eq
ue

st
P

ro
ce

ss
or

 &

-

 :
D

sS
tR

es
ou

rc
eC

-

-

$
+

+

 :

D
sU

zC
os

t

+

 :

D
sU

zC
os

t

+

 :

E
cT

F
lo

at

+

 {

ab
st

ra
ct

}

-

 :
R

W
C

S
tr

in
g

-

 :
E

cU
tS

ta
tu

s

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

O
ffp

ag
e

-

 :
E

cT
In

t

-

 :
E

cT
In

t

-

 :
D

sD
dS

hi
pp

in
gL

ab
el

 &

+

-

$
+

$
+

-

 :
S

he
llC

m
d:

 R
W

C
S

tr
in

g
*

-

 :
S

he
llC

m
d:

 R
W

C
S

tr
in

g
*

-

 :
S

he
llC

m
d:

 R
W

C
S

tr
in

g
*

+

 :

E
cT

In
t

+

+

 :

E
cU

tS
ta

tu
s

+

 :

E
cU

tS
ta

tu
s

+

 :

F
ile

N
am

e

-

 :
E

cU
tS

ta
tu

s

+

-

-

 :
E

cT
C

ha
r*

-

 :
E

cT
C

ha
r*

-

 :
Lo

gi
n

+

 :

G
IS

ta
tu

s

-

 :
G

IS
ta

tu
s

+

+

+

 :

G
IS

ta
tu

s

-

 :
R

W
C

S
tr

in
g

*
=

 "
lo

w
"

+

+

 :

G
IS

ta
tu

s

+

 :

G
IS

ta
tu

s

pr
ov

id
es

 e
rr

or

th
re

sh
ol

ds
 to

F
ig

u
re

 7
.3

-5
.

D
sD

d
M

ed
ia

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

7-11 305-CD-024-002

D
sD

dL
ab

el
ed

M
ed

ia

m
yN

um
V

ol
um

es

m
yC

ap
ac

ity
B

m
yS

hi
pp

in
gL

ab
el

B

P
rin

tM
ed

ia
La

be
l()

C
op

yF
ile

s(
D

is
tF

m
t:

R
W

C
S

tr
in

g
*)

~
D

sD
dL

ab
el

ed
M

ed
ia

()

D
sD

dL
ab

el
ed

M
ed

ia
(S

hi
pp

in
gL

ab
el

:D
sD

dS
hi

pp
in

gL
ab

el
 &

)

C
re

at
eC

pi
oC

m
d(

)

C
re

at
eT

ar
C

m
d(

)

C
re

at
eS

he
llC

m
d(

D
is

tF
m

t:
R

W
C

S
tr

in
g

*)

C
al

cu
la

te
V

ol
um

es
B

()

T
ra

ns
fe

rF
ile

s(
D

is
tF

m
t:

R
W

C
S

tr
in

g
*)

D
sS

tS
ch

ed
ul

in
gC

on
fig

D
sD

dS
hi

pp
in

gL
ab

el
B

m
yP

rin
te

r

m
yF

ile
Lo

ca
tio

n

m
yF

or
m

sS
pe

ci
fic

at
io

n

m
yU

se
rI

nf
o

P
rin

t(
)

~
D

sD
dS

hi
pp

in
gL

ab
el

()

D
sD

dS
hi

pp
in

gL
ab

el
(U

se
rI

nf
o:

M
sU

sP
ro

fil
e

&
)

D
sD

dM
ed

ia
La

be
lB

m
yP

rin
te

r

m
yF

ile
Lo

ca
tio

n

m
yF

or
m

sS
pe

ci
fic

at
io

n

m
yP

ro
du

ct
io

nD
at

e

m
yU

se
rN

am
e

m
yR

eq
ue

st
ID

m
yV

ol
um

eT
ot

al

m
yV

ol
um

eN
um

be
r

P
rin

t(
)

D
sD

dT
ap

eL
ab

el
B

m
yD

en
si

ty

D
sD

dM
ed

ia
D

sU
zR

es
ou

rc
eC

os
t

D
sD

dC
D

M
ed

ia
D

sD
dT

ap
eM

ed
ia

D
sD

dC
D

La
be

lB

P
rin

t(
)

m
yD

en
si

ty

D
sD

dT
ap

eM
ed

ia
(D

en
si

ty
: R

W
C

S
tr

in
g

*)

P
rin

tM
ed

ia
La

be
l()

~
D

sD
dT

ap
eM

ed
ia

()

P
rin

tM
ed

ia
La

be
l()

-

 :
E

cT
In

t

-

 :
E

cT
In

t

-

 :
D

sD
dS

hi
pp

in
gL

ab
el

 &

+

-

$
+

 $
+

-

 :
S

he
llC

m
d:

 R
W

C
S

tr
in

g
*

-

 :
S

he
llC

m
d:

 R
W

C
S

tr
in

g
*

-

 :
S

he
llC

m
d:

 R
W

C
S

tr
in

g
*

+

 :

E
cT

In
t

+

O
ffp

ag
e

$
-

 :
R

W
C

S
tr

in
g

*

-

 :
R

W
C

S
tr

in
g

*

$
-

 :
R

W
C

S
tr

in
g

-

 :
*M

sU
sU

se
rP

ro
fil

e

+

 :

E
cU

tS
ta

tu
s

$
+

 $
+

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
E

cT
In

t

-

 :
E

cT
In

t

+

 :

E
cU

tS
ta

tu
s

-

 :
E

cT
In

t

O
ffp

ag
e

O
ffp

ag
e

+

-

 :
R

W
C

S
tr

in
g

*
=

 "
lo

w
"

+

+

 :

G
IS

ta
tu

s

+

 :

G
IS

ta
tu

s

+

 :

G
IS

ta
tu

s

ha
s

a
1+

ge
ts

 C
ap

ac
iti

es
 fr

om

ha
s

a

pr
ov

id
es

sh
ip

pi
ng

 a
nd

 h
an

dl
in

g
an

d
m

ed
ia

 c
os

ts
 to

ge
ts

 IO
co

st
s

fr
om

F
ig

u
re

 7
.3

-6
.

D
sD

d
L

ab
el

ed
M

ed
ia

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

7-12 305-CD-024-002

7.3.1 DsDdCDLabelB Class

Parent Class: DsDdMediaLabelB

Attributes:

All Attributes inherited from parent class

Operations:

Print
Arguments:
Return Type: Void
Privilege: Public

Associations:
The DsDdCDLabelB class has associations with the following classes:
None

7.3.2 DsDdCDMedia Class

Parent Class: DsDdLabeledMedia
Public: No
Distributed Object:No
Purpose and Description:
Initiates and monitors the transfer of data items to a CD-ROM.

Attributes:

All Attributes inherited from parent class

Operations:

PrintMediaLabel - This operation will be implemented in release B. It will be a
polymorphic operation which depends on the type of device the label for which the label is
being printed.
Arguments:

7-13 305-CD-024-002

D
sU

zC
os

tB

m
yN

um
R

es
ou

rc
es

ou
rU

til
iz

at
io

nT
ab

le

ct
or

(a
pp

: R
W

C
S

tr
in

g,
 s

er
vi

ce
: R

W
C

S
tr

in
g,

 s
iz

e:
 E

cT
F

lo
at

)
dt

or
()

F
irs

tR
es

ou
rc

e(
)

N
ex

tR
es

ou
rc

e(
)

N
um

R
es

ou
rc

es
()

F
in

dR
es

ou
rc

e(
ty

pe
: *

E
cT

S
tr

in
g)

op
er

at
or

+
(c

os
to

bj
: *

D
sU

zC
os

t)
A

dd
R

es
ou

rc
e(

*D
sU

zR
es

ou
rc

eC
os

t)

D
sU

zR
es

ou
rc

eC
os

t

ou
rN

am
e

ou
rU

ni
ts

m
yU

til
iz

at
io

n
ou

rU
til

iz
at

io
nF

ac
to

r

ct
or

(E
cT

F
lo

at
: s

iz
e=

0)
dt

or
()

G
et

N
am

e(
)

G
et

U
ni

ts
()

G
et

U
til

iz
at

io
n(

)
S

et
C

os
t(

E
cT

F
lo

at
: s

iz
e=

0)
op

er
at

or
=

=
(R

W
C

S
tr

in
g)

op
er

at
or

+
(r

es
ou

rc
eC

os
t:

*D
sU

zR
es

ou
rc

eC
os

tB
)

D
sU

zU
til

iz
at

io
nT

ab
le

ct
or

()
dt

or
()

G
et

R
es

ou
rc

es
(R

W
C

S
tr

in
g:

 a
pp

, R
W

C
S

tr
in

g:
 s

er
vi

ce
)

D
sU

zD
i

D
sU

zC
P

U
C

os
t

D
sU

zF
ix

ed
C

os
t

D
sU

zA
rc

hi
ve

C
os

tB

D
sU

zM
ed

ia
C

os
t

D
sU

zI
O

C
os

t

ct
or

(E
cT

F
lo

at
: s

iz
e=

0)
S

et
C

os
t(

E
cT

F
lo

at
: s

iz
e)

ct
or

(s
iz

e:
 E

cT
F

lo
at

=
0)

S
et

C
os

t(
si

ze
: E

cT
F

lo
at

)

ct
or

(s
iz

e:
 E

cT
F

lo
at

=
0)

S
et

C
os

t(
si

ze
: E

cT
F

lo
at

)

ct
or

(s
iz

e:
 E

cT
F

lo
at

=
0)

S
et

C
os

t(
si

ze
: E

cT
F

lo
at

)

ct
or

(s
iz

e:
 E

cT
F

lo
at

=
0)

S
et

C
os

t(
si

ze
: E

cT
F

lo
at

)

ct
or

(s
iz

e:
 E

cT
F

lo
at

=
0)

S
et

C
os

t(
si

ze
: E

cT
F

lo
at

)

-

 :
E

cT
In

t =
 0

-

 :
co

ns
t *

D
sU

zU
til

iz
at

io
nT

ab
le

 =
 <

nu
ll>

+

 :

co
ns

t *
D

sU
zR

es
ou

rc
eC

os
t

+

 :

co
ns

t *
D

sU
zR

es
ou

ce
C

os
t

+

 :

E
cT

In
t

+

 :

co
ns

t *
D

sU
zR

es
ou

rc
eC

os
t

+

 :

*D
sU

zC
os

t

+

 :
vo

id

-

 :
R

W
C

S
tr

in
g

-

 :
R

W
C

S
tr

in
g

-

 :
E

cT
F

lo
at

 =
 0

-

 :
E

cT
F

lo
at

+

 :

co
ns

t *
R

W
C

S
tr

in
g

+

 :

co
ns

t *
R

W
C

S
tr

in
g

+

 :

co
ns

t *
E

cT
F

lo
at

+

 :

E
cT

B
oo

le
an

+

 :

*D
sU

zR
es

ou
rc

eC
os

t

+

 :

R
W

S
tr

in
gL

is
t

+

+

 :
co

ns
t *

E
cT

F
lo

at
+

+

 :
co

ns
t *

E
cT

F
lo

at
+

+

 :
co

ns
t *

E
cT

F
lo

at

+

+

 :
co

ns
t *

E
cT

F
lo

at
+

+

 :
co

ns
t *

E
cT

F
lo

at
+

+

 :
co

ns
t *

E
cT

F
lo

at

ge
ts

 r
es

ou
rc

es
 fr

om

F
ig

u
re

 7
.3

-7
.

D
sU

zR
es

o
u

rc
eC

o
st

 O
b

je
ct

 M
o

d
el

 D
ia

g
ra

m

7-14 305-CD-024-002

Return Type: GIStatus
Privilege: Public

Associations:

The DsDdCDMedia class has associations with the following classes:
None

7.3.3 DsDdCDProcessor Class

Parent Class: DsDdRequestProcessor
Public: No
Distributed Object:No
Purpose and Description:
Defines the concrete CreateMedia to perform the correct processing of distribution via CD.

Attributes:

All Attributes inherited from parent class

Operations:

ServiceRequest - Creates the objects needed for and coordinates the processing of
distribution via CD-ROM.
Arguments:
Return Type: EcUtStatus
Privilege: Public

Associations:

The DsDdCDProcessor class has associations with the following classes:
None

7-15 305-CD-024-002

7.3.4 DsDdDataItem Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:No
Persistent Class:
Purpose and Description:
Base class for items to be distributed. For now only a file specialization of this class exists
and is used, but the base class is defined to support possible future use of streams et al.

Attributes:

myCompressedSizeB - Size of a data item when compressed, in megabytes.
Data Type: EcTInt
Privilege: Private
Default Value:0

myCompressionTypeB - Type of compression, if any, performed on the item.
Compression types are TBD.
Data Type: RWCString
Privilege: Private
Default Value:"none"

myID - Identifier, such as filename, for the data item.
Data Type: RWCString
Privilege: Private
Default Value:

myUncompressedSizeB - Size of the object before it was compressed.
Data Type: EcTInt
Privilege: Private
Default Value:0

myWhetherCompressedB - Flag indicating whether or not this data item is compressed.
Data Type: RWBoolean
Privilege: Private
Default Value:false

Operations:

CompressB - Method to compress the data item with provided compression type.
Arguments: Type: RWCString *

7-16 305-CD-024-002

Return Type: EcUtStatus
Privilege: Public
This is an abstract operation
PDL:IF type is a valid compression
Compress data type
ELSE
Log MSS Event
ENDIF

Associations:

The DsDdDataItem class has associations with the following classes:
Class: DsDdMedia iswrittento
DsDdGranuleB (Aggregation)

7.3.5 DsDdDistFile Class

Parent Class: DsDdDataItem
Public: Yes
Distributed Object:No
Persistent Class: True
Purpose and Description:
File containing data to be distributed to the requestor.

Attributes:

myPath - Specification of where the file is located, including device and directory.
Data Type: RWCString *
Privilege: Private
Default Value:

myRetrievedFlagB - Indicates whether the file has been retrieved from archive. Some
files - such as subsetted files - are retrieved by SDSRV prior to the request being passed to
DDIST. Those which aren't retrieved by SDSRV - such as any file that does not go through
user-requested processing prior to DDIST getting passed the request - must be retrieved by
DDIST.
Data Type: RWBoolean
Privilege: Private
Default Value:false

7-17 305-CD-024-002

Operations:

CompressB - Compress the file. At a minimum Unix file compression will be supported.
Arguments:
Return Type: EcUtStatus
Privilege: Public
PDL:Compress data file

Flatten - Express the object as a byte stream so it can be transported from the client to the
server via OODCE.
Arguments:
Return Type: DistFile
Privilege: Public

Associations:

The DsDdDistFile class has associations with the following classes:
Class: DsStStagingDisk residesupon - Each file to be distributed will be retrieved (via
STMGT) to staging disk.

7.3.6 DsDdDistList Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:No
Persistent Class: True
Purpose and Description:
List of pointers to all the items to be distributed. This class is derived from a RogueWave
template, and so inherits all of the operations (not shown) to manipulate the list.

Attributes:

myCompressionTypeB - Type of compression - e.g., Unix compression - to be applied on
the entire list.
Data Type: RWCString
Privilege: Private
Default Value:"None"

myDistSize - Size, in megabytes of the entire list of iles to be distributed.
Data Type: EcTInt

7-18 305-CD-024-002

Privilege: Private
Default Value:0

Operations:

CompressB - Compress the data included in this list, using the compression specified by
myCompressionTypeB.
Arguments:
Return Type: EcUtStatus
Privilege: Public

Distribute
Arguments: Media: RWCString *, User: MsUsProfile, ElecDestn: RWCString *,
Password: RWCStri ng *, Format: RWCString *

Distribute - Initiates distribution processing for all of the items in the list. This signature
definition supports all requests except for electronic push requests.
Arguments: Media: RWCString *, User: MsUsProfile, Format: RWCString *
Return Type: DsDdDistRequest
Privilege: Public

Estimate - Estimate the time required and the cost of distributing the items included in this
list.
Arguments:
Return Type: DsUzCost
Privilege: Private

Flatten - Express the object's attributes as a byte stream. This is necessary because this
object is referenced by the distributed object DsDdDistRequest. Because OODCE does not
support deep copy (of referenced objects) from client- to server-side, referenced objects
must be expressed as a byte stream before they are transferred to the server side.
Arguments:
Return Type: DistList
Privilege: Public

RetrieveB - Retrieve from the archive any data which needs to be retrieved before being
distributed. Some of the data may already have been retrieved by the SDSRV CSCI in
preparation for this distribution request; for example, some data may have been retrieved
for subsetting or other manipulation prior to distribution.
Arguments:
Return Type: EcUtStatus
Privilege: Public

7-19 305-CD-024-002

SumTheSize - Calculate the total size of the data to be distributed.
Arguments: EcTInt
Return Type: Void
Privilege: Private

Associations:

The DsDdDistList class has associations with the following classes:
Class: DsSrCost calculates
Class: DsDdDistRequest hasa
Class: DsDdRequestManager receives
Class: DsDdDistRequest requestsdistributionofitemsin - A distribution request is the
vehicle for performing the distribution of the items in the distribution list.

7.3.7 DsDdDistRequest Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:Yes
Purpose and Description:
Base class for the client/server specialization of distribution requests. Specifies operations
which are available to any client.

Attributes:

None

Operations:

Abort - Terminate all processing of a distribution request. The termination may not occur
immediately, because the request may need to progress to a stable stage enabling clean
termination.
Arguments:
Return Type: EcUtStatus
Privilege: Public
PDL:// if (thread which called DsStResource.Allocate is blocked because resource is not
yet available)
{
call DsStRequestManager.Abort to abort the resource allocation
}

7-20 305-CD-024-002

else
}
call SetAbortFlag to signal to ServiceRequest to abort processing
}

CreateSubrequestB - Create a new request from a portion of an existing request/list of
files to distribute. This is used in conjunction with the DelimitB method to process requests
which are too large - in bytes or number of files - to process as a single request.
Arguments:
Return Type: EcStatus
Privilege: Private

DelimitB - Indicate where in the list of granules/files to be distributed to break the request
into smaller requests. This is necessary for requests that are too large - in terms of bytes or
number of files - to be processed as a single request.
Arguments:
Return Type: EcTInt
Privilege: Public

EstimateB
Arguments:
Return Type: DsUzCost
Privilege: Public

GetState - Get the state of the distribution request. States defined in the L4 requirements
are: pending, active, waiting for shipment, shipped.
Arguments:
Return Type: DistState
Privilege: Public

Submit - Submit a distribution request for processing. This definition of the submit
signature supports electronic push only.
Arguments: (Media: RWCString *, User: MsUsProfile, ElecDestn: RWCString *,
Password: RWCString *, Format: RWCString *
Return Type: Void
Privilege: Private

Submit - Submit a distribution request for processing. This definition of the submit
signature supports all distribution except electronic push, which requires additional
arguments.
Arguments: Media: RWCString *, User: MsUsProfile, Format: RWCString *
Return Type: Void
Privilege: Private

7-21 305-CD-024-002

WaitForComplete - Wait until a distribution request has completed. Since the submission
of a distribution request is asynchronous, this service allows a thread to block until (and
thereby be signalled when) the requests completes.
Arguments:
Return Type: EcUtStatus
Privilege: Public

Associations:

The DsDdDistRequest class has associations with the following classes:
Class: DsDdRequestManager createsmanages
Class: DsDdDistList hasa
Class: DsDdRequestProcessor isexecutedby
Class: DsDdDistList requestsdistributionofitemsin - A distribution request is the vehicle
for performing the distribution of the items in the distribution list.
DsDdRequestLIst (Aggregation)

7.3.8 DsDdDistRequestC Class

Parent Class: DsDdDistRequest
Public: Yes
Distributed Object:Yes
Purpose and Description:
User client presentation of the distribution request. A specialization of the constructor is
necessary to accomodate hiding of the request manager (which implements the OODCE
factory model) from the client.

Attributes:

All Attributes inherited from parent class

Operations:

DsDdDistRequestC - Constructor for the user client presentation of the distribution
request. This constructor implements the client side of the OODCE factory model; it first
creates a client factory object if it doesn't exist, then calls the appropriate factory service to
create a server-side distribution request.
Arguments:
Return Type: DCEObjRefT
Privilege: Public

7-22 305-CD-024-002

PDL:// call DsDdDistList.Deobjectize to flatten the list for transfer to the server via
OODCE

// if (client representation of request manager - aka the OODCE factory - doesn't exist)
{
 // construct DsDdRequestManagerC object
}

// call DsDdRequestManagerC.CreateDistRequest to create server-side representation of
the distribution request

// call OODCE's SetBinding to bind the client distribution request object to the server object
reference returned by CreateDistRequest

// call DsDdDistRequest.Submit to initiate processing of the request.

Associations:

The DsDdDistRequestC class has associations with the following classes:
None

7.3.9 DsDdDistRequestS Class

Parent Class: DsDdPrivRequest
Public: No
Distributed Object:Yes
Persistent Class: True
Purpose and Description:
Server-side presentation of the distribution request. This side has all the services available
to all of the clients, and attributes which are maintained as such only on the server side. An
instantiation of this class exists for each distribution request in the system, and runs in a
separate thread which is created by the request factory (manager).

Attributes:

myAbortFlag - Set by a thread executing the Abort service, signals to a thread executing
the ServiceRequest service that the request is to be aborted.
Data Type: RWBoolean

7-23 305-CD-024-002

Privilege: Private
Default Value:False

myDistFormat - Format - tar, cpio, or none - in which to write the distribution data to the
output media.
Data Type: RWCString *
Privilege: Private
Default Value:

myDistList - List of items to be distributed.
Data Type: DsDdDistList *
Privilege: Private
Default Value:

myMedia - Type of media to be be used for the distribution. For release A possible values
are CD, 8mm tape, electronic push, electronic pull.
Data Type: RWCString *
Privilege: Private
Default Value:

myPriority - Priority at which the distribution request is processed relative to other
distribution requests.
Data Type: DistPriority
Privilege: Private
Default Value:medium

myRequestId - Unique identifier for the request, which is written with any event log
messages and so can be used to reconstruct the events that occured for the given request.
The request id is of minimal value while a request is active, because all client software
interfaces to the request should be via of the request object; however, once a request
completes the object disappears, so the the request id can then be used to trace through the
request's audit trail.
Data Type: RWCString *
Privilege: Private
Default Value:

myRequestProcessor - Specialized request processor whose ServiceRequest service will
be invoked to generate the distribution products. The value for this attribute is assigned
based upon the media type; e.g., for a media type of CD the DsDdCDProcessor will be
used.
Data Type: DsDdRequestProcessor *
Privilege: Private
Default Value:

7-24 305-CD-024-002

mySize - Total size of the data to be distributed in the request. Due to addressing limits (of
32-bit architecture), the units for this count may not be bytes, but may be some TBD unit
such as kilobytes.
Data Type: EcTInt
Privilege: Private
Default Value:

myState - Request states identified in the level 4 requirements are pending, active, waiting
for shipment, and shipped. Pending requests are requests which have been received but for
which a resource (media) to which to write the data is not yet available. The state changes
to active when the resource becomes available, and remains active until the generation of
all output media is complete, at which time the state changes to waiting to be shipped. The
state changes to shipped upon operator notification to the software that the media have been
physically shipped to the requestor.
Data Type: DistState
Privilege: Private
Default Value:pending

myTimeOfSubmission - Time when the Submit service was invoked upon the request.
Data Type: RWDate
Privilege: Private
Default Value:

myUserInfo - Information identifying the entity (user, DAAC, etc.) which requested the
distribution.
Data Type: MsUsProfile *
Privilege: Private
Default Value:

Operations:

CompressB - Compress the data included in this list, using the compression specified by
myCompressionTypeB of the DsDdDistList.
Arguments:
Return Type: EcUtStatus
Privilege: Public
PDL:compress each file in DistList

CreateSubrequestB - Create subrequests for a request that is too large.
Arguments:
Return Type: EcUtStatus
Privilege: Public
PDL:LOOP (until entire request is partitioned)

7-25 305-CD-024-002

construct a subrequest
WHILE (max size for media, or maxfiles reached)

add file to subrequest
ENDWHILE
queue subrequest
ENDLOOP

DelimitB - Delimit a request into subrequests. This is necessary when a request is too large
- in size or number of files - to process as a single request.
Arguments:
Return Type: EcTInt
Privilege: Public
PDL:Initialize subrequests = 0
Get total size of retrieval
Get number of files
If (too many files or too large for media)
this->CreateSubrequestsS()
ENDIF
return number of subrequests

EstimateB - Estimate cost and time requires to support the request.
Arguments:
Return Type: DzUzCost
Privilege: Public
PDL:Construct DsUzCost ("DDIST, mediatype, SumtheSizeB())

RetrieveB - Retrieve from the archive any data which needs to be retrieved before being
distributed. Some of the data may have been retrieved by the SDSRV CSCI inpreparation
for the distribution request; for example some data may have been retrieved by subsetting
or other manipulation prior to distribution.
Arguments:
Return Type: EcUtStatus
Privilege: Public
PDL:Allocate working storage
LOOP through all files on list
retrieve file from archive to working storage
ENDLOOP

SendNotificationB - Send notification to user.
Arguments:
Return Type: EcUtStatus
Privilege: Public
PDL:Create text list of files by granule

7-26 305-CD-024-002

Create EcNotify with info from MsAcUserProfile
EcNotify->Send()

SumtheSizeB - Calculate the size of all files in request.
Arguments:
Return Type: EcTInt
Privilege: Public
PDL:Iterate through DsDdDistList
sum uncompressed size
sumcompressed size

changeState - Change current state of the request.
Arguments: state: EcTEnum
Return Type: EcUtStatus
Privilege: Public
PDL:SET myState to state

Associations:

The DsDdDistRequestS class has associations with the following classes:
Class: DsDdRequestManagerS manages - The server-side of the request manager creates
and manages the server-side instantiations of distribution requests.
DsDdRequestList (Aggregation)

7.3.10 DsDdDistSubRequestB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This represents a set of distribution items from a large distribution request, that have been
collected to be treated as an individual request.

Attributes:

mySubrequestid - Identification of the subrequest.
Data Type: uuid_t
Privilege: Private
Default Value:

7-27 305-CD-024-002

Operations:

SendNotificationB
Arguments:
Return Type: EcUtStatus
Privilege: Public

Associations:
The DsDdDistSubRequestB class has associations with the following classes:
Class: DsDdRequestManagerS creates
DsDdDistRequestS (Aggregation)

7.3.11 DsDdElectronicMedia Class

Parent Class: DsDdMedia
Public: No
Distributed Object:No
Purpose and Description:
Handles the interface to storage management for distribution which utilize network
communications for the distributions of the files. No physical shipment of the data items
selected is made so there is no need for media or shipping labels.

Attributes:

myCapacity - Capacity for holding data: size of a single tape or CD or the amount of
staging available for this request.
Data Type: int
Privilege: Private
Default Value:

mySourceDirectory - Directory local to distribution processing in which a tar or cpio file
will be created if necessary for the request.
Data Type: RWCString *
Privilege: Private
Default Value:

Operations:

CreateCpioFile - Creates a Cpio archive file on local staging disk. The file will then be
distributed via electronic push or pull.

7-28 305-CD-024-002

Arguments:
Return Type: Void
Privilege: Private

CreateOutputFile - Determines if a tar or cpio archive file needs to be created for this
request based on the distribution format passed in.
Arguments: DistFmt: RWCString *
Return Type: FileName: RWCString *
Privilege: Private
PDL://switch DistFmt
 {
// tar:
// FileName = CreateTarFile() create a tar archive file
// in local storage
// cpio:
// FileName = CreateCpioFile() create a cpio archive file
// in local storage
// raw:
// FileName = NULL
// default:
// signal an error
 }

CreateTarFile - Creates a tar archive file of the data items. The file is then distributed via
electronic push or pull.
Arguments:
Return Type: Void
Privilege: Private

DsDdElectronicMedia - Constructor for the Electronic Media instance.
Arguments:
Return Type: Void
Privilege: Public

~DsDdElectronicMedia - Destructor for an instance of the Electronic Media class
Arguments:
Return Type: Void
Privilege: Public

7-29 305-CD-024-002

Associations:

The DsDdElectronicMedia class has associations with the following classes:
None

7.3.12 DsDdFaxMediaB Class

Parent Class: DsDdElectronicMedia
Public: No
Distributed Object:No
Purpose and Description:
Defines the attributes and behavior for distribution via FAX.

Attributes:

myFAXNumber - The telephone number of the FAX to distribute to.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

DialNumber - Dials the telephone number for the FAX to which the distribution items are
to be transferred.
Arguments:
Return Type: EcUtStatus
Privilege: Private
PDL:Send myFAXNumber to dialing device driver

PostTransferCleanup - Performs any FASXspecific processing after the distribution
items are transferred to the FAX. The base class has an abstract definition of this method
as a placeholder for media-specific processing.
Arguments:
Return Type: EcUtStatus
Privilege: Public

TransferFiles - Transfers the requested files to the FAX.
Arguments:
Return Type: EcUtStatus
Privilege: Public

7-30 305-CD-024-002

PDL:LOOP (through all streams in distribution list)
Send file to device driver
ENDLOOP

Associations:
The DsDdFaxMediaB class has associations with the following classes:
None

7.3.13 DsDdGranuleB Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:No
Purpose and Description:
This class is a collection of all of the files which compose a granule to be distributed.

Attributes:

myTypeofConversion - The format to which the granule is to be converted. The finest
granularity at which conversion can be specified is the granule.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

Convert - Convert the granule to the format specified by myTypeofConversion.
Arguments:
Return Type: EcUtStatus
Privilege: Public

Associations:
The DsDdGranuleB class has associations with the following classes:
DsDdDistList (Aggregation)

7-31 305-CD-024-002

7.3.14 DsDdLabeledMedia Class

Parent Class: DsDdMedia
Public: No
Distributed Object:No
Purpose and Description:
This object handles the transfer of data item files to labeled media such as CD and tape. It
is specialized for the operation of printing the label which may have different formats for
the different resources.

Attributes:

myCapacityB - Size of a single tape (accounting for density) or single CD.
Data Type: EcTInt
Privilege: Private
Default Value:

myNumVolumes - The number of volumes of removable media that were created for this
request.
Data Type: EcTInt
Privilege: Private
Default Value:

myShippingLabelB - Reference to the shipping label object which will create the label
containing the requester's name and shipping address for use in the shipment of the media.
Data Type: DsDdShippingLabel &
Privilege: Private
Default Value:

Operations:

CalculateVolumesB - Determine the number of volumes (e.g., number of tapes) needed to
distribute the request.
Arguments:
Return Type: EcTInt
Privilege: Public

CopyFiles - Creates and executes a shell command file to move the requested data items
into an archive file of the requested type on the requested media.
Arguments: DistFmt: RWCString *
Return Type: Void
Privilege: Private

7-32 305-CD-024-002

PDL://ShellCmd = CreateShellCmd(DistributionFormat) to create a shell
//command which will create the requested type of archive file
// on the requested type of media

//if ShellCmd is not NULL
 {
// Execute the shell command to move the files to the allocated
// media resource

// DetermineNumVols() to determine the number of volumes created
// for this distribution

// DsDdPackingSlip::SetNumVolumes(myNumVolumes) to set the
// number of volumes in the Packing Slip object
 }

CreateCpioCmd - Creates a shell command which will create a cpio archive file on the
requested media. The archive file will contain all of the data items listed in the list file.
Arguments:
Return Type: ShellCmd: RWCString *
Privilege: Private

CreateShellCmd - Creates a shell command which will create a tar or cpio archive file on
the requested media.
Arguments: DistFmt: RWCString *
Return Type: ShellCmd: RWCString *
Privilege: Private
PDL://CreateFileList() to create a file containing the data items and
//their file paths.

//DsStResource::GetResourceId() to get the name of the device which
//has been allocated for this request.

//switch(DistributionFormat)
 {
// tar:
// ShellCmd = CreateTarCmd() use the name of the resource and
// the name of the file containing the list of data items
// to create a command which will create a tar archive file
// on the allocated device
// cpio:
// ShellCmd = CreateCpioCmd() uses the name of the resource
// and the name of the file containing a list of the data
// items to create a command which will create a cpio

7-33 305-CD-024-002

// archive file on the allocated device
// default:
// ShellCmd = NULL
 }

CreateTarCmd - Creates a shell command which will create a tar archive file of the data
items listed in the list file on the requested media.
Arguments:
Return Type: ShellCmd: RWCString *
Privilege: Private

DsDdLabeledMedia - Constructor for the Media Label class instance.
Arguments: ShippingLabel:DsDdShippingLabel &
Return Type: Void
Privilege: Public
This is a Class Operation.

PrintMediaLabel - Prints the label whose format will be specific for different media on
the designated printer. This will be implemented in release B.
Arguments:
Return Type: Void
Privilege: Public

TransferFiles - Concrete implementation of the interface with the Request Processor
object. This method handles the transfer of files to a tar or cpio archive file on the
requested media.
Arguments: DistFmt: RWCString *
Return Type: Void
Privilege: Public
PDL:
//DsStResourceC::Allocate(ResourceType,MediaType,RequestId,
//Priority,Size,ProfileInfo) to allocate a resource of the
//requested type.

//CopyFiles(DistFmt) to copy the files to the requested device

//Call DsStResourceC::Deallocate() to free the requested device
//for other use

//DsDdPackingSlip::Create() to create the packing slip. This is
//done after the completion of the physical distribution to allow
//inclusion of the number of volumes created.

7-34 305-CD-024-002

//DsDdPackingSlip::Print() to send the packing slip to the
//designated printer

//DsDdShippingLabel::Print() to send the shipping label to the
//designated printer

~DsDdLabeledMedia - Destructor for a labeled media instance.
Arguments:
Return Type: Void
Privilege: Public
This is a Class Operation.

Associations:

The DsDdLabeledMedia class has associations with the following classes:
Class: DsStSchedulingConfig getsCapacitiesfrom
Class: DsDdMediaLabelB hasa -
Class: DsDdShippingLabelB hasa -
Class: DsUzResourceCost providesshippingandhandlingandmediacoststo

7.3.15 DsDdMedia Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
To track the content of distribution media produced by the Data server. Physical
distribution media currently identified for distribution includes tapes (3480/3490, 4mm
8mm,6250) and CD ROM disks. The contents of media produced for distribution will be
reflected by a packing slip which will be included in the shipping container.

Attributes:

myCostB - The resource cost of distributing the request via this media. The cost is defined
in units which may not be the same as price.
Data Type:
Privilege: Private
Default Value:

7-35 305-CD-024-002

myDateCreated - Date that the file transfer to the requested media was initiated.
Data Type: GlDate
Privilege: Private
Default Value:

myDistributionList - Reference to the DsDdDistList object which is associated with this
request. Used to allow access to the list of data items for the request.
Data Type: DsDdDistList &
Privilege: Private
Default Value:

myErrorThresholdB - The number of errors which may be encountered when writing to
a specific instance (e.g., a single tape for a tape distribution, a single FAX destination for a
FAX distribution) of this media.
Data Type:
Privilege: Private
Default Value:

myFileListPtr - Pointer to the list (DsDdDistList) of files to be distributed.
Data Type: RWCString *
Privilege: Private
Default Value:

myMediaType - Holds the type of media, i.e. tape, CDROM, network, source and
associated information.
Data Type: MediaType
Privilege: Private
Default Value:

myNumberOfItems - Number of Data Items distributed for this request.
Data Type: EcTInt
Privilege: Private
Default Value:

myPackingSlip - Reference to the DsDdPackingSlip object which will create the list of
data items which were transfered in this distribution.
Data Type: DsDdPackingSlip
Privilege: Private
Default Value:

myRequest - Reference to the DsDdRequestProcessor object which represents this request.
Allows access to the information in the request which is not part of the media object.
Data Type: DsDdRequestProcessor &
Privilege: Private
Default Value:

7-36 305-CD-024-002

myResource - The name of the resource which is allocate for the transfer of the files.
Data Type: DsStResourceC
Privilege: Private
Default Value:

myTimeB - The time estimated or taken to distribute the request via this media.
Data Type:
Privilege: Private
Default Value:

Operations:

CalculateCostB - Calculate the cost of distributing the request via this media. If the
calculated cost is always the same as the estimated cost, then this method simply calls
EstimateCostB.
Arguments:
Return Type: DsUzCost
Privilege: Public

CreateFileLIst - Creates a file with the list of all the files and their path names for use in
constructing the commands which will transfer the files and building the packing slip.
Arguments:
Return Type: Void
Privilege: Private

DsDdMedia
Arguments: DistributionList:DsDdDistList &, Request:DsDdRequestProcessor &,
PackingSlip:DsDdPackingSlip &, Resource:DsStResourceC &, MediaType:MediaType

EstimateCostB - Estimates the cost of distributing the request via this media.
Arguments:
Return Type: DsUzCost
Privilege: Public

EstimateTimeB - Estimates the time to process the distribution request using this media.
Arguments:
Return Type: EcTFloat
Privilege: Public

TransferFiles - Interface routine to the Request Processor object. This operation will have
different methods depending on the media type requested . For this class, it is a pure virtual
operation.
Arguments: DistFmt: RWCString *

7-37 305-CD-024-002

Return Type: Void
Privilege: Public
This is an abstract operation

~DsDdMedia - Destructor for the media object. Frees up all allocated memory used in
constructing the object.
Arguments:
Return Type: Void
Privilege: Public
This is a Class Operation.

Associations:

The DsDdMedia class has associations with the following classes:
Class: DsDdRequestProcessor allocates
Class: DsUzResourceCost getsIOcostsfrom
Class: DsDdDataItem iswrittento
Class: DsStResourceConfig provideserrorthresholdsto -

7.3.16 DsDdMediaLabelB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
A media label is affixed to each volume (e.g., and individual tape) of hard media generated
for distribution.

Attributes:

myFileLocation - The location and name on disk of the file containing the particular
instance of this media label.
Data Type: RWCString
Privilege: Private
Default Value:

myFormsSpecification - Specification of the special printer characteristics needed for
printing of the form used for the media label.
Data Type: RWCString

7-38 305-CD-024-002

Privilege: Private
Default Value:

myPrinter - The printer upon which media labels for a particular hard media (e.g., 4mm
tape, 3480 tape) are printed. Since media labels are special forms, a dedicated printer exists
for each unique media label form. For example, if the labels printed for 3480 tape and CD-
ROM are different forms, one dedicated printer exists for the 3480 form and another for the
CD-ROM form.
Data Type: RWCString
Privilege: Private
Default Value:

myProductionDate - The date on which the volume of this media was created (written to).
Data Type: RWCString
Privilege: Private
Default Value:

myRequestID - The id of the request for which this media was generated.
Data Type: RWCString
Privilege: Private
Default Value:

myUserName - The user for which this media was generated.
Data Type: RWCString
Privilege: Private
Default Value:

myVolumeNumber - The number, in the total number of volumes, of the volume for
which this label is generated. For example, if this is the 2nd of 3 tapes, then the volume
number is 2.
Data Type: EcTInt
Privilege: Private
Default Value:

myVolumeTotal - The total number of volumes produced for this distribution request.
Data Type: EcTInt
Privilege: Private
Default Value:

Operations:

Print - Print out this media label.
Arguments:

7-39 305-CD-024-002

Return Type: EcUtStatus
Privilege: Public
PDL:create stream to send to printer
Allocate printer peripheral
send stream to printer
Deallocated printer peripheral

Associations:
The DsDdMediaLabelB class has associations with the following classes:
Class: DsDdLabeledMedia hasa -

7.3.17 DsDdOpsInterventionListB Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:Yes
Purpose and Description:
Container of Distribution requests requiring operator intervention. This class is a
RogueWave RWOrdered class.

Attributes:

None

Operations:

None
Associations:
The DsDdOpsInterventionListB class has associations with the following classes:
None

7.3.18 DsDdOpsRequestC Class

Parent Class: DsDdPrivRequest
Public: Yes
Distributed Object:Yes
Purpose and Description:

7-40 305-CD-024-002

Presentation of the distribution request services to the operator client. This client has
access to privileged services which are not available to the user client.

Attributes:

All Attributes inherited from parent class

Operations:

DsDdOpsRequestC - The constructor for the operator client request interfaces to the
request factory (manager) for creation of the server-side request.
Arguments:
Return Type: DCEObjRefT
Privilege: Public

Associations:

The DsDdOpsRequestC class has associations with the following classes:
None

7.3.19 DsDdPackingSlip Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This object serves as the list of items that were successfully transfered for a given
distribution request.

Attributes:

myDesignatedPrinter - Name of the printer designated for printing the packing list for
shipment of removable media.
Data Type: RWCString *
Privilege: Private
Default Value:

7-41 305-CD-024-002

myFileName - Name of the file containing the packing slip. The file will either be printed
for physical shipment, sent electronically with electronic distribution, or handled in some
other manner for future distribution options.
Data Type: FileName
Privilege: Private
Default Value:

myItemList - Reference to the distribution list for this distribution. The distribution list is
read item by item to create a file which contains a list of all the data items distributed.
Data Type: DsDdDistList &
Privilege: Private
Default Value:

myNumVolumes - The number of volumes for physical distribution.
Data Type: EcTInt
Privilege: Private
Default Value:0

Operations:

CreatePackSlip - Creates a file with a list of the data items that were included in this
distribution request.
Arguments:
Return Type: GlStatus
Privilege: Public

DsDdPackingSlip - Constructor for the packing slip instance.
Arguments: ItemList:DsDdDistList&
Return Type: Void
Privilege: Public

Print - Prints the packing slip to the printer designated for packing slips
Arguments:
Return Type: GlStatus
Privilege: Public

~DsDdPackingSlip - Destructor for the packing slip instance. The flle used to hold the
packing slip will be removed when the instance is removed.
Arguments:
Return Type: GIStatus
Privilege: Public

7-42 305-CD-024-002

Associations:

The DsDdPackingSlip class has associations with the following classes:
Class: DsDdRequestProcessor prepares

7.3.20 DsDdPrivRequest Class

Parent Class: DsDdDistRequest
Public: Yes
Distributed Object:No
Purpose and Description:
Specialization of the distribution request to provide access to privileged operations.
Privileged operations are available to operator clients but not user clients.

Attributes:

All Attributes inherited from parent class

Operations:

RestartOutput - Restart the output to media of a distribution request. This service is
provide to support the operator restarting media output in the event of a failure, such as fatal
tape errors during writing of a tape.
Arguments:
Return Type: EcUtStatus
Privilege: Public

SetPriority - Changes the priority of a distribution request, which the operator may need
to do when managing the flow of distribution requests.
Arguments: Priority:DistPriority
Return Type: Void
Privilege: Public

Associations:

The DsDdPrivRequest class has associations with the following classes:
None

7-43 305-CD-024-002

7.3.21 DsDdPullMedia Class

Parent Class: DsDdElectronicMedia
Public: No
Distributed Object:No
Purpose and Description:
Initiates and monitors the distribution of data items to the pull staging area

Attributes:

All Attributes inherited from parent class

Operations:

DsDdPullMedia - Object constructor
Arguments:
Return Type: EcUtStatus
Privilege: Public

GetPackingListFile - Returns the file name from the packing slip object. Its primary use
is to allow inclusion of the packing slip in the notification to the user for some distributions
(e.g. pull).
Arguments:
Return Type: FileName
Privilege: Public

PullFiles - Handles the interface with storage management to move the requested data
items to staging disk which is set aside for pull distribution.
Arguments:
Return Type: EcUtStatus
Privilege: Private
PDL://DsDdPackingSlip::CreatePackSlip() to creaete the list of data
//items in this distribution

//DsStResourceC::Allocate(ResourceType,MediaType,RequestId,
//Priority,Size,ProfileInfo) to allocate storage for the Pull
//request

//while there are items to be distributed
 {
// DataItem = DsDdDistList::GetNextItem() get then next
// data item for distribution

7-44 305-CD-024-002

// Parse Data Item location information to get node and path
// components

// DsStResourceC::DistFrom(DataItemNode,"PULL",DataItemPath) to
// move that data item to the pull storagae area
 }

// DsStResourceC::Deallocate() to free up the resource for other
// uses

PullFmtFiles
Arguments: FileName:FileName
Return Type: Void
Privilege: Private

TransferFiles - Mediates the transfer of data items to the pull storage area. If needed, a tar
or cpio archive file is created.
Arguments: DistFmt: RWCString *
Return Type: Void
Privilege: Public
PDL://FileName = CreateOutputFile(DistFmt) create a tar or cpio file
//containing the data items if needed. If no tar/cpio file has
//been requested, FileNmae will be Null

//if FileName is NULL
 {
// PullFiles()
 }
//else
 {
// PullFmtFiles(FileName)
 }

~DsDdPullMedia - Object destructor
Arguments:
Return Type: EcUtStatus
Privilege: Public

7-45 305-CD-024-002

Associations:

The DsDdPullMedia class has associations with the following classes:
None

7.3.22 DsDdPullProcessor Class

Parent Class: DsDdRequestProcessor
Public: No
Distributed Object:No
Purpose and Description:
Provides concrete instance of the CreateMedia which processes an electronic pull request.

Attributes:

All Attributes inherited from parent class

Operations:

ServiceRequest
Arguments:
Return Type: EcUtStatus
Privilege: Public

Associations:

The DsDdPullProcessor class has associations with the following classes:
None

7.3.23 DsDdPushMedia Class

Parent Class: DsDdElectronicMedia
Public: No
Distributed Object:No
Purpose and Description:
Initiates and monitors the push of DataItems or tar/cpio archive files consisting of
DataItems across the network to the requestor.

7-46 305-CD-024-002

Attributes:

myDirectory - Directory on the remote node where files will be copied by the push
distribution
Data Type: EcTChar*
Privilege: Private
Default Value:

myLogin - login information supplied by the user: an account for the node and the
password for that account.
Data Type: Login
Privilege: Private
Default Value:

myRemoteNode - Indicates the node to which data items or tar/cpio archive files of data
items will be pushed
Data Type: EcTChar*
Privilege: Private
Default Value:

Operations:

DsDdPushMedia - Constructor for the push media object.
Arguments: Node:EcTChar*, Login:Login, Directory:EcTChar*
Return Type: Void
Privilege: Public

PushFiles - Distributes the requested data items without any format change to the node and
directory supplied by the request using the account and password also supplied by the
request.
Arguments:
Return Type: GIStatus
Privilege: Private
PDL://DsDdPackingSlip::CreatePackSlip() create a file with a list of
//the data items which will be pushed to the requestor

//DsStResourceC.Allocate(ResourceType,MediaType,RequestId,Priority,
//Size,ProfileInfo) to allocate a network resource for "pushing"
//the data items to the requestor

//DsStResourceC::DistFrom(DistributionNode,"PUSH",PackSlip) to
//send the packing slip to the requestor

7-47 305-CD-024-002

//while there are files to be distributed
 {
// DataItem = DsDdDistList.GetNextItem() to get the next data
// item for distribution

// Parse data item location to get node and path of the data
// item

// DsStResourceC::DistFrom(DataItemNode,"PUSH",DataItemPath)
// to push the data itme over the network resource
 }

//DsStResourceC::Deallocate() to free the resource for other use

PushFmtFile - Creates a tar or cpio archvie file containing the data items. The tar/cpio
archive file is then pushed to the requestor along with the packing slip (a list of data items
that should be in the tar/cpio archive file).
Arguments: FileName: RWCString *
Return Type: Void
Privilege: Public
PDL://DsDdPackingSlip::CreatePackSlip() create a file with the list of
//data items included in this distribution

//DsStResourceC::Allocate(RequestType,MediaType,RequestId,Priority,
//Size,ProfileInfo) to obtain a network resource for the push

//DsStResourceC::DistFrom(DistributionNode,"PUSH",PackingSlip) to
//transfer the packing slip to the node and directory specified
//by the requestor

//DsStResourceC::DistFrom(DistributionNode,"PUSH",FileName) to
//transfer the tar/cpio archive file which contains the requested
//data items

//DsStResourceC::Deallocate() to free up the resource for other use

//Remove the tar/cpio archive file from local storage

TransferFiles - Concrete specialization of the interface with the RequestProcessor object.
Creates a tar/cpio archive file if needed and sends the data items to the reqeustor.
Arguments: DistFmt: RWCString *
Return Type: Void
Privilege: Public

7-48 305-CD-024-002

PDL://FileName = CreateOutputFile(DistFmt) create a tar/cpio archive
//file if needed based on the distribution format submitted in the
//request

//if FileName is NULL - no tar or cpio archive was created
 {
// PushFiles() to push the files one at a time to the requestor
 }
//else - data items have been put in a tar/cpio archive file
 {
// PushFmtFile(FileName) to push a tar/cpio archive file to
// the requestor
 }

~DsDdPushMedia - Destructor for the object
Arguments:
Return Type: GIStatus
Privilege: Public

Associations:

The DsDdPushMedia class has associations with the following classes:
None

7.3.24 DsDdPushProcessor Class

Parent Class: DsDdRequestProcessor
Public: No
Distributed Object:No
Purpose and Description:
Defines the concrete CreateMedia which performs processing for electronic push
distribution.

Attributes:

All Attributes inherited from parent class

7-49 305-CD-024-002

Operations:

DsDdPushProcessor
Arguments: ElecDestination: RWCString, Password: RWCString
Return Type: Void
Privilege: Public

Associations:

The DsDdPushProcessor class has associations with the following classes:
None

7.3.25 DsDdRequestLIst Class

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsDdRequestLIst class has associations with the following classes:
Class: DsDdRequestManager worksrequestsoffof

7.3.26 DsDdRequestList Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:No
Persistent Class: True
Purpose and Description:
Set of pointers to all distribution requests.

7-50 305-CD-024-002

Attributes:

None

Operations:

Sort - Sort the requests by a particular attribute. Level 4 requirements exist to display
requests by request id, state, or request type (electronic or physical media).
Arguments: Key:SortTypes
Return Type: DsDdRequestList
Privilege: Public

Associations:

The DsDdRequestList class has associations with the following classes:
DsDdOpsInterventionListB (Aggregation)

7.3.27 DsDdRequestManager Class

Parent Class: Not Applicable
Public: Yes
Distributed Object:Yes
Purpose and Description:
Base class for implementation of the OODCE factory model. Derived classes manufacture
server-side distribution requests and provide client-side presentations of those requests.

Attributes:

None

Operations:

CreateDistRequest - Creates a new distribution request. Two definitions of this service
exists; this definition creates a distribution request for all requests except for electronic
push requests, which require additional arguments.
Arguments: List: DistList, Media: RWCString *, User: MsUsProfile, Format:
RWCString *
Return Type: DCEObjRefT
Privilege: Public

7-51 305-CD-024-002

PDL:// construct server-side DsDdDistFile object
// construct server-side DsDdDistList object
// call DsDdDistList.Insert to place file object in the list

// construct DsDdDistRequestS
// call OODCE's RegisterObject to make the distribution request object visible as a
distributed object
// call and return DCE's GetObjectReference to provide the distributed object reference to
the client

CreateDistRequest -
Arguments: List: DistList, Media: RWCString *, User: MsUsProfile, ElecDestntn:
RWCString *, Password: RWCString *, Format: RWCString *

CreateDistRequest - Creates a new distribution request. Two definitions of this service
exists; this definition creates a distribution request for all requests except for electronic
push requests, which require additional arguments.
Arguments: List: DistList, Media: RWCString *, User: MsUsProfile, Format:
RWCString *
Return Type: DCEObjRefT
Privilege: Public
PDL:// construct server-side DsDdDistFile object
// construct server-side DsDdDistList object
// call DsDdDistList.Insert to place file object in the list

// construct DsDdDistRequestS
// call OODCE's RegisterObject to make the distribution request object visible as a
distributed object
// call and return DCE's GetObjectReference to provide the distributed object reference to
the client

CreateDistRequest -
Arguments: List: DistList, Media: RWCString *, User: MsUsProfile, ElecDestntn:
RWCString *, Password: RWCString *, Format: RWCString *

CreateDistSubRequestB - Create Subrequests if a distribution request is too large.
Arguments: list: DsDdDistList, media: RWCString, user: MsUsUserProfile, format:
RWCString
Return Type: DCEObjRefT
Privilege: Public

CreateDistSubRequestB - Overload member for electronic distribution that creates
subrequests if a distribution request is too large.

7-52 305-CD-024-002

Arguments: list: DsDdDistList, media: RWCString, user: MsUsUserProfile, dest:
RWCString, pword: RWCString, format: RWCString
Return Type: DCEObjRefT
Privilege: Public

DeleteDistRequest - Service, in the OODCE factory model, to delete a distribution request
which was created via the CreateDistRequest service.
Arguments: id: uuid_t
Return Type: Void
Privilege: Public

DeleteDistSubRequestB - Delete a subrequest.
Arguments: id: uuid_t
Return Type: EcUtStatus
Privilege: Public
PDL:delete uuid_t

InventoryRequests - Provides an inventory - in the form of a list of distributed object
references - of all distribution requests.
Arguments:
Return Type: DsDdRequestList
Privilege: Public

Associations:

The DsDdRequestManager class has associations with the following classes:
Class: DsDdDistRequest createsmanages
Class: DsDdDistList receives
Class: DsDdRequestProcessor submitsrequeststo
Class: DsDdRequestLIst worksrequestsoffof

7.3.28 DsDdRequestManagerC Class

Parent Class: DsDdRequestManager
Public: Yes
Distributed Object:Yes
Purpose and Description:
Client-side presentation of the request factory. The client's applications code will be
unaware of the existence of this object, because this object will be created and managed
from within the client instance of the distribution request. While this may seem to be a

7-53 305-CD-024-002

chicken and egg paradox - the distribution request creates the factory, which creates the
distribution request - is isn't, because the logic is actually: 1- the client-side distribution
request is created, which 2- creates the factory, which 3- is used to create a server-side
instance of the distribution request, 4- whose OODCE distributed reference is returned,
to the client caller, as the client-side distribution request

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsDdRequestManagerC class has associations with the following classes:
None

7.3.29 DsDdRequestManagerS Class

Parent Class: DsDdRequestManager
Public: No
Distributed Object:Yes
Purpose and Description:
Server-side presentation of the Distribution Request Factory. Manufactures Distribution
Requests, the distributed reference for which is returned to the client.

Attributes:

myRequestList - Pointer to list of all current distribution requests.
Data Type: DsDdRequestList
Privilege: Private
Default Value:

mySubrequestList - List that contains the requests to pbe partitioned.
Data Type: *DsDdOpsInterventionListB
Privilege: Private
Default Value:

7-54 305-CD-024-002

Operations:

All Operations inherited from parent class

Associations:

The DsDdRequestManagerS class has associations with the following classes:
Class: DsDdDistSubRequestB creates
Class: DsDdDistRequestS manages - The server-side of the request manager creates and
manages the server-side instantiations of distribution requests.

7.3.30 DsDdRequestProcessor Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This base class provides to the distribution request a specialized class with the correct
ServiceRequest operation to perform the processing for the media specified in the
distribution request. This class and its specializations are a hybrid of the Template and
Strategy patterns described in the book "Design Patterns" by Gamma et al.

Attributes:

myRequest - The request processor points back to the distribution request so it can access
request attributes. The request process will be designated as a friend of the distribution
request class.
Data Type: DsDdDistRequestS
Privilege: Private
Default Value:

Operations:

CreateMedia - Creates the instances of the objects needed to transfer the data items to the
requested media in the requested format.
Arguments:
Return Type: Void
Privilege: Private
This is an abstract operation

7-55 305-CD-024-002

CreateNotificationMsg
Arguments:
Return Type: RWCString
Privilege: Private

DsDdRequestProcessor - Two definitions of the constructor exist; this definition handles
all requests except those for electronic push. Based upon the media type, this constructor
will create the appropriate specialized (DsDd..Processor) object.
Arguments: Media:MediaType, Request:DsDdDistRequestS
Return Type: Void
Privilege: Public

DsDdRequestProcessor - This definition contains the arguments needed for construction
of a DsDdPushProcessor.
Arguments: Media: MediaType, Request: DsDdDistRequestS, ElecDestination:
RWCString, Password: RWCString
Return Type: Void
Privilege: Public

DsDdRequestProcessor - Two definitions of the constructor exist; this definition handles
all requests except those for electronic push. Based upon the media type, this constructor
will create the appropriate specialized (DsDd..Processor) object.
Arguments: Media:MediaType, Request:DsDdDistRequestS
Return Type: Void
Privilege: Public

DsDdRequestProcessor - This definition contains the arguments needed for construction
of a DsDdPushProcessor.
Arguments: Media: MediaType, Request: DsDdDistRequestS, ElecDestination:
RWCString, Password: RWCString
Return Type: Void
Privilege: Public

ServiceRequest - Creates the auxillary objects needed to complete the request and
interfaces with external logging and notification services. This service is inhereted by all
of the subclasses and should not be overridden.
Arguments:
Return Type: GlStatus
Privilege: Public
PDL://
EcUtLogger::Log(EventNumber,EventType,Disposition,Time,Message,[parameters
// for message]requestor,ReceiptTime,MediaType,RequestSize,Destination) to log
// the receipt of the message

7-56 305-CD-024-002

//CreateMedia() create the objects needed for the transfer of the data items
// to the requested media

//myMedia->TransferFiles(DistFmt:char*) delegate the transfer of files to the
//created media object

//EcUtLogger::Log(EventNumber,EventType,Disposition,Time,Message,[parameters
//for message]requestor,CompletionTime,NumberofVolumes,NumberofItems,
//TotalSize,Destination) to log the completion of the request

//CreateNotificationMsg() creates a message to the requestor with the needed
//information

//GlNotification::SenndToUser(Message) to notify the requestor of the
//completion of the request

Associations:

The DsDdRequestProcessor class has associations with the following classes:
Class: DsDdMedia allocates
Class: DsDdDistRequest isexecutedby
Class: MsUtLogger logseventsvia
Class: EcNotification notifiesusersvia
Class: DsDdPackingSlip prepares
Class: DsDdRequestManager submitsrequeststo

7.3.31 DsDdShippingLabelB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Persistent Class:
Purpose and Description:
The shipping label is affixed to the packaged hard media and contains the address to which
the hard media is to be sent.

7-57 305-CD-024-002

Attributes:

myFileLocation - Location of the files distributed on hard media.
Data Type: RWCString *
Privilege: Private
Default Value:

myFormsSpecification - Specification of the special printer characteristics which need to
be set when printing the labels.
Data Type: RWCString
Privilege: Private
Default Value:
This is a Class Attribute.

myPrinter - The printer on which shipping labels are printed. Because labels are printed
on special forms, a printer will be dedicated for printing only shipping labels.
Data Type: RWCString *
Privilege: Private
Default Value:
This is a Class Attribute.

myUserInfo - User information - such as address and privileges - which is provided by
MSS user profile.
Data Type: *MsUsUserProfile
Privilege: Private
Default Value:

Operations:

DsDdShippingLabel
Arguments: UserInfo:MsUsProfile &
Return Type: Void
Privilege: Public
This is a Class Operation.

Print - Print the shipping label on the dedicated printer.
Arguments:
Return Type: EcUtStatus
Privilege: Public
PDL:construct stream to send to printer
Allocate printer
Send stream to printer device
Deallocate printer

7-58 305-CD-024-002

~DsDdShippingLabel
Arguments:
Return Type: Void
Privilege: Public
This is a Class Operation.

Associations:

The DsDdShippingLabelB class has associations with the following classes:
Class: DsDdLabeledMedia hasa -

7.3.32 DsDdTapeLabelB Class

Parent Class: DsDdMediaLabelB
Public: No
Distributed Object:No
Purpose and Description:
Label to be affixed to magnetic tape volumes. Tapes can be written at selectable density,
which specializes this class from its parent, DsDdMediaLabelB.

Attributes:

myDensity - The density of tape media used for distribution.
Data Type: EcTInt
Privilege: Private
Default Value:

Operations:

All Operations inherited from parent class
Associations:
The DsDdTapeLabelB class has associations with the following classes:
None

7.3.33 DsDdTapeMedia Class

Parent Class: DsDdLabeledMedia
Public: No

7-59 305-CD-024-002

Distributed Object:No
Purpose and Description:
Handles the initiation and monitor of the transfer of data items to magnetic tape as part of
a tar or cpio archive file

Attributes:

myDensity - Requested density for the write to tape. Values are high, medium, and low
Data Type: RWCString *
Privilege: Private
Default Value:"low"

Operations:

DsDdTapeMedia - Constructor for an instance of the Tape Media object.
Arguments: Density: RWCString *
Return Type: Void
Privilege: Public

PrintMediaLabel - For release B implementation. Will handle the differences in label
contents and formats between tape and cd
Arguments:
Return Type: GIStatus
Privilege: Public

~DsDdTapeMedia - Destructor for an instance of the Tape Media object.
Arguments:
Return Type: GIStatus
Privilege: Public

Associations:

The DsDdTapeMedia class has associations with the following classes:
None

7.3.34 DsDdTapeProcessor Class

Parent Class: DsDdRequestProcessor
Public: No

7-60 305-CD-024-002

Distributed Object:No
Purpose and Description:
Defines the concrete CreateMedia which performs the processing for tape media.

Attributes:

myDestinationAddress
Data Type: RWCString
Privilege: Private
Default Value:

myPassword
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

ServiceRequest
Arguments:
Return Type: EcUtStatus
Privilege: Public

Associations:

The DsDdTapeProcessor class has associations with the following classes:
None

7.3.35 DsSrCost Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
Estimated or actual cost data returned to SDSRV. This class is defined by SDSRV and its
contents are described in the SDSRV design section.

7-61 305-CD-024-002

Attributes:

None

Operations:

None

Associations:

The DsSrCost class has associations with the following classes:
Class: DsDdDistList calculates

7.3.36 DsStResourceConfig Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
Configuration class provided by STMGT which defines error thresholds for the various
device types. These thresholds are the number of errors which can be encountered when
processing a request before failing the request on that device.

Attributes:

None

Operations:

None

Associations:

The DsStResourceConfig class has associations with the following classes:
Class: DsDdMedia provideserrorthresholdsto -

7-62 305-CD-024-002

7.3.37 DsStSchedulingConfig Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
STMGT-provided configuration file which contains, among other items, the capacities for
a single volume (e.g., one 8mm tape) of the various physical media. Different capacities
will be defined for the different densities which a device type supports.

Attributes:

None

Operations:

None

Associations:

The DsStSchedulingConfig class has associations with the following classes:
Class: DsDdLabeledMedia getsCapacitiesfrom

7.3.38 DsStStagingDisk Class

Parent Class: Not Applicable

Attributes:

None

Operations:

None

7-63 305-CD-024-002

Associations:

The DsStStagingDisk class has associations with the following classes:
Class: DsDdDistFile residesupon - Each file to be distributed will be retrieved (via
STMGT) to staging disk.

7.3.39 DsUzArchiveCostB Class

Parent Class: DsUzResourceCost
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for Archive Resources. Given a size in
megabytes, it will retain a utilization cost, in ???. These costs may be passed to the BAAC
component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

SetCost
Arguments: size: EcTFloat
Return Type: const *EcTFloat
Privilege: Public

ctor
Arguments: size: EcTFloat=0
Return Type: Void
Privilege: Public

Associations:
The DsUzArchiveCostB class has associations with the following classes:
None

7-64 305-CD-024-002

7.3.40 DsUzCPUCost Class

Parent Class: DsUzResourceCost
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for CPU Resources. Given a size in megabytes,
it will retain a utilization cost, in mflops. These costs may be passed to the BAAC
component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

SetCost
Arguments: size: EcTFloat
Return Type: const *EcTFloat
Privilege: Public

ctor
Arguments: size: EcTFloat=0
Return Type: Void
Privilege: Public

Associations:

The DsUzCPUCost class has associations with the following classes:
None

7.3.41 DsUzCostB Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This class represents the collection of resource usage information which is provided to
determine the cost of executring a given service.

7-65 305-CD-024-002

Attributes:

myNumResources - The number of resource cost utilizations within this cost.
Data Type: EcTInt
Privilege: Private
Default Value:0

ourUtilizationTable - Reference to the DsUzUtilizationTable used to determine resources
used.
Data Type: const *DsUzUtilizationTable
Privilege: Private
Default Value:<null>

Operations:

AddResource - Add a resource to the cuttent Cost object.
Arguments: *DsUzResourceCost
Return Type: void
Privilege: Public
PDL:SET match = this->FindResource (resource->GetName())
IF match <> null
SET match = match + resource
ELSE
copy resource object and add to resource set
increment numResources
ENDIF

FindResource - Find a resource object with a type matching given string.
Arguments: type: *EcTString
Return Type: const *DsUzResourceCost
Privilege: Public
PDL:SET retval = null
LOOP (over all resources, r, while retval==null)
IF r->GetName() == r

SET retval = r
ENDIF
ENDLOOP
return retval

FirstResource - Return pointer to first DsUzResourceCostB object.
Arguments:
Return Type: const *DsUzResourceCost

7-66 305-CD-024-002

Privilege: Public
PDL:return pointer to first resource in set

NextResource - Return pointer to next DsUzResourceCostB object.
Arguments:
Return Type: const *DsUzResouceCost
Privilege: Public
PDL:return pointer to next resource

NumResources - Convenience function returning the number of resource types in the cost
object.
Arguments:
Return Type: EcTInt
Privilege: Public
PDL:return numResources

ctor
Arguments: app: RWCString, service: RWCString, size: EcTFloat

dtor
Arguments:

operator+ - Overload addition operator, allowing Cost objects to be combined.
Arguments: costobj: *DsUzCost
Return Type: *DsUzCost
Privilege: Public
PDL:costobj->FirstResource()
LOOP (over all resources in costobj)
this->AddResource (costobj)
ENDLOOP

Associations:
The DsUzCostB class has associations with the following classes:
Class: DsUzUtilizationTable getsresourcesfrom

7.3.42 DsUzDi Class

Parent Class: DsUzResourceCost

7-67 305-CD-024-002

Attributes:

All Attributes inherited from parent class

Operations:

SetCost
Arguments: EcTFloat: size
Return Type: const *EcTFloat
Privilege: Public

ctor
Arguments: EcTFloat: size=0
Return Type: Void
Privilege: Public

Associations:

The DsUzDi class has associations with the following classes:
None

7.3.43 DsUzFixedCost Class

Parent Class: DsUzResourceCost
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for Fixed Personnel Resources. Given a size in
megabytes, it will retain a utilization cost, in person-hours. These costs may be passed to
the BAAC component of MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

SetCost
Arguments: size: EcTFloat

7-68 305-CD-024-002

Return Type: const *EcTFloat
Privilege: Public

ctor
Arguments: size: EcTFloat=0
Return Type: Void
Privilege: Public

Associations:

The DsUzFixedCost class has associations with the following classes:
None

7.3.44 DsUzIOCost Class

Parent Class: DsUzResourceCost
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for IO Resources. Given a size in megabytes, it
will retain a utilization cost, in ??? These costs may be passed to the BAAC component of
MSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

SetCost
Arguments: size: EcTFloat
Return Type: const *EcTFloat
Privilege: Public

ctor
Arguments: size: EcTFloat=0
Return Type: Void
Privilege: Public

7-69 305-CD-024-002

Associations:

The DsUzIOCost class has associations with the following classes:
None

7.3.45 DsUzMediaCost Class

Parent Class: DsUzResourceCost
Public: No
Distributed Object:No
Purpose and Description:
This class represents the Utilization Costs for hard media Resources. Given a size in
megabytes, it will retain a utilization cost, in ??? These costs may be passed to the BAAC
component of NMSS for transformation into pricing data.

Attributes:

All Attributes inherited from parent class

Operations:

SetCost
Arguments: size: EcTFloat
Return Type: const *EcTFloat
Privilege: Public

ctor
Arguments: size: EcTFloat=0
Return Type: Void
Privilege: Public

Associations:

The DsUzMediaCost class has associations with the following classes:
None

7-70 305-CD-024-002

7.3.46 DsUzResourceCost Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This abstract base class provides the interface for all resource cost utilizations.

Attributes:

myUtilization - Quantity of resource units used. This number is in the units specified by
the ourUnits attributes.
Data Type: EcTFloat
Privilege: Private
Default Value:0

ourName - Name of resource cost represented.
Data Type: RWCString
Privilege: Private
Default Value:

ourUnits - Units of measure for resource costs.
Data Type: RWCString
Privilege: Private
Default Value:

ourUtilizationFactor - Factor applied to size used to calculate the actual utilization
(myUtilization).
Data Type: EcTFloat
Privilege: Private
Default Value:

Operations:

GetName - Convenience function for accessing resource type name.
Arguments:
Return Type: const *RWCString
Privilege: Public
PDL:return *myName

GetUnits - Convenience funtion for accessing resource cost units.
Arguments:

7-71 305-CD-024-002

Return Type: const *RWCString
Privilege: Public
PDL:return *myUnits

GetUtilization - Convenience function for accessing resource cost utilization.
Arguments:
Return Type: const *EcTFloat
Privilege: Public
PDL:return *myUtilization

SetCost
Arguments: EcTFloat: size=0

ctor
Arguments: EcTFloat: size=0

dtor
Arguments:

operator+ - Overload addition operator, used to combine the utilizations of resources of
the same type.
Arguments: resourceCost: *DsUzResourceCostB
Return Type: *DsUzResourceCost
Privilege: Public
PDL:IF myName==resourceCost->GetName()
SET myUtilization = myUtilization + resourceCost-
>GetUtilization()
ENDIF

operator==
Arguments: RWCString
Return Type: EcTBoolean
Privilege: Public

Associations:

The DsUzResourceCost class has associations with the following classes:
Class: DsDdMedia getsIOcostsfrom
Class: DsDdLabeledMedia providesshippingandhandlingandmediacoststo
DsUzCostB (Aggregation)

7-72 305-CD-024-002

7.3.47 DsUzUtilizationTable Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
This class represents the mapping of all costed services and the resources that they use.
Most likely implemented as a wrapper to a database. This will be comprised of tuples
containing (app, service, resource).

Attributes:

None

Operations:

GetResources - Member function to determine the resources used for a given app-service
pair.
Arguments: RWCString: app, RWCString: service
Return Type: RWStringList
Privilege: Public

ctor
Arguments:

dtor
Arguments:

Associations:

The DsUzUtilizationTable class has associations with the following classes:
Class: DsUzCostB getsresourcesfrom

7.3.48 EcNotification Class

Parent Class: Not Applicable
Public: No
Distributed Object:No

7-73 305-CD-024-002

Purpose and Description:
Common software-provided class which supports sending notifications to users. If the user
is still logged on an interactive notification will be sent, else e-mail notification is sent.

Attributes:

None

Operations:

None

Associations:

The EcNotification class has associations with the following classes:
Class: DsDdRequestProcessor notifiesusersvia

7.3.49 MsUtLogger Class

Parent Class: Not Applicable
Public: No
Distributed Object:No
Purpose and Description:
MSS-provided class which supports message logging.

Attributes:

None

Operations:

None

Associations:

The MsUtLogger class has associations with the following classes:
Class: DsDdRequestProcessor logseventsvia

7-74 305-CD-024-002

7.4 CSCI Dynamic Model
This section describes several scenarios for the Data Distribution CSCI. A scenario delineates the
steps that occur in a particular execution through the system.

Since all actions are initiated via a distribution request which may be a distributed object, the first
scenario (Distributed Creation of a New Distribution Request) presents both the client- and server-
side events involved in the creation of a distribution request distributed object. The sequence of
events depicted in this scenario are unvarying for all additional scenarios involving the creation of
a new request. Since the client/server specializations of the request perform logically as a single
(albeit distributed) object, in subsequent scenarios the client-/server-side representation is omitted,
and the distribution request distributed object is treated as a single object.

The scenarios presented in this section are

• Distributed Creation of a New Distribution Request

• Electronic Pull of Data

• Electronic Push of Data

• Physical Distribution to Tape

• Abort of an Active Request

• Tape Fault

• Estimation

• 3480 Tape Distribution and Media Labeling

• Detection of a Large Volume Data Distribution Request

• Operator Intervention with a Large Volume Distribution Request

To keep the event traces focused and relatively uncluttered, each event trace focuses on a particular
aspect of the DDIST design.

7.4.1 Distributed Creation of a New Distribution Request

Summary

Figure 7.4.1-1 depicts the creation of a new distribution request. The client
(DsSrWorkingCollection) creates one or more objects of class DsDdDistFile, inserts them into a
DsDdDistList, and invokes the Distribute service. The Distribute service will create a new
distributed object DsDdDistRequest, which is created on the server via the OODCE factory model
implemented in DsDdRequestManager. The distributed creation of DsDdDistRequest also results
in the deobjectization of the client DsDdDistFile and DsDdDistList and their reconstruction on the
server side, which is necessary because OODCE does not provide a deep copy of referenced
objects.

In the remaining event traces the client/server distinction of classes and events presented in this
diagram will be depicted at a higher level which does not distinguish between client and server
events or classes; for instance, DsDdDistRequest will be shown instead of showing both
DsDdDistRequestC and DsDdDistRequestS. Additionally DsDdRequestManager, which
implements the OODCE factory model and is transparent to the client and ancillary to the main
event flow, will not be shown on subsequent traces.

7-75 305-CD-024-002

D
sS

rW
or

ki
ng

C
ol

le
ct

io
n

D
sD

dD
is

tL
is

t
D

sD
dD

is
tF

ile
D

sD
dD

is
tR

eq
ue

st
C

D
sD

dR
eq

ue
st

M
an

ag
er

C
D

sD
dR

eq
ue

st
M

an
ag

er
S

D
sD

dD
is

tF
ile

D
sD

dD
is

tL
is

t
D

sD
dD

is
tR

eq
ue

st
S

<
--

-
C

lie
nt

 P
ro

ce
ss

in
g

--
->

<

--
-

S
er

ve
r

P
ro

ce
ss

in
g

--
->

| | | | |

D
eo

bj
ec

tiz
e

ct
or

ct
or

in
se

rt

ct
or

D
eo

bj
ec

tiz
e

ct
or

D
is

tr
ib

ut
e

In
se

rt

ct
or

ct
or

re
tu

rn
(D

C
E

O
bj

R
ef

T
)

re
tu

rn
(

D
C

E
O

bj
R

ef
T

)
as

yn
ch

ro
no

us
 r

et
ur

n

S
ub

m
it

re
tu

rn
(D

C
E

O
B

JR
ef

T
)

G
et

O
bj

ec
tR

ef
er

en
ce

C
re

at
eD

is
tR

eq
ue

st
C

re
at

eD
is

tR
eq

ue
st

ct
or

F
ig

u
re

 7
.4

.1
-1

.
C

re
at

in
g

 a
 D

is
tr

ib
u

ti
o

n
 R

eq
u

es
t

7-76 305-CD-024-002

Assumptions

• The user desktop has an active data server session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7.4.2 Electronic Pull of Data

Summary

Figure 7.4.2-1 depicts the distribution of data via electronic pull. The scenario begins with
DsSrWorkingCollection invoking the Distribute service, which results in the creation and
asynchronous return of a DsDdDistRequest, followed by the submission of that request. The
request is added to the DsDdRequestList (a list of all current requests), and the media type (in this
case electronic pull) results in the construction of a DsDdPullProcessor object and the invocation
of its ServiceRequest operation. Concurrently with this, DsSrWorkingCollection invokes the
WaitForCompletion service, which is possible because of the asynchronous return of the
DsDdDistRequest via the Distribute service, and may be desired if the initiator
(DsSrWorkingCollection in this instance) wishes to know when the request completes.

In processing the request TransferFiles is next invoked, which results in invocation of Allocate to
obtain space in the user pull area. Additionally, CreatePackingSlip is called to create the list of
items distributed with associated information about the distribution, which is later used by
GetPackingListFile to incorporate the information into the EcNotification mail message sent to the
user. GetNextItem and DistFrom are called iteratively to respectively get each item to be
distributed and transfer it to the user pull area. Upon completion the mail message is sent, the
request is removed from the request list, and the WaitForCompletion returns.

Assumptions

• The user desktop has an active data server session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7.4.3 Electronic Push of Data

Summary

Figure 7.4.3-1 depicts the distribution of data via electronic push. The scenario has only a few
differences from that for Electronic Pull of Data. With Electronic Push the destination resource for
DistFrom is the network vice staging disk for Electronic Pull. Also, in Electronic Push
GetPackingListFile is not used because the information from CreatePackingSlip is transferred as a
file to the push destination vice being included in the mail message to the requestor.

Assumptions

• The user desktop has an active data server session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-77 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dP
ul

lP
ro

ce
ss

or
D

sD
dP

ul
lM

ed
ia

D
sS

tR
es

ou
rc

e
D

sD
dP

ac
ki

ng
S

lip
E

cN
ot

ifi
ca

tio
n

D
sS

rW
or

ki
ng

C
ol

le
ct

io
n

D
sD

dD
is

tL
is

t
D

sD
dR

eq
ue

st
Li

st

D
is

tF
ro

m

D
ea

llo
ca

te

G
et

P
ac

ki
ng

Li
st

F
ile

T
ra

ns
fe

rF
ile

s

D
is

tr
ib

ut
e

S
er

vi
ce

R
eq

ue
st

S
ub

m
it

as
yn

ch
ro

no
us

re
tu

rn

G
et

N
ex

tIt
em

re
tu

rn W
ai

tF
or

C
om

pl
et

io
n

In
se

rt

C
re

at
eP

ac
ki

ng
S

lip

A
llo

ca
te

re
tu

rn
S

et
S

ta
te

S
en

dT
oU

se
r

F
ig

u
re

 7
.4

.2
-1

.
E

le
ct

ro
n

ic
 P

u
ll

o
f

D
at

a

7-78 305-CD-024-002

D
sD

dD
D

is
tR

eq
ue

st
D

sD
dP

us
hP

ro
ce

ss
or

E
cN

ot
ifi

ca
tio

n
D

sD
dP

us
hM

ed
ia

D
sS

tR
es

ou
rc

eC
D

sD
dP

ac
ki

ng
S

lip
D

sS
rW

or
ki

ng
C

ol
le

ct
io

n
D

sD
dD

is
tL

is
t

D
sD

dR
eq

ue
st

LI
st

T
ra

ns
fe

rF
ile

s

A
llo

ca
te

C
re

at
eP

ac
ki

ng
S

lip

D
is

tF
ro

m

D
is

tF
ro

m

D
ea

llo
ca

te

S
en

dT
oU

se
r

S
ub

m
it

as
yn

ch
ro

no
us

re
tu

rn

re
tu

rn

In
se

rt

S
er

vi
ce

R
eq

ue
st

W
ai

tF
or

C
om

pl
et

io
n

G
et

N
ex

tIt
em

S
et

S
ta

te
re

tu
rn

D
is

tr
ib

ut
e

F
ig

u
re

 7
.4

.3
-1

.
E

le
ct

ro
n

ic
 P

u
sh

 o
f

D
at

a

7-79 305-CD-024-002

7.4.4 Physical Distribution to Tape

Summary

Figure 7.4.4-1 depicts the distribution of data via tape. The scenario is the same as that for
Electronic Pull up to the Allocate of the resource. Once the resource is allocated, GetResourceID
is used to determine the tape drive id, which is used in a Posix system call to write the distribution
files in the requested format (tar or cpio) to the tape. The number of volumes written is determined
and a packing slip generated, after which the user is notified of completion of the request. Note
that for tape (and other physical media) the request is not removed from the request list; this
removal occurs only after operations personnel indicate that the distribution product has been
shipped to the requester.

Assumptions

• The user desktop has an active data server session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7.4.5 User Abort of a Request Waiting for a Device

Summary

Figure 7.4.5-1 depicts a user-initiated abort of a request which is waiting for a device to become
available. The scenario begins with DsSrWorkingCollection invoking the Distribute service,
which results in the creation and asynchronous return of a DsDdDistRequest, followed by the
submission of that request. The request is added to the DsDdRequestList (a list of all current
requests), and the distribution media type (in this example CD) results in the construction of a
DsDdCDProcessor object and the invocation of its ServiceRequest operation. TransferFiles is then
requested, followed by Allocate, which requests that a CD device be made available. In this
example no device is currently available, so the Allocate will block until a device becomes
available. While the device availability is pending DsSrWorkingCollection issues an Abort of the
request. Because the thread which called Allocate is blocked, the Abort will be serviced by a
separate thread, which will request DsStRequestManager to Abort the allocation. When the abort
occurs the blocked Allocate thread returns, and SendToUser is called to notify the requestor of the
distribution that the abort has occurred. Additionally, the request is removed from
DsDdRequestList.

Assumptions

• The user desktop has an active data server session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-80 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dT
ap

eP
ro

ce
ss

or
D

sS
tR

es
ou

rc
e

D
sD

dP
ac

ki
ng

S
lip

D
sD

dT
ap

eM
ed

ia
C

om
m

an
dS

he
ll

E
cN

ot
ifi

ca
tio

n
D

sS
rW

or
ki

ng
C

ol
le

ct
io

n
D

sD
dD

is
tL

is
t

D
sD

dR
eq

ue
st

Li
st

S
et

S
ta

te

P
rin

t

S
er

vi
ce

R
eq

ue
st

A
llo

ca
te

G
et

R
es

ou
rc

eI
d

S
ys

te
m

C
re

at
eP

ac
kS

lip

D
ea

llo
ca

te

D
is

tr
ib

ut
e

S
ub

m
it

as
yn

ch
ro

no
us

re
tu

rn
re

tu
rn

T
ra

ns
fe

rF
ile

s

In
se

rt

S
en

dT
oU

se
r

S
et

N
um

V
ol

um
es

W
ai

tF
or

C
om

pl
et

io
n

re
tu

rn

G
et

N
ex

tIt
em

F
ig

u
re

 7
.4

.4
-1

.
D

is
tr

ib
u

ti
o

n
 v

ia
 T

ap
e

7-81 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dR
eq

ue
st

Li
st

E
cN

ot
ifi

ca
tio

n
D

sS
rW

or
ki

ng
C

ol
le

ct
io

n
D

sD
dD

is
tL

is
t

D
sS

tR
es

ou
rc

e
D

sD
dC

D
P

ro
ce

ss
or

D
sS

tR
eq

ue
st

M
an

ag
er

D
sD

dC
D

M
ed

iia

D
is

tr
ib

ut
e

S
ub

m
it

as
yn

ch
ro

no
us

re
tu

rn

re
tu

rn
(

D
sD

dD
is

tR
eq

ue
st

)

S
er

vi
ce

R
eq

ue
st

A
bo

rt

In
se

rt

re
tu

rn

A
bo

rt

S
en

dT
oU

se
r

re
tu

rn
re

tu
rn

T
ra

ns
fe

rF
ile

s

A
llo

ca
te

re
tu

rn

re
tu

rn

R
em

ov
e

re
tu

rn

F
ig

u
re

 7
.4

.5
-1

.
A

b
o

rt
 a

 R
eq

u
es

t

7-82 305-CD-024-002

7.4.6 Tape Fault

Summary

Figure 7.4.6-1 depicts the handling of a recoverable tape fault, such as errors writing to a tape
which preclude further use of that tape, but not of the drive. The scenario is the same as Physical
Distribution to Tape, except that the tape fault is signaled via an exception, and an exception
handler responds to the fault by restarting the operation with a new tape.

Assumptions

• The user desktop has an active data server session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7.4.7 Estimation

Summary

Figure 7.4.7-1 depicts the processing involved in estimating the cost of a distribution request. The
cost estimation is performed by the appropriate media specialization interacting with MSS-
provided objects. Cost data (including time estimations) are retrieved from the various cost tables,
and placed in the DsSrCost object for return to SDSRV.

Assumptions

A valid distribution file list (DsDdDistList) and estimation request have been submitted by
SDSRV.

7.4.8 3480 Distribution and Media Labeling

Summary

Figure 7.4.8-1 depicts the dynamic activity associated with data distribution via 3480 tape media.
Included in this scenario is the generation of media and shipping labels. The 3480 tape distribution
is handled exactly like any other type of media distribution. Specialized classes are created to
process the tape distribution request, DsDdTapeProcessor; allocate the tape media,
DsDdTapeMedia; and generate the label that is unique to tape distribution, DsDdTapeLabelB.
After the resource is allocated, the tape label is printed. If the request is for a distribution that
requires multiple tapes, this portion of the scenario is repeated until all required tapes are complete.
A shipping label (DsDdShippingLabelB) and packing slip (DsDdPackingSlip) can then be
generated. At this time, all costs associated with the distribution can be calculated and reported to
SDSRV via the DsSrCost object.

Assumptions

• SDSRV submits a valid distribution file list (DsDdDistList) via the Distribute service.

7-83 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dT
ap

eP
ro

ce
ss

or
D

sS
tR

es
ou

rc
e

D
sD

dP
ac

ki
ng

S
lip

D
sD

dT
ap

eM
ed

ia
C

om
m

an
dS

he
ll

E
cN

ot
ifi

ca
tio

n
D

sS
rW

or
ki

ng
C

ol
le

ct
io

n
D

sD
dD

is
tL

is
t

D
sD

dR
eq

ue
st

LI
st

T
ra

ns
fe

rF
ile

s

A
llo

ca
te

G
et

R
es

ou
rc

eI
d

S
ys

te
m

E
xc

ep
tio

nH
an

dl
er

S
et

S
ta

te

P
rin

t

C
re

at
eP

ac
kS

lip

S
et

N
um

V
ol

um
es

S
ys

te
m

D
ea

llo
ca

te

D
is

tr
ib

ut
e

S
er

vi
ce

R
eq

ue
st

S
ub

m
it

as
yn

ch
ro

no
us

re
tu

rn

In
se

rt
re

tu
rn

W
ai

tF
or

C
om

pl
et

e

re
tu

rn

S
en

dT
oU

se
r

F
ig

u
re

 7
.4

.6
-1

.
H

an
d

lin
g

 a
 T

ap
e

F
au

lt

7-84 305-CD-024-002

D
sS

rW
or

ki
ng

C
ol

le
ct

io
n

D
sD

dD
is

tL
is

t
D

sD
dT

ap
eM

ed
ia

D
sS

tS
ta

gi
ng

D
is

k
D

sD
dC

P
U

C
os

tT
ab

le
D

sS
tIO

C
os

tT
ab

le
D

sS
tM

ed
ia

C
os

tT
ab

le
D

sD
dS

hi
pC

os
tT

ab
le

D
sS

rC
os

t

E
st

im
at

eC
os

t
E

st
im

at
eC

os
t

C
al

cu
la

te
C

os
t E

st
im

at
eC

os
t

C
al

cu
la

te
C

os
t C

al
cu

la
te

C
os

t

C
al

cu
la

te
C

os
t

D
sS

rC
os

t

F
ig

u
re

 7
.4

.7
-1

.
D

sD
d

E
st

im
at

e
D

yn
am

ic
 M

o
d

el

7-85 305-CD-024-002

7.4.9 Detection of a Large Volume Data Distribution Request

Summary

The event trace provided in Figure 7.4.9-1, depicts the dynamic activity associated with the
processing of a large volume data distribution request. This scenario begins like the others in that
a distribution list is received by the DsDdRequestManager. In turn a DsDdDistRequestS is created
and added to the DsDdRequestList. The functionality that is added in light of this scenario is that
of determining the size of the request before processing it any further. Cost estimation procedures
follow with the cost estimate provided to the MSS billing and accounting service. Once the size
of the request is determined to be inordinately large, the Delimit operation is invoked to determine
how many subrequests will be required to satisfy the original request. That information is supplied
to the CreateSubRequests operation to create as many subrequests as are necessary. The
subrequests that are created automatically are created based on the size of the files and the order
they are listed in the original distribution list. At this time, the subrequests are submitted to the
DsDdOpsInterventionListB with their association to the original request intact, so that an operator
can manually alter the number, content, and service priority of the individual subrequests. Once
the original request is determined to be large and is added to the DsDdOpsInterventionListB, the
state of the original request is changed to reflect its status to “OPS Intervention”. The event trace
provided in Figure 7.4.10-1 illustrates the fate of the request once it is removed from the operations
intervention list.

Assumptions

• SDSRV submits a valid distribution file list (DsDdDistList) via the Distribute service.

7.4.10 Operator Intervention into a Large Volume Data Distribution Request

Summary

The event trace provided in Figure 7.4.10-1, depicts the dynamic activity associated with operator
intervention into the processing of a large volume data distribution request. Once a set of
subrequests that make up an original distribution request is submitted to the
DsDdOpsInterventionList it is displayed via a distribution status GUI. An operator can call up
references to the subrequests and alter their number, content and service priority before returning
them to the DsDdRequestList to be processes like any other request. Once the requests are returned
to the original request list, their references can be removed from the DsDdOpsInterventionListB.

Assumptions

• SDSRV submits a valid distribution file list (DsDdDistList) via the Distribute service.

7-86 305-CD-024-002

D
sD

dD
is

tR
eq

ue
st

D
sD

dT
ap

eP
ro

ce
ss

or
D

sS
tR

es
ou

rc
e

D
sD

dP
ac

ki
ng

S
lip

D
sD

dT
ap

eM
ed

ia
C

om
m

an
dS

he
ll

E
cN

ot
ifi

ca
tio

n
D

sS
rW

or
ki

ng
C

ol
le

ct
io

n
D

sD
dD

is
tL

is
t

D
sD

dR
eq

ue
st

Li
st

D
sD

dT
ap

eL
ab

el
B

D
sD

dS
hi

pp
in

gL
ab

el
B

D
sS

tA
rc

hi
ve

D
sD

dC
P

U
C

os
tT

ab
le

D
sS

tIO
C

os
tT

ab
le

D
sS

tM
ed

ia
C

os
tT

ab
leD

sD
dS

hi
pC

os
tT

ab
le

D
sS

rC
os

t

S
ys

te
m

D
ea

llo
ca

te

S
ub

m
it

as
yn

ch
ro

no
us

re
tu

rn
re

tu
rn

T
ra

ns
fe

rF
ile

s
W

ai
tF

or
C

om
pl

et
io

n

G
et

N
ex

tIt
em

A
llo

ca
te

G
et

R
es

ou
rc

eI
d

P
rin

tB

P
rin

tB

S
er

vi
ce

R
eq

ue
st

R
et

rie
ve

D
sD

dD
is

tR
eq

ue
st re
tu

rn

S
et

N
um

V
ol

um
es

C
al

cu
la

te
C

os
t

In
se

rt

S
en

dT
oU

se
r

C
re

at
eP

ac
kS

lip

P
rin

t C
al

cu
la

te
C

os
t

C
al

cu
la

te
C

os
t

C
al

cu
la

te
C

os
t

D
sS

rC
os

t

S
et

S
ta

te

D
is

tr
ib

ut
e

F
ig

u
re

 7
.4

.8
-1

.
34

80
 T

ap
e

D
is

tr
ib

u
ti

o
n

 D
yn

am
ic

 M
o

d
el

7-87 305-CD-024-002

D
sD

dD
is

tL
is

t
D

sD
dR

eq
ue

st
M

an
ag

er
D

sD
dD

is
tR

eq
ue

st
S

D
sD

dR
eq

ue
st

Li
st

M
sB

aC
os

tT
ab

le
D

sD
dO

ps
In

te
rv

en
tio

nL
is

tB

C
re

at
eR

eq
ue

st
()

ct
or

()

su
bm

it(
)

so
rt

()

G
et

N
ex

t(
)

ch
an

ge
S

ta
te

("
P

ro
ce

ss
in

g)

S
um

th
eS

iz
e(

)

E
st

im
at

e(
)

(S
ee

 C
os

tin
g

E
ve

nt
 T

ra
ce

)

V
al

id
at

eL
im

its
(D

sU
zC

os
t)

D
el

im
it(

)

C
re

at
eS

ub
R

eq
ue

st
()

su
bm

it(
*D

sD
sS

ub
R

eq
ue

st
)

ch
an

ge
S

ta
te

("
O

P
S

 In
te

rv
en

tio
n"

)

F
ig

u
re

 7
.4

.9
-1

.
L

ar
g

e
D

is
tr

ib
u

ti
o

n
 R

eq
u

es
t

D
yn

am
ic

 M
o

d
el

7-88 305-CD-024-002

D
sD

dR
eq

ue
st

Li
st

D
sD

dR
eq

ue
st

M
an

ag
er

D
sD

dD
is

tR
eq

ue
st

D
sD

dO
ps

In
te

rv
en

tio
nL

is
tB

D
is

tr
ib

ut
io

nG
U

I

D
sD

dD
is

tS
ub

R
eq

ue
st

B

D
sD

dD
is

tS
ub

R
eq

ue
st

B

A
t t

hi
s

po
in

t s
ub

re
qu

es
ts

 a
re

 tr
ea

te
d

as
 a

ny
 o

th
er

 r
eq

ue
st

s

#1

#2

C
re

at
eR

eq
ue

st
()

ad
d(

*D
sD

dR
eq

ue
st

)

di
sp

la
y(

)

ne
xt

()

A
cc

ep
tC

ha
ng

es
()

ad
d(

S
ub

re
qu

es
t#

1)

ad
d(

S
ub

re
qu

es
t#

2)

di
sp

la
y(

)

di
sp

la
y(

)

m
od

ify
()

m
od

ify
()

re
m

ov
e

(*
D

sD
dR

eq
ue

st
)

F
ig

u
re

 7
.4

.1
0-

1.
 L

ar
g

e
D

is
tr

ib
u

ti
o

n
 R

eq
u

es
t

D
yn

am
ic

 M
o

d
el

7-89 305-CD-024-002

7.5 CSCI Structure
Table 7.5-1 shows the components (CSCs) of the CSCI. Each CSC is described and designated as
being custom developed code (DEV), off-the-shelf (OTS) or a combination of the two (DEV/
OTS). If the custom developed code will be used for integration purposes, it is identified as
WRAPPER.

7.5.1 Distribution Products CSC

Purpose and Description

The classes contained in this CSC represent products generated by the DDIST CSCI. These classes
can be further categorized as follows:

• The following classes represent the media via which the data is distributed to the requestor:

DsDdMedia
DsDdElectronicMedia
DsDdPullMedia
DsDdPushMedia
DsDdLabeledMedia
DsDdCDMedia
DsDdTapeMedia
DsDdFaxMediaB

• The following classes represent products which track and route the data and the media via
which it is distributed:

DsDdPackingSlip
DsDdShippingLabelB
DsDdMediaLabelB

DsDdCDLabelB
DsDdTapeLabelB

• The following classes support the cost and time estimates and calculations:

DsDdCPUCostTable
DsDdCPUCost

Table 7.5-1. DDIST's Components

CSC Description Implementation

Distribution Products The classes in this CSC represent the products and outputs
generated by the DDIST CSCI.

DEV

Distribution Client
Interface

The classes in this CSC are presented to client software for
use in initiating, tracking, and manipulating distribution
requests.

DEV

Distribution Request
Management

The classes in this CSC provide the control and coordination
of distribution request processing:

DEV

Utilization The classes in this CSC provide a mechanism to retrieve the
resources utilized in fulfillment of a service request.

DEV

7-90 305-CD-024-002

DsDdShipCostTable
DsDdShipCost

• DsDdRequestList is a software entity which represents the requests presented to the
operator so the operator can manage distribution operations.

Objects instantiated from classes in this CSC reside in the distribution server executable.

Candidate products

Not Applicable

ECS white paper references

Not Applicable

7.5.2 Distribution Client Interface CSC

Purpose and Description

This CSC contains classes which are presented to client software for use in initiating, tracking, and
manipulating distribution requests, further categorized as follows:

• The following classes define the data items which are to be distributed:

DsDdDistList
DsDdGranuleB
DsDdDataItem
DsDdDistFileList

DsDdDistFile

• The following classes define the client presentations of the distribution request, with
distinct classes for user and operator presentations:

DsDdDistRequestC
DsDdOpsRequestC

• DsDdRequestManagerC is the client presentation of the distributed object which
implements the OODCE factory model for the creation of distribution requests which are
themselves distributed.

Objects instantiated from DsDdDistRequestC, DsDdOpsRequestC, and DsDdRequestManagerC
reside in the client process. Objects instantiated from DsDdDistList and DsDdDistFile
(DsDdDataItem is an abstract class) may reside in either the client process or the distribution server
process.

Candidate products

Not Applicable

ECS white paper references

Not Applicable

7.5.3 Distribution Request Management CSC

Purpose and Description

The classes in this CSC provide the control and coordination of distribution request processing:

7-91 305-CD-024-002

DsDdRequestManager
DsDdRequestManagerS
DsDdDistRequest
DsDdPrivRequest
DsDdDistRequestS
DsDdRequestProcessor
DsDdCDProcessor
DsDdTapeProcessor
DsDdPushProcessor
DsDdPullProcessor

DsDdDistSubRequestB

DsDdConfigurationB

DsDdOpsInterventionListB

DsDdRequestList

Instantiations of these objects reside in the distribution server process.

Candidate products

Not Applicable

ECS white paper references

Not Applicable

7.5.4 Utilization CSC

Purpose and Description

The classes in this CSC provide a mechanism to cost resources used and their utilization for a
service. These classes will be reused in other DSS software CSCIs. The classes that comprise this
CSC are:

DsUzArchiveCostB
DsUzCPUCostB
DsUzCostB
DsUzFixedCostB
DsUzIOCostB
DsUzMediaCostB
DsUzResourceCostB
DsUzUtilizationTableB

Instantiations of these objects reside in the process that is calling them.

Candidate products

Not Applicable

ECS white paper references

Not Applicable

7-92 305-CD-024-002

7.6 CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 7.5.

7.6.1 System Management Strategy

The DDIST CSCI is designed to provide robust data distribution services to external data providers
and requesters. Specifically, the design goal of the DDIST CSCI is to always return status
(successful or unsuccessful) for every received request. To accomplish that goal, the CSCI follows
ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery

7.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown via the Managed Process
Framework. The DistributionServer process acts as an òobject factoryó. As such the process
instantiates objects in process threads (pthreads) when a request is serviced. The
DistributionServer process is started as a standalone process at system startup. The primary role
of the DistributionServer Process is to provide a distribution mechanism for physical media and
electronic requests.

7.6.1.2 Error Detection and Reporting

The Data Distribution CSCI is designed for primarily automated operations with little need for
operations involvement short of tuning and critical error conditions. CSS and MSS jointly provide
event logging services for logging and reporting errors and faults, for browsing error/status logs,
and for detecting and reporting critical errors. The Data Distribution CSCI will fully use those
services during operations. Errors/status may be reported in two error logs. MSS maintains the
first log, the MSS event log. It contains errors/status of interest to operations staff to evaluate
system status and to perform trend analysis. The Data Distribution CSCI maintains the second log.
The Data Distribution event log contains selected errors/status from the MSS event log (for
context) plus highly-detailed debug events. Software maintenance personnel use the Data
Distribution event log to diagnose system and software problems in response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in
Table 7.6.1.2-1.

7-93 305-CD-024-002

7.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client (client being defined as any service requester, not
just the ECS Desktop Client), it is the Data Distribution CSCI's design goal to complete the request
processing and return status (successful or unsuccessful) to the requester. The Data Distribution
CSCI is built on the model of checkpointing processing at the command level (within a request)
along with the user's distribution item list (context in a manner of speaking). During restart or
recovery operations the CSCI will restore a user's distribution item list and resume processing at
the next unprocessed command. Therefore, upon establishment of a user session, the DDIST CSCI
will have the user's distribution item list checkpointed to the COTS data base. Likewise, Requests
(containing Commands) are also checkpointed. After each command is completed, the distribution
item list will be checkpointed if it has changed in value or state. After a process or system failure,
the checkpointed distribution item list and Requests are automatically restored to the last
checkpointed state and processing continues.

Failure scenarios with recovery methods:

a. Failure of the Data Distribution Executable. This process is immediately restarted as a
Unix standalone process. The User Distribution Item List and Requests are restored from
their checkpointed states. Data Base integrity is verified and transactions rolled back via
COTS procedures.

Table 7.6.1.2-1. DDIST Error Categories
Error Category Actions to Be Taken

Initialization File/Environment
Corrupt

This would be seen during a system startup process and would result in
one or more executables not starting. Operations staff evaluate the
condition and correct.

DB Connection Dropped This could be a serious failure of the Data Base or a short lived problem
with the connection. Operations (DBA) would need to evaluate the
problem, possibly restarting the Data Base and the Data Server
processes.

Internal Queue Overflow Errors reported along these lines represent a very poorly tuned and/or
faulty system. This type error would represent potential loss of service
requests. Operations staff would immediately throttle back system
processing thresholds and write a trouble ticket for future off line analysis
and tuning.

Unable To
Allocate Disk Space

Unable to allocate working storage space using Data Server STMGT
CSCI services. This is another system of a poorly tuned system. Report
alert to operations staff who would immediately lower system thresholds
for requests. Operations staff would analyze system off-line and tune.

Unable To Allocate Distribution
Device

Unable to allocate a media distribution device due to device off-line,
device powered-off, or device in use by another process. This could
indicate an operations problem, or a maintenance problem. Report alert
to operations staff who would check device status, perform corrective
action or notify maintenance.

Communications Link Dropped This could be a serious failure of an internal component, CSCI, or an
external component. Operations would need to analyze a local problem
to determine in a hardware component or local CSCI has failed.
Operations would coordinate external problems with the appropriate site.

7-94 305-CD-024-002

b. Loss of the data base tables used for checkpointing. The data base management system
automatically logs transactions to allow restorations of table information. This feature,
coupled with DBA generated Data Base backups, provide for recovery. Since high
reliability is required in this area, the Data Base tables will be stored on RAID.

c. Failure of the processor on which the DDIST process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one
or more of the above process restarts. If the processor is disabled, the disablement is
detected my MSS SNMP services and a backup processor is restarted. The backup
processor has full access to the data base tables used for checkpointing. Again, restart of
individual processes is handled as described above.

d. Failure of an external application. After a given number of retries to transmit data or via
DCE services that alert us of failure of the recipient process, operations staff are notified
by means of an alert message. The DAAC operations staff will coordinate to diagnose the
failure.

7.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 7.6.2-1 highlights the critical
DDIST GUI screen.

7.6.3 Standard DDIST Reports

Table 7.6.3-1 contains information about the standard reports that are prepared by the DDIST
subsystem. Descriptions and the intended audience for each report are included.

Table 7.6.2-1. Data Distribution Management GUI
GUI Description Data Operations

Distribution
Operator
Control GUI

Allows operators to see
and manage
distribution events

Distribution state events:
electronic transmission problems,
media problems, disk management
problems

View
Abort
Change Priority
Reprint Packing List
Mark Shipped

7-95 305-CD-024-002

Table 7.6.3-1. Standard Distribution Reports
Report Type Report Description Intended Audience

Distribution
Profile

This report will provide the total number of orders received
for the reporting period which is either the last 24 hours, the
previous 7 days, previous 30 days, or number since a given
date.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Media
Distribution

Distribution of data by distribution media type. For each
media type the reported data will include: the distribution of
the requested data in gigabytes, total number of product
instances and the total numbers of physical media.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Electronic
Distribution

Distribution of data via network resources. For each
distribution location the reported data will include: the
distribution of the requested data in gigabytes, total number
of product instances and the total numbers of requests.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Push
Utilization

Total volume of data in gigabytes and the number of product
instances pushed.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Distribution
Error

Is a summary report of the frequency of errors encountered
during distribution processing. The reporting period is either
the last 24 hours, the previous 7 days, previous 30 days, or
number since a given date. Information for each
unsuccessful request includes: date/time stamp, request
identifier, error code, error message, destination code.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

7-96 305-CD-024-002

This page intentionally left blank.

8-1 305-CD-024-002

8. ACMHW - Access Control and Management HWCI

The Access hardware allows for client access (both the client subsystem and direct “push/pull” user
access) to the Data Server subsystem, provides tools and capabilities for system administration,
and supports many of the infrastructure requirements of the Data Server. This hardware
configuration item controls logical data server access, maintains client sessions, provides
subsetting & subsampling support for clients, directs service requests to other appropriate Data
Server subsystem configuration items, and supports the control and data flow for electronic
distributions. The Access Control and Management hardware is split into two components;
Administration Stations (AS) and Access/Process Coordinators (APCs). The number, type, and
configuration of the APCs and Administration Stations can vary according to site needs and
number of data servers supported.

8.1 HW Design Drivers
The design of the Access Control and Management hardware is driven by the heterogeneity of the
client server interfaces as well as a large number of sessions and processes in progress at any one
time. The component's configuration must be flexible and its hardware expandable in order to
meet the requirements. Partitioning of the Access Control and Management hardware into the
categories of AS and APC provides modularity to facilitate expandability.

The AS component has two major responsibilities. The first is to administer the logical data
servers, providing logical resource scheduling, arbitration and access control. The second is to
manage the physical aspects of the subsystems operations.

Direct user controlled access to data (i.e., data transfer functions) is isolated to the APC component
of this CI. This is done to more easily support security concerns of the system, to allow for better
control and monitoring of user accesses, and to insure that overall system performance and
functionality is not adversely affected by the electronic ingest and distribution functions.

Data that is to be distributed from the data server may need to be buffered for a period of time. This
is true when the data is being pre-processed/formatted for distribution, when the data is being
pushed out electronically from the system to the user, or whenever the user is pulling/accessing the
data from the data server. The buffering of data is to RAID disk. The management of the user
access to the data is the function of the APC. Only less critical data is ingested via APCs. Data
that is time-critical or requires very reliable and highly available ingest is not ingested here, but
enters the DAAC at the Ingest Subsystem.

8.1.1 Key Trade-off Studies and Prototypes

User Modeling data was used indirectly via dynamic modeling in the system Performance Model.
The February 1996 Technical Baseline for Epoch was also used as input to the dynamic model.

8.1.2 Sizing and Performance Analysis

In Release B, AS will run X-terminal applications for APC, therefore a small workstation continues
to be sufficient as in Release A with a potential upgrade to higher capacity in subsequent releases.

8-2 305-CD-024-002

The APC configuration is sufficiently scalable (via multiple servers and partitioning functionality)
to accommodate the throughput rates of the electronic portion of the distribution data (as opposed
to the hard media distribution). These rates are going to grow substantially with every Release as
the data holdings within the Data Server grow. A server class host is appropriate for the anticipated
data throughput rates.

8.1.3 Scalability, Evolvability, and Migration in Release B

Scalability of the Access Control and Management component is provided by adding comparable
capacity workstations or replacing/augmenting them by more powerful workstations as necessary
in the future releases. The role of this component is to assure de-coupling of the Data Server
management and service provider functions from an underlying physical data Server
implementation, such as COTS DBMS, FSMS, hardware structure etc. This de-coupling allows
replacement or addition of physical hardware supporting the component to increase performance
without any change in functionality.

The scalability required in the APCs is supplied by adding I/O capabilities and additional servers
as necessary.

When user demand increases in the future for direct data access capabilities, the access space
dedicated to users may need to become a virtualized disk (i.e., the disk will be supported by a
second tier of robotically based sequential access media with data movement controlled via an
FSMS) accessible to the user community. Access rights, longevity of data in the pull area, and data
purging rules will be driven by site policies and available site resources. The sizing assumption
for Release B data is that the user pull area will be capable of holding data for 48 hours.

Some of the electronic user pull sessions from APC may be interrupted by the user after placing a
data order. The data will be staged for user pick-up at an unspecified later time. Such transaction
pattern could lead to the accumulated staged data needs exceeding the capacity of the staging
storage.

8.2 HWCI Structure
The block diagram Figure 8.2-1 illustrates partitioning of the Access Control and Management
hardware into two functional modules.

8.2.1 HWCI Connectivity

The Data Server subsystem network connectivity is illustrated in Figure 8.2.1-1.

The Data Server servers and workstations will be directly connected to the DAAC FDDI network.
The Data Server hosts will be connected to the FDDI rings as is illustrated in Figure 8.2.1-1.

The Data Server processors/servers will contain dual-attached station (DAS) cards, which will be
dual-homed to separate FDDI concentrators. This provides redundancy so that full connectivity
will exist to the servers even in the event of a concentrator failure. The workstations will contain
single-attached station (SAS) cards and each will be connected to a single concentrator, but they
will also be split across concentrators so that they are not all connected to the same unit. The FDDI
concentrators are in turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview
Volume for a general description of DAAC networks.)

8-3 305-CD-024-002

Figure 8.2-1. Access Control and Management HWCI Block Diagram

8.2.2 HWCI Components

Access Control and Management Hardware Configuration Item consists of two components
described below: Administration component and Access/Process Coordination component.

Administration Stations (AS) hosts and/or allows access to the Administration Services for one or
more data servers. These services provide Data Server Administrators with the capability to
modify and monitor the configuration of the data server. The data server configuration includes
resource availability, number and location of components, data server schema, advertised services,
data types and archiving strategy. In addition, this set of services will include the capability to
perform Archive maintenance functions. Depending on the site configurations, a number of ASs
may be supported. Because of the modest I/O and processing requirements imposed, these stations
will take the form of mid-sized workstations running GUI packages.

Operations
Workstations

Administration
 Component

Access/Process
Coordinaton Component

Access/Process
Coordinator Servers

To/From DAAC External
Network Interface

To/From Data Repository, Distribution
and Working Storage

Legend:
 DS Internal LAN and/or channels
 ESN LAN, Intersubsystem and User Interface

8-4 305-CD-024-002

Figure 8.2.1-1. Data Server Network Connectivity within DAAC

The Access/Process Coordinators (APCs) interface the data server services to the clients. The
APCs support Client session establishment and control. Sessions are managed by the APCs and
are the vehicle through which clients (both user programs and other services) access the data
server's object services. Sessions provide for the management (from a client perspective) of a
variety of data server service resources (results sets, cached compute-on-demand data objects,
search contexts, etc.). These functions impose a modest computational load and a moderate I/O
load on the APC processors. A much higher I/O load is imposed by the APCs functioning as data
throughput mechanism for electronic data distribution in Release B and for data manipulation via
Subsetting and Subsampling also in Release B.

The APCs provide the compute resources and possible portions of the search engines and tools that
operate on data retrieved from the data repositories. Algorithms operating on data at a site may
execute on an APC or a resource in the Processing Subsystem. The designation of what algorithms
and functions execute where in the system is a site configuration policy and may change over time.
The APC server host is sized for electronic ingest (almost exclusively from sources external to the
DAAC), as well as electronic distribution since this pool of hosts is designed to manage the
requests to the Data Server as well as the service response. APC storage is sized to support
functions such as subsetting/subsampling, storage of user session context, which keeps track of
user session interactions that may be suspended or resumed.

Ingest Servers

Planning DBMS
Servers

QA WS

AIT Server,
WS, and
Printer

Science
Processors

Queing WS

MSS and CSS
Server

To Other
DAACs,
EDOS,
TSDIS,
LPS, etc

LSM

PDPS

L0 Data

Processing
Data

Data
Manager
DBMS

DS Host

User FDDI Network
To Users

User FDDI Network

HiPPI
Switch

Processing
FDDI
Network

Ingest

DS
Host

DS
Host

DS
Host

EBnet
Router

FDDI
Switch

DM/DS

Exchange
LAN

NSI
Router

ECS
Router

Campus
Net

Production Network

User Network

HiPPI Network

8-5 305-CD-024-002

8.2.3 Failover and Recovery Strategy

Two AS workstations configured identically will supply AS failover/recovery capability via
redundant operation. Either workstation can be used independently as an operator workstation. In
the event of failure of one of them the other can assume the full role.

The two APC servers in a cold standby configuration will share a common disk pool. This disk
pool is configured as an outboard stack of RAID disk drives dual ported to the two servers. One
of the servers will be configured as primary, the other as a cold standby secondary. The active
server will maintain the current system configuration files on disk. In some cases, both servers will
be active with separate primary responsibilities and shared secondary responsibilities. The servers
are sized to provide degraded mode failover capability in the event one or the other fails. If a
failure on a primary APC is reported by a CSS agent running on that APC or the agent is not
communicating within a set period of time due to a catastrophic failure, a failover procedure will
be initiated by the CSS. During a failover the backup APC server will read the system status files
from the shared disk and begin operation as primary.

There are three types of network failures that may affect the Data Server subsystem. If the FDDI
cable between a host and the FDDI concentrator is severed or damaged, then a new cable would
need to be installed. No other configuration would be required. If an individual port on the FDDI
concentrator fails, then the attached host must be moved to another port, again with no other
configuration required. Finally, if the entire concentrator fails, it will have to be replaced, which
can be done rapidly since the units require very little configuration.

Note that the above failures result in service interruption only to the workstations. Since all
servers/processors are attached to two hubs, they will communicate as normal in the event of a
cable or concentrator fault, and the applications will be unaware of and unaffected by the event.

Table 8.2.2-1. Access Control and Management HWCI Component Descriptions
Component Name Class/Type Comments

Administration OPS
Workstation

Moderately sized workstations with private disk.
Host and/or allow access to the Administration Services for one
or more data servers.
Will be scaled up in subsequent releases by adding workstations
or upgrading workstation class.

Access/Process
Coordination (APC)

APC Data
Server

Mid-capacity servers. Sizing and configuration is site specific.
Interface the data server services to the clients; provide the
compute resources and possible portions of the search engines
that operate on data retrieved from the data repositories.
Will be scaled up by server class upgrade or additional servers.

8-6 305-CD-024-002

This page intentionally left blank.

9-1 305-CD-024-002

9. WKSHW - Working Storage HWCI

Working Storage (WS) hardware configuration item of the data server supplies a pool of storage
used for temporary file and buffer storage within the data Server architecture. This pool also serves
to house the interim processing data. Any data that resides in WS and is not designated as
temporary data will be copied to a permanent data repository (see DRPHW - Data Repository
HWCI) and maintained there.

WS provides the staging capacity for data acquires and inserts. Dynamic performance modeling
has shown that WS can improve performance of the archive at GSFC by buffering data during
insert operations for six hours. This approach has shown to lower robotic/tape drive loads between
insert and retrieval operations by 20%. At all other sites the dynamic modeling results indicated
that no more than 15 minutes worth of data buffering will be beneficial. The concept of retaining
copies of frequently accessed data that have been copied to the deeper archives and servicing data
requests for that data in a faster, more efficient manner has been shown to be ineffective assuming
the access patterns used by the performance modeling team. The classic approach of having WS
behave like a cache for frequently accessed portions of the deep archives has been dropped. The
“read” portion of WS is best described as a short duration buffer, with very short data residency
times. Put another way, data passes through WS on its way to a destination (i.e., APC disks,
Processing subsystem, Distribution disks, etc.).

9.1 HW Design Drivers
The principal driver behind the WS is its buffering of data for the ease of access by the requesting
components, and storage of the interim production data. Therefore, although the WS portion of the
Data Server architecture contains limited amounts of storage as compared to the Permanent Data
Repository, the WS allows for faster access and relatively high throughput rates.

In order to assure availability of WS in the light of its moderate capacity, quick data movement off
the WS to its destination coupled with immediate release of that data’s disk blocks into the free
block pool will be exercised. Working storage serves as a buffer to the Processing Subsystem for
high performance data exchange between the Data Server Subsystem and the DPS. The
Processing subsystem has its own disk stacks sized to retain data so that as one normal production
PGE completes and produces data for a Data Server insert, that data can be retained locally for the
next PGE to use. This approach avoids the condition where data is “pushed” into WS and
immediately “pulled” back out for the next higher level product processing. Finally, WS is also
used as a storage buffer for data subsetting and ingest that are performed in the Data Server
subsystem (TSDIS ingest, some of the ancillary data, and V0 data migration).

The logical configuration of the WS component is consistent at all DAAC sites. The physical
instantiation of the WS hardware will vary between the larger and smaller sites due to the variation
in the data storage capacities and data rates supported at the sites.

9-2 305-CD-024-002

9.1.1 Key Trade-off Studies and Prototypes

In Release A WS is used primarily for file server data transfer buffering. Release B will also use
WS for post-retrieval processing (interim products storage). The studies listed below explored the
concept of shared storage.

“Network Attached Storage. Concepts and Industry Survey for the ECS Project” White Paper,
440-TP-009-001. The study identified candidate methods and technologies of network attached
storage for a distributed archive and examined the associated implementations issues and risk
factors.

“Network Attached Storage Technologies” Study. The paper examined some of the design
alternatives that can be used to satisfy the SDPS internal data transfer requirements. It examined
the options of network attached storage implementation as a method of optimizing overall SDPS
design. The focus was on the issues of network attached storage within SDPS. Network attached
Redundant Arrays of Inexpensive Disks (RAID) pools and a network attached Automated Tape
Library (ATL) were discussed.

9.1.2 Sizing and Performance Analysis

The capacity of the working storage disk for Release B use was determined in the same manner as
Release A. The capacity is based on the Processing Subsystem's predicted needs for data pre-
staging and production volumes and patterns, predictions for the peak accumulation of interim
data, and the minimum FSMS staging requirements (if applicable). The Processing Subsystem
activity assumptions were based on the Performance Modeling group's dynamic analysis of the
AHWGP data for epoch k.

9.1.3 Scalability, Evolvability, and Migration in Release B

The overall approach to increasing the capacity of the WS is “horizontal” rather than “vertical” in
nature. The size of the temporary repository will be increased, if necessary, by the use of additional
modular storage units rather than by solely relying on such units becoming denser in capacity and
throughput as part of technology evolution. At EDC, where the accumulation of interim data is in
excess of six Terra Bytes, fast access archival robotics and tape drives managed by an FSMS
product will be used to supplement RAID storage in this layer of the architecture.

Segmentation of Repositories - The use of multiple file servers and the mixing of storage solutions
like FSMS based systems in the architecture lends itself to easy scaling. Adding more file servers
can enhance both file handling bandwidth and processing capabilities. The flat common access
nature of the robotic based tape repositories allow added file servers to gain access to the data
without burdening existing file servers.

Performance Enhancements and Scaling - The architecture maintains performance levels as
increasing numbers of files and I/O requirements are added by allowing for growth in the various
tiers of Working Storage.

9.2 HWCI Structure
The DPS will place processed data in the WS for transfer to the permanent data repository. The
data is then written to the permanent repository. At most sites the data will be retained in the WS
for repeated access and for fulfillment of subscription processing. After all outstanding requests

9-3 305-CD-024-002

for some data have been fulfilled the data’s disk blocks are flagged as eligible for re-use. If
STMGT needs disk blocks to fulfill a resource request, these recently freed blocks may be used.
At that time the data occupying those blocks in the WS is effectively deleted by virtue of being
overwritten. If these data were requested before deletion, STMGT would simply allocate these
blocks for the data, increase the reference count of the data by 1, and not need to access the archive.
If requested after overwriting, data must be copied to WS again from the permanent repository.

Figure 9.2-1. Working Storage HWCI Block Diagram

9.2.1 HWCI Connectivity

The Release B Working Storage is directly connected to the FSMS Archive CPU via channel level
interfaces in some cases, while in others, a Working Storage server has been added due to I/O
bandwidth limitations. Implementing Working Storage via a Network Attached Storage solution
has not proved to be a viable solution at this time. A number of COTS implementations that were
tracked over time either failed to mature or remained cost prohibitive one-of-a-kind solutions.

To/From Data
Respository, Ingest and

Access Control

WS 2nd Tier
Robotics

Shared WS
RAID Pool

(Level 1 WS)

Primary Tier Component
Secondary Tier Component

Legend:
 DS Internal LAN and/or channels
 Intersubsystem
 AtSome Sites

WS Server

9-4 305-CD-024-002

9.2.2 HWCI Component Description

For the purposes of sizing and technology choices, permanent product data is assumed to be
inserted into the data server and would initially be staged in Working Storage on the staging disks.
All product data would then be copied into the permanent repository. The copy of data placed in
Working Storage may also be used after archival for the fulfillment of subscription requests against
that data type. All interim product data used by the Processing Subsystem will be staged in the
Working Storage for the maximum period of 90 days (most interim products are far more short-
lived). At most sites disk storage will be supplied for the interim products. Only at EDC, where
interim product data cumulation is very significant, archival robotics and tape will be used for this
storage as a second tier of WS. A separate instance of AMASS will support the functioning of the
second tier of WS. A number of design issues involving multiple tiering of WS (which is
effectively multi-tiering the archive) are in the process of being resolved by/with the vendors.
These include integration of a2nd tier media type with the AMASS product, and hosting multiple
AMASS instances on a single machine. All of these capabilities are currently under development
by the vendor. The vendor has committed to specific development schedules that should allow for
completion of integration between AMASS and storage libraries in time for Release B
procurement.

The per site estimates of working storage requirements are shown in the appendices.

9.2.3 Failover and Recovery Strategy

Fault tolerance of the WS will be provided by using RAID for storage implementation. The RAID
will provide degraded mode of operations for a single disk failure. Second tier storage will have
RMA equivalent to the rest of robotic library storage in the deep archive repository. See Data
Repository Hardware CI Section.

Table 9.2.2-1. Working Storage HWCI Component Descriptions
 Component Name Class/Type Comments

Working Storage
Primary Tier

RAID (host
attached)

RAID storage amount will grow in the Releases following B The
final RAID capacity at Release D is subject to RAID affordability
as well as architectural considerations.

Working Storage
Secondary Tier

Tape 3490 is selected due to the relatively short Time-to-File, and its
integration with fast STK robotic libraries

10-1 305-CD-024-002

10. DRPHW - Data Repository HWCI

Data Repositories (DRs) are the hardware components that store and maintain data permanently.
Different technologies can be used to instantiate DRs depending on the volume and type of data to
be stored, the access patterns on this data, and any additional unique requirements that may be
imposed on the repository (i.e., data maintenance requirements, backup and restore functions,
media management and control, etc.).

DRs will be classified as “permanent”, meaning that the services necessary to monitor and
maintain data integrity for large data holdings will be supported by this repository's storage
technology. As a general configuration rule, every site will have at least one DR in the component
designated as a permanent repository. A copy of all data at a site that is not considered temporary
will eventually be maintained in a site's permanent DR.

10.1 HWCI Design Rationale
The DR hardware of the data server is designed for expandability and evolvability. The
expandability is very important in the light of data volumes that are received, processed, stored,
and distributed by the larger DAACs. The evolvability must be provided because of the
historically rapid evolution and aging of storage technologies.

Among other design considerations is the complexity that is introduced by the different
requirements for sizing of the DR portion of different DAAC sites. The DR storage hardware
differs at the large and small DAACs. A single DR may have heterogeneous storage elements
within it in order to best accommodate DAAC-specific performance requirements.

10.1.1 Key Trades and Analysis

“Storage Technology Contingency Plan for the ECS Project” TRADE 193-0111TPP; DRAFT
The trade study outlined a plan for an organized approach to dealing with the potential
unavailability of the 3480 optical tape cartridge-based large volume archive storage technology
originally proposed for use in the ECS Data Server Data Repository. The plan included several
implementation scenarios. In each of the proposed scenarios the schedule impact, cost, and
reliability issues were examined. The plan was the first step in a progression of analysis leading
to the selection of the optimal archive architecture. The scenarios resulted from the storage market
survey and initial vendor meetings and evaluations. The overall approach tied the scenario
development to the four deliverable releases.

“Storage Technology Insertion Plan” White Paper 420-WP-003-001. This periodically updated
document reviews existing secondary storage technology solutions with the purpose of outlining
technology use and insertion strategy for the ECS Data Server Permanent Data Repository over the
Releases of ECS Project. The document reflects both past and ongoing analyses of the project
requirements and the storage technologies market. (Note: This WP is considered to be competition
sensitive and is not available for general review.) One of the primary objectives of the design of
the archive portion of the SDPS is to allow for an expandable and evolvable facility.

10-2 305-CD-024-002

In the course of past analysis a large number of solutions were found unacceptable because they
lacked in scalability, performance, or both. As a result of that analysis and of further refinement
of the SDPS architecture, the number of appropriate storage solutions narrowed to just a few
logical candidates.

One significant development resulting from the analysis was a move away from a homogeneous
archival implementation starting with Release B or later. Some combination of linear and helical
scan magnetic tape will be required in order to take advantage of the performance strengths of each
of the technologies.

“Network Attached Storage Technologies” Study. The paper examined some of the design
alternatives that can be used to satisfy the SDPS internal data transfer requirements. It examined
the options of network attached storage implementation as a method of optimizing overall SDPS
design. The focus was on the issues of network attached storage within SDPS. Network attached
Redundant Arrays of Inexpensive Disks (RAID) pools and network attached Automated Tape
Library (ATL) were discussed.

“DBMS Benchmark Report”, 430-TP-003-001. Reported the results of the benchmarking study
of four DBMS comparing performance of the products relative to each other.

10.1.2 Scalability, Evolvability, and Migration in Release B

Analogously to the methods used in keeping the Working Storage easily scalable, the scaling
strategy in the Data Repository is primarily “horizontal”. Modularity assures that no functional
perturbations occur as a result of scaling. Horizontal scaling, in this case, means that multiple DR
hosts may be used to managed one or more ATLs with the possibility of multiple storage
technologies of varying form factors. The physical configuration at each DAAC and the specific
performance requirements at each site determines the host to device distribution.

Increasing Permanent Storage Capacity - Storage capacity within the permanent repository will
be increased via two methods: 1) increasing the number of storage units and the corresponding
number of robotic arms and tape drives; 2) increasing the capacity of the individual tape cartridges
and the throughput rate of the supporting tape drives. The first method is assured through the
proper expansion planning through the Releases of the system and archive architecture that allows
such addition of hardware. The second method is dependent primarily on further evolutions of
technology.

The archive, however, is designed in a modular way allowing migration to more efficient
technologies in the future with minimal disruption to the normal functioning. One concrete
example of a possible future technology migration would be in the event of market availability of
suitable cartridge based optical tape. The deep archives can also scale by the use of heterogeneous
storage devices tailored to specific data types and their storage needs. By storing data in hardware/
software formats that are optimized to the retrieval patterns seen by that data, overall high
performance can be maintained.

Performance Enhancements and Scaling - The architecture maintains performance levels as
increasing number of files and I/O requirements are added by allowing for growth in the various
tiers of storage as well as Working Storage (WKSHW). By enlarging Working Storage a
reasonable write buffer can be maintained in the higher tiers of the architecture, thereby keeping

10-3 305-CD-024-002

the deep archive accesses down to a manageable level. Effectiveness of this approach will vary by
site due to access patterns on the data stored in each repository.

The deep archives can also be scaled by the use of heterogeneous storage devices tailored to
specific data types and their storage needs. By storing data in hardware/software formats that are
optimized to the retrieval patterns seen by that data, overall high performance can be maintained.
An example would be allocating larger sized files to a high throughput storage device, such as
helical scan tape. Although an initial access penalty is incurred due to helical scan drive head spin
up, a higher transfer rate over the length of a sizable file compensates for this time loss. Conversely,
smaller files will either have to be blocked together for storage to realize a throughput benefit, or
placed on a storage medium, such as IBM 3590 (NTP) linear tape, that imposes less penalty on
access, even if the throughput rate is comparatively less. Helical scan and linear tape drive both
have limitations that make exclusive use of either technology design inefficient. Helical scan
technologies notoriously have higher maintenance costs associated with them, while linear
technologies have significantly less storage density than comparable form factor helical media.

The baseline design for Release B is to use helical scan and/or linear tape solutions for the deep
archives separately or in a mixed fashion where access patterns and storage densities dictate.

10.2 HWCI Structure
The sizing of Release B Data Repository components hardware was done using a combination of
dynamic and static modeling and based on the assumptions outlined below.

a. AHWGP Technical Baseline (February 1996) data was used for the GB/day flow estimates.
The product data was assumed to cumulate over the time period 9/1/1997 through 6/1/1999.

b. V0 PDR Baseline holdings based on quantities for the data sets in called out in the
Technical baseline for the Release B period.

c. DAAC to DAAC flows are as published on March 3, 1996

The FSMS host platform will be selected on the basis of FSMS/platform compatibility, available
memory cash and I/O bandwidth.

The Data Base Management System (DBMS) Repository component was sized as follows:

A multi-CPU SMP DBMS Server was selected based on the DBMS software manufacturer's
compatibility recommendations, benchmark data, and project benchmarking activities.

The disk was sized to hold the core metadata associated with Release B data as well that associated
with the V0 data sets identified for migration within Release B. The products lists have been
derived from the DAAC instrument teams representatives. All products are assumed to conform
to the Proposed ECS Core Metadata Standard v2.0, 420-TP-001-005, December 1994. The
metadata sizing has been calculated from the Metadata Expected with each granule table on page
94 in Core Metadata Standard v2.0

10.2.1 HWCI Connectivity

The Data Server's servers and workstations will be directly connected to the DAAC FDDI network
and HiPPI fabric. The Data Server processors/servers will contain dual-attached station (DAS)
cards, which will be dual-homed to separate FDDI concentrators. This provides redundancy so that
full connectivity will exist to the servers even in the event of a concentrator failure. The

10-4 305-CD-024-002

workstations will contain single-attached station (SAS) cards and each will be connected to a single
concentrator, but they will also be split across concentrators so that they are not all connected to
the same unit. The FDDI concentrators are in turn connected to the FDDI switch. (Refer to section
5.2 of DID305 Overview Volume for a general description of DAAC networks.)

Figure 10.2-1. Data Repository HWCI Block Diagram

Legend:
 DS Internal LAN and/or channels
 ESN LAN, Intersubsystem and User Interface

DATA REPOSITORY
ROBOTICS

DBMS
RAID

FSMS
HOST

To Access Control, Distribution and
 Working Storage

DBMS
HOST

Data Repository
Component

DBMS
Component

10-5 305-CD-024-002

10.2.2 HWCI Component Description

The technologies used for permanent data archiving will be used to instantiate one or more data
repositories that are designated as Permanent Archive Management (PAM) types. The Permanent
Data Storage Technologies study supplies analysis of the applicability of recording technologies
to the storage of data of specific data pyramid levels. For the bulk data holdings that form the lower
levels of the data pyramid (i.e., level 1a - level 4), large tape based robotic archives coupled with
other robotic based media will be the most cost effective and robust method of permanent data
storage. Data stored in this manner will be retrieved sequentially to staging and will be
characterized by relatively long seek times and high speed streaming reads.

For several of the largest sites the overwhelming necessity, due to the projected size of the data
holdings, will be the use of technology with the highest density of the data storage that is
reasonably suitable in Release B and thereafter. Under the suitability criteria are the following
factors: sufficient reliability, cost effectiveness, and adequate performance levels. An example of
currently available COTS products of that kind is helical scan tape technology. Data that
comprises the higher levels of the data pyramid may utilize a different data repository technology
for permanent storage, specifically the technology used for operational storage and access. Such
technologies can be, as an example, faster access linear tape or, for very fast access, RAID banks.

A large portion of the PAM will be realized in robotic assisted tape based storage schemes. FSMS
systems have been used in many field applications to date to control and manage large tape based
archives such as that for ECS. ECS will use FSMS products within the PAM, with a few specific
requirements and design goals in mind that are reflected in the hardware design. A guiding design
approach is the separation of command and data paths within the PAM architecture through the use
of network attached peripherals. This could result in keeping tape to disk I/O from flowing through
the CPUs and limiting it to the network/channel connections that exist between the peripheral
devices. Technology has not yet reached this level, although many vendors and research labs are
working on products/approaches in this area. Therefore, at this time Release B is not baselining
the use of Network Attached Storage technologies, but we are keeping the S/W and H/W
architectures designed to support the insertion of this technology. Logical separation of control
and data paths will be maintained to allow for physical separation.

10.2.3 Failover and Recovery Strategy

The robotic units chosen for Release A are baselined at this point to continue into Release B at
some sites based on each site's access patterns and required storage densities. Sites with high access
and throughput requirements will require augmentation by higher speed multi-technology (helical
and liner tapes of the same form factor), non-multimedia ATLs. Release A baselined a single
archive robotic arm for each site. In Release B, the larger sites continuing with this technology will
have a second arm installed. In the event of failure in a multi-armed configuration, the non-
functioning arm is taken. Access to the associated storage occurs via the second arm in a degraded
mode of operation.Remedial maintenance will then need to be scheduled by the site’s M&O staff
for the failed arm. At the smaller sites that are configured with one arm, a failure condition will
necessitate a repair to be performed as soon as practically possible. The EMASS robotics are field
proven in Europe and the U.S. as having extremely high reliability. This fact, coupled with the
non-trivial cost of the robotics, supports a one arm robotic solution at the smaller sites.

10-6 305-CD-024-002

In Release A, only a small quantity of magnetic drives were required in the archive to reach
performance requirements. Given this situation, the approach was to double the calculated
required number of drives and have the redundant drive set provide the failover capability for the
 primary set. In Release B, because the number of required drives is much higher, one or two drives
will be added for spares to reach RMA requirements.

The SMP Server workstations serving as FSMS hosts will be configured identically but with
smaller number of CPU chips and share a single disk bank to supply failover/recovery capability.
One of the workstations will be configured as primary, the other, with all peripheral connections
but half the estimated processing power, as a cold standby secondary. At some sites, access
requirements and server loads may require both hosts to function with separate primary and shared
secondary responsibilities. Each host would be equipped with sufficient capacity to provide
degraded mode operations in the event of a reported failure by one of the hosts. The active
workstation will maintain the current FSMS configuration files on disk. If a failure on a primary
workstation is reported by a CSS agent running on that workstation or the agent is not
communicating within a set period of time due to a catastrophic failure, a failover procedure will
be initiated by the CSS. During a failover the backup workstation will read the system status files
from the shared disk and begin operation as primary.

Similarly, two SMP DBMS host machines in a cold standby configuration will share a common
disk pool.

Table 10.2.2-1. Data Repository HWCI Component Descriptions
 Component Name Class/Type Comments

Data Repository Archive Robotics Single tower robotics for Release A. Multiple towers in larger
Release B sites.

Magnetic Tape
Drives

Linear tape was baselined for Release A. Helical scan tape
is planned for Release B.

SMP Server
Workstation
(FSMS Host)

Server with Multiprocessor Capabilities. Dual processors
were baselined in Release A. By CDR-B, sufficient EDF field
experience will be used to determine how many more
processors (if any) will be brought into the Release B
configuration at the sites.

Data Base
Management System
(DBMS) Repository

SMP DBMS
Server

Server with Multiprocessor Capabilities. Dual processors
were baselined in Release A. By CDR-B, sufficient EDF field
experience will be used to determine how many more
processors (if any) will be brought into the Release B
configuration at the sites.

RAID (host
attached)

DBMS RAID. The quantities specified Release A basically
remain stable in Release B. (EDC is the exception in that a
substantially larger data base is required.)

11-1 305-CD-024-002

11. DIPHW - Distribution and Ingest Peripheral
Management HWCI

The hardware of the Distribution and Ingest Peripheral Management supports the hard media
distribution methods for data dissemination from the system, as well as hard media ingest of data
into the system. Hard media distribution and ingest is done by an assortment of data recording
peripherals. To minimize operator involvement, some of the peripherals will be under robotic
control.

Data that is to be distributed from the data server will be buffered for a full day's worth of shifts (8
hrs. at most sites). The buffering of that data is the function of the Distribution Storage
Management hardware in the data server.

11.1 HWCI Design Rationale
Both the data distribution and the data ingest requirements drive the design of this CI. The
Distribution and Ingest Peripheral hardware will supply the hard media intersite and user data
distribution as well as scheduling and management of such distribution.

Aside from hard media distribution, this CI's responsibility within the SDPS is hard media ingest.
Because of the inherent high reliability and availability requirements for the Ingest Subsystem, it
is important for both cost and design considerations that the Ingest Subsystem is kept as small in
capacity as possible. Placing the responsibility for the hard media portion of ingest with the
Distribution and Ingest Management of the Data Server Subsystem relieves the Ingest Subsystem
of the necessity to accommodate the lower priority ingest functions at the site.

The ingest and distribution peripherals were selected on the basis of project requirements. The
hardware provided by this HWCI includes a variety of media and media drives, jukeboxes/stackers
as necessary, server hosts and disk storage for network distribution.

11.1.1 Key Trades and Analysis

Market surveys of data recording and data storage peripherals. Selection of optimal hardware
was based on market surveys.

Analysis of V0 sites. V0 site analysis allowed narrowing down of the market available peripherals
to those that are currently in use at the existing ECS sites.

11.1.2 Scalability Strategies

Scalability of the hard media ingest/distribution portion of this HWCI is assured by providing a
design that allows the addition of peripheral devices as necessary. Where warranted by the
performance and volume requirements, robotics (for example, stackers and jukeboxes) are used
with the peripheral devices.

11-2 305-CD-024-002

11.2 HWCI Structure
Staging disk in the Distribution and Ingest CI of the Data Server subsystem serves as a buffering
pull. The buffering pull is relied upon to optimize performance of the data retrieval for distribution
or data processing/archiving after ingest.

Heterogeneous peripheral devices are used here as required for user community needs as well as
the need of other DAACs for data exchange via hard media.

Figure 11.2-1. Distribution and Ingest Peripheral Management HWCI
Block Diagram

Staging
Disk

Device 1

Device 2

Device n

Scheduling/Control
Host(s)

To/From Data Responsitory, Working
Storage, and Access Control

Operations
Workstation

Legend:
 DS Internal LAN and/or channels
 ESN LAN, Intersubsystem and User Interface

11-3 305-CD-024-002

11.2.1 HWCI Connectivity

The Data Server servers and workstations are directly connected to the DAAC FDDI network. The
Data Server hosts interface is illustrated in Figure 8.2.1-1.

The Data Server processors/servers contain dual-attached station (DAS) cards, which are dual-
homed to separate FDDI concentrators. This provides redundancy so that full connectivity exists
to the servers even in the event of a concentrator failure. The workstations contain single-attached
station (SAS) cards and are connected to a single concentrator, but they are split across
concentrators so that they are not all connected to the same unit. The FDDI concentrators are in
turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview Volume for a
general description of DAAC networks.)

11.2.2 HWCI Component Description

The hardware of the Distribution and Ingest Management consists of a variety of recording devices
used for both hard media data distribution and hard media data ingest. These devices are controlled
from small workstations. The types of the ingest/distribution media devices are chosen in
accordance with the media requirements and accommodate the user community and site media
needs. The number of the devices as well the whether or not robotic equipment is used are
determined for each DAAC site. The hardware of this CI constitutes a single component.

11.2.3 Failover and Recovery Strategy

The peripheral components are divided between the workstations. A failure of a single workstation
will result in a degraded mode of operations. Additional quantities of tape and CD drives are
supplied for failover purposes.

Table 11.2.2-1. Distribution and Ingest Peripheral HWCI Component Descriptions

Class/Type Comments

RAID (host attached) Hard Media Based Ingest/Distribution Staging
Working Storage could be relied upon in Releases B through D for off-
loading any peak in ingest/distribution storage need.

6250 Tape Drive Ingest/Distribution Peripherals:
Other peripheral devices may be added as required in Releases beyond
B. The actual devices will depend on the user community needs.

8-mm Tape Drives and Stacker Ingest/Distribution Peripheral

4-mm Tape Drives and Stacker Ingest/Distribution Peripheral

FAX Distribution Peripheral

3480/3490 Drives Considered a Distribution Peripheral

CD-ROM Jukebox (with Drives) Ingest/Distribution Peripheral

Operations Workstation Support for Data Distribution/Ingest Technician & Mail Clerk

Printers Support Mission and Operations Requirements

11-4 305-CD-024-002

The following paragraphs discuss network failures that may affect the Data Server subsystem hosts
and workstations. In discussing network failover and recovery it is important to note that: 1) All
Data Server workstations and hosts will be connected to the FDDI based Production Network and
2) Some DAACs (EDC, GSFC and LaRC) will have a subset of the high end hosts connected to a
HiPPI fabric as well.

In case of the FDDI based network, there are three types of network failures that may affect the
Data Server subsystem. If the FDDI cable between a host and the FDDI concentrator is severed or
damaged, then a new cable would need to be installed. No other configuration would be required.
If an individual port on the FDDI concentrator fails, then the attached host must be moved to
another port, again with no other configuration required. Finally, if the entire concentrator fails,
then it will have to be replaced, which can be done rapidly since the units require very little
configuration. Note that the above failures result in service interruption only to the workstations.
Since all servers/processors are attached to two hubs, communications occurs as normal in the
event of a cable or concentrator fault, and the applications will be unaware of and unaffected by
the event.

For those locations that have a HiPPI fabric, a similar set of network failures may affect the Data
Server hosts. If a HiPPI cable between a host and the HiPPI switch is severed or damaged, a new
cable would need to be installed as in the FDDI case. No other configuration would be required
(i.e. no need to reconfigure a switch port or host interface card). If an individual interface module
in the HiPPI switch fails, then the cables to the attached host must be moved to a spare interface
module in the same switch, and a single command issued for activation (it takes approximately a
minute). If the control module fails, it would need to be swapped out and the switch reconfigured.
In the very rare event of an entire switch chassis failure, the switch would either need to be replaced
or repaired. And this can be done within time thresholds set by RMA requirements by keeping the
appropriate spare components.

Refer to the Release B SDPS/CSMS Design Overview document (305-CD-020-002), Section
5.6.6.1 for more discussion on network backup and recovery.

12-1 305-CD-024-002

12. DDSRVHW - Document Data Server HWCI

This section contains the design information presented at IDR-B. Detailed design is currently in
progress for the DDSRVHWCI and will be fully documented in the re-delivery of The Release B
SDPS Data Server (305-CD-024-002) prior to the Delta Detailed Design Review for the SDSRV
CI and the DDSRV CI.

The Document Data Server (DDSRV) provides storage and retrieval services on ESDT related
documents and their metadata. Full text and keyword searching is provided, as well as the support
for hypertext presentation of document metadata. Document Data Server supports user access to
the Guide and Reference Papers.

12.1HW Design Drivers
The design of the Document Data Server is driven by its function as user interface to the ECS data
product collections associated with the TRMM, AM-1, and SAGE III missions.

12.1.1 Key Trade-off Studies and Prototypes

“Portable File Formats” TRADE The trade study analyses major implementation alternatives for
standard formats for data other than product earth science data. The essential requirement is
portability of such data between platforms. Several document data formats will most likely be
adopted.

12.1.2 Scalability, Evolvability and Migration to Future Releases

Future scalability of the Document Data Server component will be provided by adding comparable
capacity workstations or replacing/augmenting them by more powerful workstations as necessary
in the future releases. The Release B requirements have not changed the Release A approach to
hardware and sizing. In the future, disk storage will be increased as necessary.

12.2HWCI Structure
The block diagram below illustrates partitioning of the Access Control and Management hardware
into two functional modules.

12.2.1 HWCI Connectivity

The Data Server servers and workstations will be directly connected to the DAAC FDDI network.
The Data Server hosts will be connected to the same FDDI ring as the Data Manager hosts, as is
illustrated in Figure 7.6.2.1-1.

The Data Server processors/servers will contain dual-attached station (DAS) cards, which will be
dual-homed to separate FDDI concentrators. This provides redundancy so that full connectivity
will exist to the servers even in the event of a concentrator failure. The workstations will contain
single-attached station (SAS) cards and each will be connected to a single concentrator, but they
will also be split across concentrators so that they are not all connected to the same unit. The FDDI

12-2 305-CD-024-002

concentrators are in turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview
Volume 305-CD-004-001 for a general description of DAAC networks.)

Figure 12.2-1. Document Data Server HWCI Block Diagram

12.2.2 HWCI Components

A 2 CPU SMP server was selected based upon operational experience with the EDF EDHS. A
WAIS-like, full text indexer, an http server, and additional custom developed software will reside
on this host. The disk was sized to hold the document metadata for the data product collections
associated with the TRMM, AM-1, SAGE III missions, and for the V0 data sets identified for
migration. Sizing for document metadata was based on available V0 guide document sizing, and
the 2.0 Core metadata baseline. Growth was based on the phased migration of V0 data sets and the
TRMM, AM-1, and SAGE III data product collections acquired during Release B operations.

12.2.3 Failover and Recovery Strategy

Two Document Data server computers will supply redundant functionality. Either machine can
perform the function in the event of the loss of the other machine.

Table 12.2-1. Access Control & Management HWCI Component Descriptions
Component Name Class/Type Comments

Document Data Server 2 CPU SMP Server Large Workstation with Multiprocessor Capabilities
equipped with two processors. Internal disk (1GB) is
sufficient for Release B, but can be supplemented in
subsequent Releases.

Document Data
 Server

Document Data
Server Disk

Legend:
Local SCSI Bus

To/From DAAC External
Network Interface

DS FDDI

External Network Interface

DS FDDI to other HWCIs

12-3 305-CD-024-002

There are three types of network failures that may affect the Data Server subsystem. If the FDDI
cable between a host and the FDDI concentrator is severed or damaged, then a new cable would
need to be installed. No other configuration would be required. If an individual port on the FDDI
concentrator fails, then the attached host must be moved to another port, again with no other
configuration required. Finally, if the entire concentrator fails, then it will have to be replaced,
which can be done rapidly since the units require very little configuration.

Note that the above failures result in service interruption only to the workstations. Since all
servers/processors are attached to two hubs, they will communicate as normal in the event of a
cable or concentrator fault, and the applications will be unaware of and unaffected by the event.

12-4 305-CD-024-002

This page intentionally left blank.

A-1 305-CD-024-002

Appendix A. Requirements Trace

Table A-1. DSS Release B Requirements Trace (Page 1 of 15)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-00070 The SDSRV CI shall accept Service Requests
from the Data Processing subsystem and, as
a result, provide access to Data for the pur-
pose of reprocessing.

DsClRequest

S-DSS-00115 The SDSRV CI shall accept Search Status Re-
quests for a specified active Search Request
and, if requested, provide all Search Results
accumulated for that Search Request.

DSS

S-DSS-00116 The SDSRV CI shall accept Search Status Re-
quests for a specified active Search Request
and, if requested, provide all Search Results
accumulated since the last Search Status Re-
quest for that Search Request.

DSS

S-DSS-00180 The SDSRV CI shall accept and process Data
Requests for Data Products that are produced
on demand using the resources available to
the Data Server.

DsGeECSDataProduct

S-DSS-00200 The SDSRV CI shall provide the capability for
a user to delete their own queued Data Re-
quest.

DsClRequest

S-DSS-00210 The SDSRV CI shall provide operations staff
the capability to update the Priority Information
for a queued Service Request.

DsClRequest

S-DSS-00215 The SDSRV CI shall provide operations staff
the capability to modify any field in a queued
Service request.

DsClRequest

S-DSS-00230 The SDSRV CI shall provide users the capa-
bility to cancel their own Service Requests.

DsClRequest

S-DSS-00240 The SDSRV CI shall determine which Data
Requests require post-retrieval processing.

DsGeESDT

S-DSS-00250 The SDSRV CI shall provide an application
program interface for the submission of Ser-
vice Requests.

Client CSC

S-DSS-00260 The SDSRV CI shall provide an application
program interface for the submission of re-
quests for administrative services.

Client CSC

S-DSS-00264 The SDSRV CI shall provide an application
program interface which permits DAAC opera-
tions staff to link special subsetting capabilities
into a Science Data Server.

DsGeDynamicLibrary

S-DSS-00270 The SDSRV CI shall accept and process Data
Requests for Repaired Orbit Data.

DsGeESDT

S-DSS-00280 The SDSRV CI shall accept and process Data
Requests for Attitude Data.

DsGeESDT

A-2 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-00290 The SDSRV CI shall accept Suspend Re-
quests to suspend processing a client session.

DsClESDTReferenceCollector

S-DSS-00300 The SDSRV CI shall accept Resume Re-
quests to resume processing of a client ses-
sion.

DsClESDTReferenceCollector

S-DSS-00310 The SDSRV CI shall provide the capability for
authorized clients to submit Service Requests
batch mode.

DsClRequest

S-DSS-00320 The SDSRV CI shall notify clients that issue
Cancellation Requests that the associated
Service Request has been canceled or the as-
sociated Service Request was completed.

DsClRequest

S-DSS-00330 The SDSRV CI shall record Request Identifi-
ers to be used for accounting purposes.

DsSrRequestBase

S-DSS-00331 The SDSRV CI shall record the User Identifier
of the science investigator associated with a
Service Request, to be used for accounting
purposes.

DsSrClient

S-DSS-00332 The SDSRV CI shall record the amount of user
storage associated with a science user, to be
used for accounting purposes.

DsSrDiskUtilization

S-DSS-00333 The SDSRV CI shall record the amount of con-
nect time associated with a science user, to be
used for accounting purposes.

DsSrConnection

S-DSS-00340 The SDSRV CI shall record the level of CPU
utilization for each Service Request to be used
for accounting.

DsSrCPUUtilization

S-DSS-00350 The SDSRV CI shall record the level of I/O uti-
lization for each Service Request to be used
for accounting.

DsSrIOUtilization

S-DSS-00360 The SDSRV CI shall record, for accounting
purposes, a fixed personnel cost for Service
Requests requiring interaction with operations
staff.

DsSrFixedPersonelCost

S-DSS-00370 The SDSRV CI shall record a archival storage
cost based on the number of bytes stored, to
be used for accounting.

DsSrArchiveCost

S-DSS-00375 The SDSRV CI shall associate User Account-
ing Information with client sessions.

DsSrClient

S-DSS-00376 The SDSRV CI shall provide User Accounting
Information to the SMC.

MSS

S-DSS-00377 The SDSRV CI shall support operations staff
in the creation of utilization reports, and oper-
ations staff shall distribute them on a periodic
basis to a predefined list of report recipients.

DSS

S-DSS-00378 Operations staff shall be able to distribute SD-
SRV utilization reports eletronically or in hard
copy or on eletronic media.

SDSRV CI

Table A-1. DSS Release B Requirements Trace (Page 2 of 15)

A-3 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-00400 The SDSRV CI shall accept pricing informa-
tion, based on disk, CPU and media utilization,
from CSMS.

DsSrRequestBase

S-DSS-00410 The SDSRV CI shall provide actual cost infor-
mation by the completion of a Service Re-
quest.

DsSrCost

S-DSS-00420 The SDSRV CI shall record the amount of me-
dia utilized for a Distribution Request.

DsSrMediaUtilization

S-DSS-00430 The SDSRV CI shall accept the amount of me-
dia utilized from the distribution services.

DsSrCost

S-DSS-00440 The SDSRV CI shall be capable of providing
estimated Service Request Cost.

DsClRequest

S-DSS-00730 The SDSRV CI shall provide the capability to
store Metadata problem reports.

DsNsMPR

S-DSS-00732 The SDSRV CI shall provide the capability for
one Data Server to accept Data Availability
Schedules from another Data Server.

DsClRequest

S-DSS-00740 The SDSRV CI shall notify operations staff of
the receipt of Metadata problem reports.

MSS

S-DSS-00750 The SDSRV CI shall provide Metadata prob-
lem reports to operations staff upon request.

DsNsMPR

S-DSS-00760 The SDSRV CI shall provide application pro-
gram interfaces to all the operator functions.

Admin CSC

S-DSS-00770 The SDSRV CI shall utilize vendor supplied
tools to analyze system CPU performance.

DSS

S-DSS-00780 The SDSRV CI shall utilize vendor supplied
tools to monitor the performance of query pro-
cessing.

DSS

S-DSS-00790 The SDSRV CI shall utilize vendor supplied
tools to analyze system storage performance.

DSS

S-DSS-00800 The SDSRV CI shall utilize vendor supplied
tools to tune system throughput performance.

DSS

S-DSS-00810 The SDSRV CI shall utilize vendor supplied
tools to analyze system throughput perfor-
mance.

DSS

S-DSS-00830 The SDSRV CI shall collect Fault Manage-
ment Data, such as, device failures, Service
Request failures, transmission failures and
general failures. This information shall be sent
to the SMC for fault isolation.

SDSRV

S-DSS-00840 The SDSRV CI shall inform the collocated ele-
ments of ECS if resource availability falls be-
low nominal operating parameters. This
applies to staging resources and peripheral re-
sources.

DSS

S-DSS-00920 The SDSRV CI shall provide Logistics Status
to the SMC.

MSS

Table A-1. DSS Release B Requirements Trace (Page 3 of 15)

A-4 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-00930 The SDSRV CI shall provide training informa-
tion to the SMC.

MSS

S-DSS-00980 The SDSRV CI operations staff shall have the
capability to receive from the SMC, mainte-
nance directives.

DSS

S-DSS-00990 The SDSRV CI operations staff shall have the
capability to receive from the SMC, directives
for integration, testing, and simulation.

DSS

S-DSS-01000 The SDSRV CI operations staff shall have the
capability to receive from the SMC, configura-
tion management directives.

DSS

S-DSS-01010 The SDSRV CI operations staff shall have the
capability to receive from the SMC, logistics
management directives.

DSS

S-DSS-01020 The SDSRV CI operations staff shall have the
capability to receive from the SMC fault man-
agement directives.

DSS

S-DSS-01030 The SDSRV CI operations staff shall have the
capability to receive from the SMC security di-
rectives.

DSS

S-DSS-01035 The SDSRV CI operations staff shall have the
capability to receive from the SMC scheduling
directives, and scheduling adjudication direc-
tives.

DSS

S-DSS-01040 The SDSRV CI operations staff shall provide
integration, testing, and simulation status to
the SMC.

DSS

S-DSS-01050 The SDSRV CI operations staff shall have the
capability to receive training management di-
rectives from the SMC.

DSS

S-DSS-01080 The SDSRV CI shall notify operations staff in
the event that data required for an on-demand
data production is not accessible.

MSS

S-DSS-01170 The SDSRV CI shall provide the capability to
monitor resource utilization on a client basis.

DsAdResource

S-DSS-01200 The SDSRV CI shall notify the requester in the
event that an on-demand data production can-
not be completed.

DsClRequest

S-DSS-01220 The SDSRV CI shall provide the capability for
a client to suspend processing of a client ses-
sion.

DsClESDTReferenceCollector

S-DSS-01290 The SDSRV CI shall provide the capability for
the operations staff to suspend all active client
sessions.

DsAdSubscriptionIF

S-DSS-01300 The SDSRV CI shall provide the capability for
the operations staff to resume any or all client
sessions, previously suspended by operations
staff or clients.

DsAdSubscriptionIF

Table A-1. DSS Release B Requirements Trace (Page 4 of 15)

A-5 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-01310 The SDSRV CI shall provide the capability for
the client to resume a client session, previous-
ly suspended by the client.

DsClESDTReferenceCollector

S-DSS-01320 The SDSRV CI shall provide the capability for
the operations staff to terminate any or all ac-
tive or suspended client sessions.

DsAdSystemIF

S-DSS-01330 The SDSRV CI shall provide the capability for
the client to terminate any or all active or sus-
pended client sessions that were previously
initiated by the client.

DsClESDTReferenceCollector

S-DSS-01360 The SDSRV CI shall, in the event of a restart
after a processing failure, recover the state of
all Service Requests, including the rollback of
all incomplete Data Base Transactions, and
the recovery of all complete Data Base Trans-
actions.

DsSrRequestVector, DsSrCatalog

S-DSS-01410 The SDSRV CI shall log the suspension of the
processing of a Service Request or the sus-
pension of a client session.

DsSrConnection

S-DSS-01420 The SDSRV CI shall log the resumption of a
previously suspended Service Request or cli-
ent session.

DsSrConnection

S-DSS-01440 The SDSRV CI shall provide client Session
Status Information to the requester.

DsClESDTReferenceCollector

S-DSS-01450 The SDSRV CI shall provide application pro-
gramming interfaces capable of supporting the
development of extensions for the addition of
Metadata fields that are unique to the data
maintained at a specific DAAC.

DsDeDescriptor

S-DSS-01474 The SDSRV CI shall validate Subscription Re-
quests for time interval events. Time intervals
will be limited to daily, weekly, or monthly.

DsClSubscription

S-DSS-01520 The SDSRV CI shall provide the capability to
notify a user that a new version of the data has
been archived.

DsClSubscription

S-DSS-01540 The SDSRV CI shall provide the capability to
bundle notification of discrete events into a
single notice to the subscriber.

DSS

S-DSS-01560 The SDSRV CI shall accept Subscription Up-
date Requests to update stored Subscriptions
by changing the event or the action.

DsClSubscription

S-DSS-01580 The SDSRV CI shall provide the capability for
operations staff to update the stored Subscrip-
tions by changing the event and/or action.

DsClSubscription

S-DSS-01590 The SDSRV CI shall provide the capability for
a user client to update their stored Subscrip-
tions by changing the action and/or event.

DsClSubscription

Table A-1. DSS Release B Requirements Trace (Page 5 of 15)

A-6 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-01620 The SDSRV CI shall validate that Subscription
Update Requests specify a valid Subscription
Identifier and a valid replacement Subscrip-
tion.

DsClSubscription

S-DSS-01700 The SDSRV CI shall periodically report on new
events for timer-based Subscriptions and will
not repeat notification of old events.

DsSbTimedEvent

S-DSS-01790 The SDSRV CI shall provide access to com-
pound data type services.

DsClRequest

S-DSS-02901 The SDSRV CI shall provide the capability to
subset, subsample, or average data within a
granule based on Geographic location for
products specified in Appendix F - Data Type
Matrix.

DsGeECSDataProduct

S-DSS-02902 The SDSRV CI shall provide the capability to
subset, subsample, or average data within a
granule based on Spectral band for products
specified in Appendix F - Data Type Matrix.

DsGeECSDataProduct

S-DSS-02903 The SDSRV CI shall provide the capability to
subset, subsample, or average data within a
granule based on Time for products specified
in Appendix F - Data Type Matrix.

DsGeECSDataProduct

S-DSS-02904 The SDSRV CI shall provide the capability to
subset, subsample, or average data within a
granule based on WRS for products specified
in Appendix F - Data Type Matrix.

DsGeECSDataProduct

S-DSS-03002 The SDSRV CI shall be capable of receiving
L0 - L4 Data.

DsGeESDT

S-DSS-03004 The SDSRV CI shall be capable of receiving
Ancillary Data.

DsNpNonECSDataProduct

S-DSS-03006 The SDSRV CI shall be capable of receiving
Metadata associated with Ancillary Data.

DsNpNonECSDataProduct

S-DSS-03050 The SDSRV CI shall be capable of receiving
FDF Orbit Data for AM1 Instruments.

DsGeESDT

S-DSS-03060 The SDSRV CI shall be capable of receiving
FDF Attitude Data for AM1 Instruments.

DsGeESDT

S-DSS-03100 The SDSRV CI shall be capable of receiving
FDF Metadata for Orbit and Attitude data for
AM1 Instruments.

DsGeESDT

S-DSS-03122 The SDSRV CI shall be capable of receiving
real EOS instrument data to support pre-
launch checkout of the ground system.

DsGeESDT

S-DSS-03124 The SDSRV CI shall be capable of receiving
simulated EOS instrument data to support pre-
launch checkout of the ground system.

DsNpNonECSDataProduct

S-DSS-03190 The SDSRV CI shall be capable of receiving
Orbit/Attitude data.

DsGeESDT

S-DSS-03200 The SDSRV CI shall be capable of receiving
Metadata associated with Orbit/Attitude data.

DsGeESDT

Table A-1. DSS Release B Requirements Trace (Page 6 of 15)

A-7 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-03290 The SDSRV CI shall be capable of receiving
Spacecraft Historical Data.

DsGeESDT

S-DSS-03330 The SDSRV CI shall be capable of receiving
TBD Special Data Products.

DsNpNonECSDataProduct

S-DSS-03340 The SDSRV CI shall be capable of receiving
Metadata associated with TBD Special Data
Products.

DsNpNonECSDataProduct

S-DSS-03361 The SDSRV CI shall be capable of receiving
NMC data.

DsNpNonECSDataProduct

S-DSS-03362 The SDSRV CI shall be capable of receiving
First Look Products from the DAO.

DsGeESDT

S-DSS-03363 The SDSRV CI shall be capable of receiving
Reanalysis Products from the DAO.

DsNpNonECSDataProduct

S-DSS-03364 The SDSRV CI shall be capable of receiving
Final Analysis Products from the DAO.

DsGeESDT

S-DSS-03400 The SDSRV CI shall verify compliance of sci-
entist provided data with EOSDIS defined
standards for file content and structure (not
scientific content).

Ingest

S-DSS-03410 The SDSRV CI shall verify compliance of sci-
entist provided Metadata with EOSDIS defined
standards for Metadata content and structure
(not scientific content).

DsDeDescriptor

S-DSS-03460 The SDSRV CI shall interface with the STMGT
CI to provide storage for FDF Orbit Data for
AM-1 instruments.

DsGeESDT

S-DSS-03470 The SDSRV CI's MD Component shall provide
storage for Metadata associated with FDF Or-
bit and Attitude Data for AM-1 instruments.

DsMdCatalog

S-DSS-03492 The SDSRV CI shall interface with the STMGT
CI to provide storage for real EOS instrument
data to support pre-launch checkout of the
ground system.

DsGeESDT

S-DSS-03494 The SDSRV CI shall interface with the STMGT
CI to provide storage for simulated EOS instru-
ment data to support pre-launch checkout of
the ground system.

DsGeESDT

S-DSS-03600 The SDSRV CI shall interface with the STMGT
CI to provide storage for production plan data.

DsGeESDT

S-DSS-03660 The SDSRV CI shall interface with the STMGT
CI to provide storage for spacecraft historical
data.

DsGeESDT

S-DSS-03700 The SDSRV CI shall interface with the STMGT
CI to provide storage for TBD special Data
Products.

DsGeESDT

S-DSS-03710 The SDSRV CI's MD Component shall provide
storage for Metadata associated with TBD
special Data Products.

DsMdCatalog

Table A-1. DSS Release B Requirements Trace (Page 7 of 15)

A-8 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-03741 The SDSRV CI shall interface with the STMGT
CI to provide storage for NMC data.

DsGeESDT

S-DSS-03742 The SDSRV CI shall interface with the STMGT
CI to provide storage for First Look Products.

DsGeESDT

S-DSS-03743 The SDSRV CI shall interface with the STMGT
CI to provide storage for Reanalysis Products.

DsGeESDT

S-DSS-03744 The SDSRV CI shall interface with the STMGT
CI to provide storage for Final Analysis Prod-
ucts.

DsGeESDT

S-DSS-03940 The SDSRV CI shall be capable of receiving
estimated disk utilization from the PLANG CI.

DsSrCost

S-DSS-03950 The SDSRV CI shall be capable of receiving
estimated CPU utilization from the PLANG CI.

DsSrCost

S-DSS-03960 The SDSRV CI shall be capable of receiving
estimated disk utilization from the STMGT CI.

DsSrCost

S-DSS-03990 The SDSRV CI shall be capable of receiving
actual disk utilization from the PLANG CI.

DsSrCost

S-DSS-03992 The SDSRV CI shall interface with the STMGT
CI to provide storage for real EOS instrument
data to support pre-launch checkout of the
ground system.

DsGeESDT

S-DSS-03994 The SDSRV CI shall interface with the STMGT
CI to provide storage for simulated EOS instru-
ment data to support pre-launch checkout of
the ground system.

DsGeESDT

S-DSS-04000 The SDSRV CI shall be capable of receiving
actual CPU utilization from the PLANG CI.

DsSrCost

S-DSS-04010 The SDSRV CI shall be capable of receiving
actual disk utilization from the STMGT CI.

DsSrCost

S-DSS-04038 The SDSRV CI shall supply L0 - L4 Data to
the DDIST CI.

DsGeESDT

S-DSS-04080 The SDSRV CI shall supply FDF orbit data for
AM-1 instruments packages to the DDIST CI.

DsGeESDT

S-DSS-04082 The SDSRV CI shall supply FDF attitude data
for AM-1 instruments packages to the DDIST
CI.

DsGeESDT

S-DSS-04112 The SDSRV CI shall be capable of supplying
real EOS instrument data to support pre-
launch checkout of the ground system to the
DDIST CI.

DsGeESDT

S-DSS-04114 The SDSRV CI shall be capable of supplying
simulated EOS instrument data to support pre-
launch checkout of the ground system to the
DDIST CI.

DsGeESDT

S-DSS-04180 The SDSRV CI shall supply Orbit/Attitude
Data to the DDIST CI.

DsGeESDT

Table A-1. DSS Release B Requirements Trace (Page 8 of 15)

A-9 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-04190 The SDSRV CI's MD Component shall supply
Metadata associated with Orbit/Attitude Data
to the DDIST CI.

DsMdCatalog

S-DSS-04320 The SDSRV CI shall supply TBD special Data
Products to the DDIST CI.

DsGeESDT

S-DSS-04330 The SDSRV CI's MD Component shall supply
Metadata associated with TBD special Data
Products to the DDIST CI.

DsMdCatalog

S-DSS-04332 The SDSRV CI shall supply Research results
(articles, algorithms, data sets, software) to
the DDIST CI.

DsGeESDT

S-DSS-04340 The SDSRV CI shall supply V0 migration Data
Products to the DDIST CI.

DsGeESDT

S-DSS-04350 The SDSRV CI shall supply Metadata associ-
ated with V0 migration Data Products to the
DDIST CI.

DsGeESDT

S-DSS-04351 The SDSRV CI shall supply NMC data to the
DDIST CI.

DsGeESDT

S-DSS-04352 The SDSRV CI shall supply First Look Prod-
ucts to the DDIST CI.

DsGeESDT

S-DSS-04353 The SDSRV CI shall supply Reanalysis Prod-
ucts to the DDIST CI.

DsGeESDT

S-DSS-04354 The SDSRV CI shall supply Final Analysis
Products to the DDIST CI.

DsGeESDT

S-DSS-04410 The SDSRV CI's MD Component shall have
the ability to store references to Orbit/Attitude
Data as Metadata for science data.

DsMdCatalog

S-DSS-04500 The SDSRV CI's MD Component shall have
the ability to indicate the need for on-demand
product generation as Metadata for science
data.

DsMdCatalog

S-DSS-04620 The SDSRV CI shall update the Metadata for
a data item that has been purged from the sys-
tem.

DsMdCatalog

S-DSS-04630 The SDSRV CI shall update the Metadata
whenever a data item is relocated to another
site.

DsMdCatalog

S-DSS-04720 The SDSRV CI shall provide DARs to ASTER
ICC.

CIDM

S-DSS-04730 The SDSRV CI shall accept DARs from the cli-
ent.

CIDM

S-DSS-04740 The SDSRV CI shall provide DAR status to the
client, in response to DAR Status Requests.

CIDM

S-DSS-04745 The SDSRV CI shall provide operations staff
with the ability to display and list outstanding
DARs that are accessible by the Data Server.

CIDM

S-DSS-04750 The SDSRV CI shall accept DAR Status from
IPs

CIDM

Table A-1. DSS Release B Requirements Trace (Page 9 of 15)

A-10 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-04760 The SDSRV CI shall accept Subscription Re-
quests from the client linked to a specified, ex-
isting DAR.

DsClSubscription

S-DSS-04770 The SDSRV CI shall send DAR Status Re-
quests to ASTER ICC.

CIDM

S-DSS-04780 The SDSRV CI shall receive DAR Status from
the ASTER ICC.

CIDM

S-DSS-10020 The DDSRV CI shall accept Subscriptions for
metadata from the client.

To Be Deleted

S-DSS-10055 The DDSRV CI shall provide, to qualified us-
ers, access to all documents and data types
held in the server's collection.

DsSeWWWServer; DsCtSearchCom-
mand; DsCtAcquireCommand

S-DSS-10202 The DDSRV CI shall provide the capability to
ingest documentation in Microsoft WORD for-
mat.

DsCdCSDT; DsCdTypeID; DsCd-
WordB

S-DSS-10206 The DDSRV CI shall provide the capability to
ingest documentation in Interleaf format.

DsCdCSDT; DsCdTypeID; DsCdInter-
leafB

S-DSS-10208 The DDSRV CI shall provide the capability to
ingest documentation in WordPerfect format.

DsCdCSDT; DsCdTypeID; DsCdWord-
PerfectB

S-DSS-10230 The DDSRV CI shall provide application pro-
gramming interfaces that support addition of
documents for use as Guide data for DAAC-
specific Data Products.

DDSRV CI

S-DSS-10231 The DDSRV CI shall utilize vendor supplied
tools to analyze system CPU performance.

MSS Subsystem

S-DSS-10232 The DDSRV CI shall utilize vendor supplied
tools to analyze system throughput perfor-
mance.

MSS Subsystem

S-DSS-10233 The DDSRV CI shall collect Fault Manage-
ment Data, such as, device failures, Service
Request failures, transmission failures and
general failures. This information shall be sent
to the SDSRV CI for forwarding to the SMC for
fault isolation.

MSS Subsystem

S-DSS-10260 The DDSRV CI shall provide application pro-
gramming interfaces that support develop-
ment of extensions for addition of documents
for use as Guide data for DAAC-specific Data
Products.

DDSRV CI

S-DSS-10300 The DDSRV CI shall complete a search for a
guide document by a single keyword in not ex-
ceeding 8 seconds.

DDSRV CI

S-DSS-10305 The DDSRV CI shall complete a directory
search using a single keyword in a period to
exceed 8 seconds.

DDSRV CI

S-DSS-10306 The DDSRV CI shall complete a directory
search using multiple keywords in a period not
to exceed 13 seconds.

DDSRV CI

Table A-1. DSS Release B Requirements Trace (Page 10 of 15)

A-11 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-10310 The DDSRV CI shall complete a keyword
search on a 1000 page document of not ex-
ceeding 3 seconds.

DDSRV CI

S-DSS-20162 The STMGT CI shall provide the capability to
mount on-line backup media via automated
means.

DsStArchive

S-DSS-20210 For any EOS Level 0 or L1A (if L0 is not avail-
able) data item that can not be located or is in-
accessible and can not be re-created, the
STMGT CI shall notify the operator which data
item is missing and the operator shall request
the data item be re-ingested from EDOS.

DsStArchive

S-DSS-20260 For each piece of archive media, the STMGT
CI shall provide the capability to display the
length of time to store data on the media be-
fore deletion.

DsStArchive

S-DSS-20270 The STMGT CI shall provide the capability to
change the length of time to store data on ar-
chive media before deletion of the data.

DsStArchive

S-DSS-20280 The STMGT CI shall provide the capability to
directly notify active users when Data Prod-
ucts will be deleted.

SDSRV

S-DSS-20290 The STMGT CI shall provide the capability to
indirectly notify users when Data Products will
be deleted via a bulletin board type mecha-
nism.

SDSRV

S-DSS-20450 The STMGT CI shall provide the capability to
archive real EOS instrument data to support
pre-launch checkout of the ground system.

DsStArchive

S-DSS-20455 The STMGT CI shall provide the capability to
retrieve real EOS instrument data to support
pre-launch check out of ground systems.

DsStArchive

S-DSS-20460 The STMGT CI shall provide the capability to
archive simulated EOS instrument data to sup-
port pre-launch checkout of the ground sys-
tem.

DsStArchive

S-DSS-20462 The STMGT CI shall provide the capability to
retrieve simulated EOS instrument data to
support pre-launch checkout of the ground
system.

DsStArchive

S-DSS-20470 The STMGT CI shall provide the capability to
retrieve simulated EOS instrument data to
support pre-launch checkout of the ground
system.

DsStArchive

S-DSS-20550 The STMGT CI shall provide operations staff a
mechanism to display/view storage system
operating parameters which affect storage
system performance.

DsStStagingMonitor, DsStPullMonitor

Table A-1. DSS Release B Requirements Trace (Page 11 of 15)

A-12 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-20560 The STMGT CI shall provide operations staff a
mechanism to display/view storage system
operating parameters which affect storage
system scheduling.

DsStResourcePolicy

S-DSS-20570 The STMGT CI shall provide operations staff
the capability to change storage system oper-
ating parameters which affect storage system
performance.

DsStStagingMonitor, DsStPullMonitor

S-DSS-20580 The STMGT CI shall provide operations staff
the capability to change storage system oper-
ating parameters which affect storage system
scheduling.

DsStResourcePolicy

S-DSS-20610 The STMGT CI shall provide the capability to
archive multiple versions of Data Granules.

DsStArchive

S-DSS-20624 The STMGT CI shall provide a mechanism to
statistically monitor the checksum error rate of
archive media.

DsStArchive

S-DSS-20625 The STMGT CI shall allow the operator to
manually specify archive media to be recop-
ied/refreshed.

FSMS COTS

S-DSS-20650 The STMGT CI shall provide operations staff
the capability to generate a backup of all data
holdings.

DsStArchive

S-DSS-20660 The STMGT CI shall provide operations staff
the capability to restore backups of specified
data holdings.

DsStArchive

S-DSS-20720 The STMGT CI shall provide a mechanism to
mark data for deletion. The mechanism shall
be based on selection of max time to store
data before it's deleted from storage. It shall
also mark earlier versions when multiple ver-
sions have been archived.

DsStArchive

S-DSS-20730 The STMGT CI shall provide a mechanism to
automatically delete archived data which has
been marked for deletion.

DsStArchive

S-DSS-20740 The STMGT CI shall provide operations staff
the capability to retrieve data that has been
safe-stored at an external facility.

DsStArchive

S-DSS-20750 For data retrieval requests for L0 data from
EDOS, STMGT CI shall satisfy such requests
with appropriate L0 or L1A data. Note: These
instruments provide L0 data, CERES, LIS, AS-
TER, MISR, MODIS, MOPPIT; these provide
L1A data, LIS, PR, TMI, VIRS.

DsStArchive

S-DSS-20800 The STMGT CI shall use operator selectable
criteria to determine the physical storage de-
vice that data types will be stored in. This cri-
teria shall consider: current store and retrieval
activity, number of storage devices, type of
data to be stored.

DsStResourceConfig

Table A-1. DSS Release B Requirements Trace (Page 12 of 15)

A-13 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-20810 The STMGT CI shall provide operations staff
the capability to manually alter the criteria that
determines the physical storage device that
data sets will be stored in.

DsStResourceConfig

S-DSS-20820 The STMGT CI shall provide operations staff
the capability to alter the criteria that deter-
mines removal of archive media from storage
devices to allow insertion of new or different
archive media in the storage device.

DsStArchive

S-DSS-20830 In determining the archive media to be re-
moved the criteria shall consider the media's
capacity for storing additional data, the last
time data was accessed on the media and
whether the media is currently in use to store
or retrieve data.

DsStArchive

S-DSS-20840 The STMGT CI shall report information on the
storage system. Information reported shall in-
clude file access time, file accesses per hour,
size of files stored onto archive media, size of
files retrieved from archive media, amount of
storage allocated.

DsStArchive, DsStStagingDisk

S-DSS-20850 The STMGT CI shall collect information on the
storage system. Information shall include avg
access time, avg # of accesses per hour,
mean request inter-arrival time, avg file size
stored, avg file size retrieved and avg file resi-
dency time on disk.

DsStArchive DsStStagingDisk

S-DSS-20860 The STMGT CI shall provide a mechanism to
monitor the performance of the ECS archival
storage system.

DsStResourceManager

S-DSS-20870 The STMGT CI shall provide operations staff
the capability to view/display performance in-
formation on the storage system.

DsStResourceManager

S-DSS-21130 The STMGT CI shall provide estimates of
staging device time delays for subsetted Data
Requests.

DsStRequestManager

S-DSS-21140 The STMGT CI shall provide estimates of
staging device time delays for subsampled
Data Requests.

DsStRequestManager

S-DSS-21150 The STMGT CI shall provide estimates of
staging device time delays for summary Data
Requests.

 DsStRequestManager

S-DSS-21240 The STMGT CI shall provide operations staff a
mechanism to display/view storage system uti-
lization by ECS element.

DsStStagingDisk

S-DSS-21250 The STMGT CI shall provide operations staff a
mechanism to display/view storage system
performance by ECS element.

DsStResourceManager

S-DSS-21260 The STMGT CI shall provide operations staff a
mechanism to display/view storage system
cost by ECS element.

DsStResourceManager

Table A-1. DSS Release B Requirements Trace (Page 13 of 15)

A-14 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-21280 The SDSRV CI shall provide application pro-
gramming interfaces (APIs) to support Insert
Requests.

DsClRequest

S-DSS-21290 The STMGT CI shall provide application pro-
gramming interfaces (APIs) to support Retriev-
al Requests.

DsStArchive

S-DSS-21300 The STMGT CI shall provide application pro-
gramming interfaces (APIs) to support Status
Requests related to previous Insert Requests.

DsStRequestManager

S-DSS-21310 The STMGT CI shall provide application pro-
gramming interfaces (APIs) to support Status
Requests related to previous Retrieval Re-
quests.

DsStRequestManager

S-DSS-21320 The STMGT CI shall provide the capability to
estimate time delays for data retrievals due to
contention for hardware resources.

DsStRequestManager

S-DSS-21340 The STMGT CI shall provide data to support
administrative requests for Accounting Man-
agement Data.

DsStResourceSchedule

S-DSS-21350 The STMGT CI shall collect Accounting Man-
agement Data as defined in Appendix A.

DsStResourceSchedule

S-DSS-21430 The STMGT CI shall provide operations staff a
mechanism to delete records from the File Di-
rectory.

DsStArchive

S-DSS-21610 The MSFC DAAC Science Management with-
in the Data Server shall make TSDIS original
standard products (Level 1B-3) eligible for de-
letion after 6 months

DSS Subsystem

S-DSS-30190 The DDIST CI shall record the cost of the ship-
ping and handling of the media associated
with each Media Distribution request.

DsDdMedia

S-DSS-30200 The DDIST CI shall record the network cost of
data transmission, the User Identifier and the
Request Identifier.

DsDdMedia

S-DSS-30210 The DDIST CI shall record the cost of CPU in-
tensive operations performed on data to be
distributed. Such operations include compres-
sion/decompression and reformatting.

DsDdMedia

S-DSS-30220 The DDIST CI shall record the cost of archive
storage for data to be distributed based on dis-
tribution size.

DsDdMedia

S-DSS-30230 The DDIST CI shall provide the capability to
report the estimated media utilization to the
SDSRV CI.

DsDdDistList

S-DSS-30240 The DDIST CI shall provide the capability to
report the actual media utilization to the SD-
SRV CI.

DsDdDistList

S-DSS-30245 The DDIST CI shall provide the capability to
report accounting data to the SDSRV CI.

DsDdDistList

Table A-1. DSS Release B Requirements Trace (Page 14 of 15)

A-15 305-CD-024-002

L4 Rqmt ID L4 Requirement Text Subsystem, Object Class, CSC, or CI

S-DSS-30296 The DDIST CI shall alert SMC when electronic
transmission problems are encountered.

DsDdPushMedia

S-DSS-30450 The DDIST CI shall provide the capability to
distribute on 4mm tape.

DsDdTapeMedia

S-DSS-30460 The DDIST CI shall provide the capability to
distribute on 3480/3490 tape.

DsDdTapeMedia

S-DSS-30482 The DDIST CI shall provide the capability to
support additional data distribution formats
and conversion software.

DsDdDistList

S-DSS-30500 If the number of correctable errors exceed a
system threshold for a piece of media, the
DDIST CI shall abort the operation and auto-
matically request a new piece of media from
operations staff.

DsDdMedia

S-DSS-30510 Operations staff shall have the capability to
specify a threshold of correctable errors for
each type of distribution media.

DsDdMedia,
DsStResourceConfig

S-DSS-30620 The DDIST CI shall provide the capability to
distribute documents electronically via FAX
transmissions.

DsDdFaxMediaB

S-DSS-30690 For physical media distributions, the DDIST CI
shall generate a physical "media label" that
operations staff can apply to the media, and
shall associate the individual piece of media
with any other media in the distribution.

DsDdMediaLabelB

S-DSS-30700 For physical media distributions, the DDIST CI
shall generate a physical "shipping label" that
operations staff can affix to the shipping con-
tainer and indicates the destination of the me-
dia.

DsDdShippingLabelB

S-DSS-30770 The DDIST CI shall provide an applications
program interface to submit Distribution Re-
quests, obtain Request Status for Distribution
Requests, and retrieve a list of Distribution Re-
quests submitted.

DsDdDistList,
DsDdDistRequest,
DsDdRequestList

S-DSS-30795 For physical media distributions, the DDIST CI
shall record the cost of the media to be used
for accounting.

DsDdMedia

Table A-1. DSS Release B Requirements Trace (Page 15 of 15)

A-16 305-CD-024-002

This page intentionally left blank.

AB-1 305-CD-024-002

Abbreviations and Acronyms

ADSRV advertising service CSCI

AHWGP Ad Hoc Working Group for Production

AMASS archival management and storage system

APC Access/Process Coordinators

API application program interface

AS Administration Stations

ASCII American Standard Code for Information Interchange

ATL automatic tape library

ATM asynchronous transmission mode

CD-ROM compact disk - read only memory

CGI common gateway interface

CI configuration item

COTS commercial off-the-shelf

CPU central processing unit

CSC computer software component

CSCI computer software configuration item

CSS Communication Services Subsystem

DAAC distributed active archive center

DAS Dual-Attached Station

DBA database administrator

DBMS database management system

DCE distributed computing environment

DDICT data dictionary CSCI

DDIST data distribution CSCI

DDSRV document data server CSCI

DEV developed code

DLT Digital Linear Tape

DPS data processing subsystem

DSS data server subsystem

ECS EOSDIS Core System

EDF ECS development facility

EDHS Electronic Document Handling System

EOSDIS Earth Observing System Data and Information System

AB-2 305-CD-024-002

ESDT Earth science data types

FDDI fiber distributed data interface

FSMS File Storage Management System

FTP file transfer protocol

GUI graphical user interface

HSM hierarchical storage management

HTML hypertext markup language

HTTP hypertext transfer protocol

HW hardware

I/O input/output

INGST Ingest Subsystem

INTOP Interoperability CSCI

MSS management subsystem

NTP New Tape Product (IBM designation of the 3590 tape)

OMT Object Modeling Technique

OODCE object oriented DCE

OPS operations

OTS off-the-shelf

PAM Permanent Archive Management

pdf portable document format

RAID redundant array of inexpensive disks

RMA reliability, maintainability, availability

RTF Relocatable Transfer Format

SAS Single-Attached Station

SDPS Science Data Processing Segment

SDSRV Science Data Server CSCI

SMP symmetric multi-processor

SNMP simple network management protocol

STMGT Storage Management Software CSCI

TRMM Tropical Rainfall Measuring Mission

TSDIS TRMM Science Data and Information System

V0 Version 0

V1 Version 1

WAIS Wide Area Information Service

WS working storage

WWW World Wide Web

GL-1 305-CD-024-002

Glossary

advertisement A text description that announces the availability of ECS data
or services to ECS users.

advertising service Through the advertising service, users can search and query
descriptions of the data and services available in the network.
This data is called advertisements. It is prepared by the data
and/or service providers.

affiliated data center
(ADC)

A facility not funded by NASA that processes, archives, and
distributes Earth science data useful for global change
research, with which a working agreement has been negotiated
by the EOS program. The agreement provides for the
establishment of the degree of connectivity and
interoperability between EOSDIS and the ADC needed to
meet the specific data access requirements involved in a
manner consistent and compatible with EOSDIS services.
Such data-related services to be provided to EOSDIS by the
ADC can vary considerably for each specific case.

ancillary data Data other than instrument data required to perform an
instrument’s data processing. They include orbit data, attitude
data, time information, spacecraft engineering data,
calibration data, data quality information, and data from other
instruments.

application identifier
(APID)

The number assigned by spacecraft mission management that
represents the on-board application that generated the
telemetry data.

application software Programs designed for specific functions, such as payroll,
accounts payable, inventory control, or property management,
generally consisting of source code and object code databases,
procedures, and documentation

archive tape library Archive robotics unit

authorized user see user, authorized

availability A measure of the degree to which an item is in an operable and
committable state at the start of a "mission" (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures
divided by the sum of the mean time between failures and the
mean down time [before restoration of function].)

GL-2 305-CD-024-002

baseline Identification and control of the configuration of software (i.e.
selected software work products and their descriptions) at
given points in time.

binary file A data file whose contents are in binary form (i.e., not
encoded)

browse data product Subsets of a larger data set, other than the directory and guide,
generated for the purpose of allowing rapid interrogation (i.e.,
browse) of the larger data set by a potential user. For example,
the browse product for an image data set with multiple spectral
bands and moderate spatial resolution might be an image in
two spectral channels, at a degraded spatial resolution. The
form of browse data is generally unique for each type of data
set and depends on the nature of the data and the criteria used
for data selection within the relevant scientific disciplines.

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software
routines, and ground truth data that are to be used in the data
calibration processing routine.

CCSDS
recommendations

Recommendations for spacecraft telemetry and telecommand
packet format and protocol made by the Consultative
Committee for Space Data Systems.

client A software component that sends or issues service requests to
ECS servers or service providers; a requester of service.

client session see SESSION

commercial off the shelf
(COTS)

COTS is a product, such as an item, material, software,
component, subsystem, or system, sold or traded to the general
public in the course of normal business operations at prices
based on established catalog or market prices (see FAR
15.804-3(c) for explanation of terms.

component The next lower functional subdivision below "subsystem" in
the ECS functional hierarchy.

computer software
component (CSC)

A distinct part of a computer software configuration item.
CSCs may be further decomposed into other CSCs and
computer software units.

computer software
configuration item
(CSCI)

A configuration item comprised of computer software
components and computer software units.

GL-3 305-CD-024-002

configuration The functional and physical characteristics of hardware,
firmware, software or a combination thereof as set forth in
technical document and achieved in a product.

configuration item (CI) An aggregation of hardware, firmware, software or any of its
discrete portions, which satisfies an end use function and is
designated for configuration management.

Critical Design Review
(CDR)

A detailed review of the element/segment-level design,
including such details as program design language for key
software modules, and element interfaces associated with a
release.

DAAC see Distributed Active Archive Center

DAAC-unique Functions and capabilities provided by the DAAC beyond
those provided by the core system. The functions will be
integrated with ECS via APIs for other similar mechanisms.
Examples of DAAC-unique functions include visualization,
specialized interfaces, and data set-unique functionality.

Data Archive And
Distribution System
(DADS)

Included in each DAAC and responsible for archiving and
distribution of EOS data and information.

data availability
acknowledgment

Status return when a data availability notice cannot be satisfied
(e.g., due to a validation error or transmission error).

data availability notice Notice form a client of data available for ingest.

data availability
schedule

Data availability schedule is a schedule indicating the times at
which specific data sets will be available from remote DADS,
EDOS, the international partners, the ADCs, and other data
centers for ingestion by the collocated DADS. The schedules
are received directly by the PGS.

data center A facility storing, maintaining, and making available data sets
for expected use in ongoing and/or future activities. Data
centers provide selection and replication of data and needed
documentation and, often, the generation of user tailored data
products.

data ingest request Request to ingest data.

GL-4 305-CD-024-002

data product Data products consist of Level 0 data or Level 1 through Level
4 data products obtained by the PGS from the collocated
DADS. These represent the primary input to the product
generation process.

A collection (1 or more) of parameters packaged with
associated ancillary and labeling data, uniformly processed
and formatted. Typically uniform temporal and spatial
resolution. (Often the collection of data distributed by a data
center or subsetted by a data center for distribution.) There are
two types of data products:

a.Standard: A data product produced at a DAAC by a
community consensus algorithm. Typically produced for a
wide community. May be produced routinely or on-demand.

data product levels Raw data--Data in their original packets, as received from the
observer, unprocessed by EDOS.

• Level 0--Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

• Level 1A--Reconstructed unprocessed instrument data at full
resolution, time referenced, and annotated with ancillary
information, including radiometric and geometric calibration
coefficients and georeferencing parameters (i.e. platform
ephemeris) computed and appended, but not applied to Level
0 data.

• Level 1B--Radiometrically corrected and geolocated Level
1A data that have been processed to sensor units.

• Level 2--Derived geophysical parameters at the same
resolution and location as the Level 1 data.

data server Either the data server subsystem as a whole, or a specific
instance of a data server. A data server is a (hardware/
software) entity that accepts, stores, and distributes EOS (and
other) data, for both other subsystems within ECS and external
users.

data server insert
request

Request to insert data into a data server.

data set A logically meaningful grouping or collection of similar or
related data.

GL-5 305-CD-024-002

data type A particular type of data handled by a particular data server.
An example of a data type might be MODIS Level 1a
products, etc.

data type taxonomy A classification of earth science and related data into types.

definitive attitude data Down-linked attitude data received with Level 0 data.

definitive orbit data Down-linked orbit (ephemeris) data received with level 0 data.

delivered algorithm
packages

The full content of data and information delivered by a data
producer during the process of standard product Algorithm
Integration & Test, including all elements defined as minimum
content within Volume 4 of the Science User's Guide,
available at PDR.

Distributed Active
Archive Center
(DAAC)

An EOSDIS facility which generates, archives, and distributes
EOS Standard Products and related information for the
duration of the EOS mission. An EOSDIS DAAC is managed
by an institution such as a NASA field center or a university,
per agreement with NASA. Each DAAC contains functional
elements for processing data (the PGS), for archiving and
disseminating data (the DADS), and for user services and
information management (elements of the IMS).

ASF -- Alaska SAR Facility

EDC -- EROS Data Center

GSFC -- Goddard Space Flight Center

JPL -- Jet Propulsion Laboratory

EDOS data unit (EDU) The message packet generated by EDOS that contains the
reconstructed spacecraft telemetry packet.

GL-6 305-CD-024-002

engineering data All data available on-board about health, safety, environment,
or status of the spacecraft and instruments.

• housekeeping data: The subset of engineering data required
for mission and science operations. These include health and
safety, ephemeris, and other required environmental
parameters.

• instrument engineering data: All non-science data provided
by the instrument.

• platform engineering data: The subset of engineering data
from platform sensor measurements and on-board
computations.

• spacecraft engineering data: The subset of engineering data
from spacecraft sensor measurements and on-board
computations.

EOS Data and
Operations System
(EDOS) production data
set

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission artifacts
removed, in time order, with duplicate data removed, and with
quality/ accounting (Q/A) metadata appended. Time span, or
number of packets, encompassed in a single data set are
specified by the recipient of the data. These data sets are
equivalent to Level 0 data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual
packet and the data set itself and with essential formatting
information for unambiguous identification and subsequent
processing.

ephemeris data See "orbit data"

external data provider An external data source providing data to be ingested in SDPS.

format Format of data -- ASCII, binary, etc.

granule The smallest aggregation of data that is independently
managed (i.e., described, inventoried, retrievable). Granules
may be managed as logical granules and/or physical granules.

granule location The name of the product where this granule is located.

hardware That combination of subcontracted, COTS, and government
furnished equipment (e.g., cables and computing machines)
that are the platforms for software.

GL-7 305-CD-024-002

hardware configuration
item (HWCI)

A configuration item comprised of hardware components.

HDF file A data file whose format follows the NCSA Hierarchical Data
Format standard, as well as ECS-developed extensions
thereto.

I/O access A read or write by a process to a data file.

ingest status request Request for status on a data ingest request.

insert request Request to insert data into the archive.

interface classes The interfaces offered by a class of objects or object
collections. User, for example, in the context of Service
Classes to denote the collection of interfaces supported by this
service class.

interface definition
language (IDL)

IDL provides uniform semantics for all interfaces.

interface(s) The functional and physical characteristics required to exist at
a common boundary.

maintainability The measure of the ability of an item to be retained in or
restored to a specified condition when maintenance is
performed by personnel having specified skill levels, using
prescribed procedures and resources, at each prescribed level
of maintenance and repair. (The probability that maintenance,
both corrective and preventive, can be performed in a
specified amount of time using a specified set of prescribed
procedures and resources expressed as MTTR).
Maintainability is the function of design.

mean down time (MDT) Sum of the mean time to repair MTTR, plus the average
administrative logistic delay times.

mean time between
failure (MTBF)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/
operating time.

mean time to repair
(MTTR)

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design
parameters. It is a basic measure of maintainability: The sum
of corrective maintenance times at any specific level of repair,
divided by the total number of failures within an item repaired
at that level, during a particular interval under stated
conditions.

GL-8 305-CD-024-002

metadata Information about data sets which is provided to the ECS by
the data supplier or the generating algorithm and which
provides a description of the content, format, and utility of the
data set. Metadata may be used to select data for a particular
scientific investigation. It is “data about data” used to
facilitate database searches. Types of metadata include:
product metadata (data describing a particular product, such as
when it was generated, etc.) and algorithm metadata (data
describing science software)

object Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are identified
by client via unique reference.

object implementation Code and data that realizes target object's behavior.

operations personnel Same as operations staff.

operations staff Generic term for personnel who have the responsibility to
operate, monitor, and control SDPS. Also can be, one of the
DAAC operations staff assigned to the ingest or data server
subsystems, i.e., Data Archive Analyst, Data Ingest
Technician, Data Distribution Technician, Data Base
Administrator, etc.

orbit data Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of
mass of the Earth); a corresponding statement about the
accuracy of the position and the corresponding time of the
position (including the time system); some accuracy
requirements may be hundreds of meters while other may be a
few centimeters.

p = v metadata Label = value where label is a field name and value is either a
single value or list of values

Preliminary Design
Review (PDR)

PDR is held for each ECS Segment. The PDR addresses the
design of the segment-level capabilities and element interfaces
through all ECS releases. The PDR also addresses prototyping
results and how the results of both Contractor and Government
prototyping efforts, studies, and user experience with EOSDIS
Version 0 have been incorporated into the ECS design for each
respective Segment.

process An executing program.

GL-9 305-CD-024-002

quick-look data Data received during one TDRSS contact period which have
been processed to Level 0 (to the extent possible for data from
a single contact).

reliability Reliability is the function of design. It is the probability that
system/equipment will operate within design parameters
under stated conditions, for a specified interval expressed as
MTBF.

report Documentation of some automated (such as standards
checking) or manual (such as evaluation of a science software
delivery) activity.

requirement A statement to which the developed system must comply.
Varieties of requirements: Levels 2, 3, 4; performance,
functional, design, interface.

requirements
traceability

There are three recognized levels of requirements on the ECS
Project:

• ESDIS (Level 2)

• ECS System (Level 3)

• ECS Detailed Subsystem (Level 4)

Traceability is the verification and validation of the parents
and children of ECS Levels 2,3,4 requirements down to
release and subsystem levels. Analysis is done by the ECS
Project System and Subsystem engineering.

reusable software Software developed in response to the requirements for one
application that can be used, in whole or in part, to satisfy the
requirements of another application.

scenario A description of the operation of the system in user’s
terminology including a description of the output response for
a given set of input stimuli. Scenarios are used to define
operations concepts.

science user A user the SDPS from the scientist community or other user
community that originates service requests.

SDP Toolkit A set of SDPS-standard API between science algorithms and
the process execution service for status reporting and process
control

server A software component that receives and executes service
requests (e.g., the LIM, the DIM, the data server, the PLANG
CI).

GL-10 305-CD-024-002

service A grouping of functional requirements as listed in a
specification. For example, in the Level 3 requirements, IMS
“services” are System Access, Information Search, etc.

session The logical context assigned to a user or a client in which a set
of service requests are performed. Sessions associate and
manage the resources and results sets that are allocated and
generated as a result of the processing of service requests. A
session retains information associated with the execution of
service requests so that it is accessible to subsequent service
requests. Service requests may utilize resources and results
sets allocated and produced by other service requests
belonging to the same session. Service requests issued in the
context of one session cannot utilize the resources managed by
another session. There are two kinds of sessions, client
sessions and user sessions.

Sessions have the following states:

a.Active: The session is established and will allow service
requests to allocate and access session resources.

session, client A client session supports interactions between a client and a
server. Client sessions associate and manage the resources
and results sets that are allocated and generated by the server.

simulated data ...same as test data

status Status is information regarding schedules, hardware and
software configuration, exception conditions, or processing
performance. This information is exchanged with the DADS,
and is provided to the system management center (SSMC).
The SSMC may also receive information regarding schedule
conflicts that have not been resolved with the IMS.

status request Request for status of archive insert and retrieval requests (also
need this for ingest and distribution).

universal reference A uniform model for referencing objects throughout SDPS
which each SDPS service will understand and support.

GL-11 305-CD-024-002

user • Any person accessing the EOSDIS.

• Authorized users are users who have viable EOSDIS
accounts, and who may therefore make EOSDIS data requests.
These users may be affiliated or unaffiliated. Affiliated users
are those who are sponsored by one of the parties to the Earth
Observations-International Coordination Working Group
(EAU-ICWG) data policy. Each party is responsible for
ensuring that all its affiliated users comply with the EO-ICWG
data policy. Use of data by affiliated users is classified in one
of three categories, defined in the EO-ICWG data policy:

+ Research Use: A study or an investigation in which the user
affirms (1) the aim is to establish facts or principles; (2) the
data will not be sold or reproduced or provided to anyone not
covered by this or another valid affirmation; (3) the results of
the research will be submitted for publication in the scientific

World Wide Web
browser

Software (local or remote) that allows a user to Access the
WWW either textually or graphically. WWW is a mechanism
for connecting Internet via a set of hypertext documents.

GL-12 305-CD-024-002

This page intentionally left blank.

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Document Organization
	1.4 Status and Schedule

	2. Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents Not Referenced

	3. Subsystem Overview
	3.1 Introduction and Context
	3.2 Subsystem Overview
	3.2.1 Subsystem Structure
	3.2.2. Subsystem Design Rationale
	3.2.3. Data Server Subsystem Common Design
	3.2.4. Data Server Subsystem Use of Key Design Mec...

	4. SDSRV - Science Data Server CSCI
	4. SDSRV - Science Data Server CSCI
	4.1 CSCI Overview
	4.2 CSCI Context
	4.3 CSCI Object Model
	4.3.1 DsAcACRIMB Class
	4.3.2 DsAdBaseInterface Class
	4.3.3 DsAdConfigurationInterface Class
	4.3.4 DsAdDatatypeInterface Class
	4.3.5 DsAdDescriptor Class
	4.3.6 DsAdLog Class
	4.3.7 DsAdRequestInterface Class
	4.3.8 DsAdResourceInterface Class
	4.3.9 DsAdSubscriptionInterface Class
	4.3.10 DsAdSystemInterface Class
	4.3.11 DsAsAsterB Class
	4.3.12 DsCeCERES Class
	4.3.13 DsClAction Class
	4.3.14 DsClCollector Class
	4.3.15 DsClCollectorVector Class
	4.3.16 DsClCommand Class
	4.3.17 DsClDescriptor Class
	4.3.18 DsClESDTReference Class
	4.3.19 DsClESDTReferenceCollector Class
	4.3.20 DsClESDTReferenceVector Class
	4.3.21 DsClNotificationReceiver Class
	4.3.22 DsClQuery Class
	4.3.23 DsClRequest Class
	4.3.24 DsClRequestVector Class
	4.3.25 DsClSubmittedRequest Class
	4.3.26 DsClSubscription Class
	4.3.27 DsClSubscriptionCollector Class
	4.3.28 DsClTypeInfo Class
	4.3.29 DsCnConfiguration Class
	4.3.30 DsCnDSSConfiguration Class
	4.3.31 DsCnDSSStartup Class
	4.3.32 DsCoColorB Class
	4.3.33 DsCoCombination Class
	4.3.34 DsCs24BitImage Class
	4.3.35 DsCs8BitImage Class
	4.3.36 DsCsCSDT Class
	4.3.37 DsCsGrid Class
	4.3.38 DsCsImage Class
	4.3.39 DsCsLookupTable Class
	4.3.40 DsCsPoint Class
	4.3.41 DsCsRaw Class
	4.3.42 DsCsSwath Class
	4.3.43 DsCsTableB Class
	4.3.44 DsDbAccess Class
	4.3.45 DsDbAttributeToTableVector Class
	4.3.46 DsDbEngine Class
	4.3.47 DsDbGranuleToDbVector Class
	4.3.48 DsDbInterface Class
	4.3.49 DsDeCoreValid Class
	4.3.50 DsDeCoreValidVector Class
	4.3.51 DsDeDD Class
	4.3.52 DsDeDDVector Class
	4.3.53 DsDeESDTDescriptor Class
	4.3.54 DsDeESDTDescriptorSet Class
	4.3.55 DsDeEvent Class
	4.3.56 DsDeEventVector Class
	4.3.57 DsDeMathOp Class
	4.3.58 DsDeMetadataDef Class
	4.3.59 DsDeMetadataDefVector Class
	4.3.60 DsDeRange Class
	4.3.61 DsDeScienceParameter Class
	4.3.62 DsDeScienceParameterVector Class
	4.3.63 DsDeSeries Class
	4.3.64 DsDeService Class
	4.3.65 DsDeServiceVector Class
	4.3.66 DsDeStaticMetadata Class
	4.3.67 DsDeStaticMetadataVector Class
	4.3.68 DsDeValid Class
	4.3.69 DsDeValidVector Class
	4.3.70 DsDoReferencePaper Class
	4.3.71 DsErERSB Class
	4.3.72 DsEtETMB Class
	4.3.73 DsFactory Class
	4.3.74 DsGeBrowseProduct Class
	4.3.75 DsGeDynamicLibrary Class
	4.3.76 DsGeECSDataProduct Class
	4.3.77 DsGeESDT Class
	4.3.78 DsGeESDTConfiguration Class
	4.3.79 DsGeESDTDynamicLibrary Class
	4.3.80 DsGeESDTEventTable Class
	4.3.81 DsGeESDTServiceProvider Class
	4.3.82 DsGeESDTWrapper Class
	4.3.83 DsGeScienceData Class
	4.3.84 DsGeSummaryProduct Class
	4.3.85 DsGeTypeID Class
	4.3.86 DsGuAdmin Class
	4.3.87 DsGuConfigurationMgmt Class
	4.3.88 DsGuDatatypeMgmt Class
	4.3.89 DsGuRequestMgmt Class
	4.3.90 DsGuResourceMgmt Class
	4.3.91 DsGuSubscriptionMgmt Class
	4.3.92 DsGuSystemMgmt Class
	4.3.93 DsGvRadar Class
	4.3.94 DsJeJERSB Class
	4.3.95 DsLiLIS Class
	4.3.96 DsMdCatalog Class
	4.3.97 DsMdMetadata Class
	4.3.98 DsMoMODISB Class
	4.3.99 DsMpMOPPITB Class
	4.3.100 DsMsMISRB Class
	4.3.101 DsNmNMC Class
	4.3.102 DsNpAncillary Class
	4.3.103 DsNpCalibration Class
	4.3.104 DsNpCorrelative Class
	4.3.105 DsNpNonECSDataProduct Class
	4.3.106 DsNpOA Class
	4.3.107 DsNpPlatform Class
	4.3.108 DsNpVersion0 Class
	4.3.109 DsNsHistoricalDataB Class
	4.3.110 DsNsMPRB Class
	4.3.111 DsNsNonECSDataProduct Class
	4.3.112 DsNsProdPlans Class
	4.3.113 DsNsProductionHistory Class
	4.3.114 DsNsQAStatistics Class
	4.3.115 DsNsScienceSoftwareArchivePackage Class
	4.3.116 DsPrRadar Class
	4.3.117 DsRaRadarsatB Class
	4.3.118 DsSaSageB Class
	4.3.119 DsSbAction Class
	4.3.120 DsSbActionBase Class
	4.3.121 DsSbCallBackTimer Class
	4.3.122 DsSbEvent Class
	4.3.123 DsSbEventHandler Class
	4.3.124 DsSbEventTimer Class
	4.3.125 DsSbFactory Class
	4.3.126 DsSbRegisteredEvent Class
	4.3.127 DsSbSubscription Class
	4.3.128 DsSbSubscriptionInterface Class
	4.3.129 DsSbTimer Class
	4.3.130 DsSrArchiveCostB Class
	4.3.131 DsSrCPUUtilizationB Class
	4.3.132 DsSrClient Class
	4.3.133 DsSrCommand Class
	4.3.134 DsSrCommandBase Class
	4.3.135 DsSrCommandInfo Class
	4.3.136 DsSrConnection Class
	4.3.137 DsSrCostB Class
	4.3.138 DsSrCostPolicyB Class
	4.3.139 DsSrCostTableB Class
	4.3.140 DsSrDiskUtilizationB Class
	4.3.141 DsSrFixedPersonnelCostB Class
	4.3.142 DsSrIOUtililizationB Class
	4.3.143 DsSrMediaUtilizationB Class
	4.3.144 DsSrQueuedConnection Class
	4.3.145 DsSrRequest Class
	4.3.146 DsSrRequestBase Class
	4.3.147 DsSrRequestInfo Class
	4.3.148 DsSrRequestVector Class
	4.3.149 DsSrResourceB Class
	4.3.150 DsSrServer Class
	4.3.151 DsSrSession Class
	4.3.152 DsSrSubmittedRequestVector Class
	4.3.153 DsSrWorkingCollection Class
	4.3.154 DsSsSSAB Class
	4.3.155 DsSsSSMI Class
	4.3.156 DsSwSeaWindsB Class
	4.3.157 DsTmTMI Class
	4.3.158 DsViVIRS Class
	4.3.159 EosHdf24BitImage Class
	4.3.160 EosHdf8BitImage Class
	4.3.161 EosHdfGrid Class
	4.3.162 EosHdfLUT Class
	4.3.163 EosHdfPoint Class
	4.3.164 EosHdfSwath Class
	4.3.165 GlBinaryP Class
	4.3.166 GlDateP Class
	4.3.167 GlDoubleP Class
	4.3.168 GlLongP Class
	4.3.169 GlParameter Class
	4.3.170 GlParameterList Class
	4.3.171 GlStringP Class
	4.3.172 GlTimeP Class
	4.3.173 MSSLog Class
	4.3.174 MsBaCostIF Class
	4.3.175 PlOnDemandPRNB Class
	4.3.176 RWTPtrOrderedVector Class
	4.4 CSCI Dynamic Model
	4.4.1. SDSRV_Acquiring_an_ESDT
	4.4.2. SDSRV_Asynchronous_Status_Updates
	4.4.3. SDSRV_Auto-cancel_A_Subscription
	4.4.4. SDSRV_Canceling_a_Subscription
	4.4.5. SDSRV_Catalog_Deleting_a_Metadata_Entry
	4.4.6. SDSRV_Catalog_Insert_Collection_Metadata
	4.4.7. SDSRV_Catalog_Insertion_of_Metadata
	4.4.8. SDSRV_Catalog_Search
	4.4.9. SDSRV_Catalog_Updating_Metadata
	4.4.10. SDSRV_Changing_A_Request_Priority
	4.4.11. SDSRV_Client_Browsing
	4.4.12. SDSRV_Client_Connecting_to_a_Data_Server
	4.4.13. SDSRV_Client_Request_Submission
	4.4.14. SDSRV_Client_Resuming_a_Session
	4.4.15. SDSRV_Client_Searching
	4.4.16. SDSRV_Deleting_A_Queued_Request
	4.4.17. SDSRV_Ending_Session_No_Active_Request
	4.4.18. SDSRV_Fulfilling_a_One-time_Subscription
	4.4.19. SDSRV_Fulfilling_Open_Ended_Subscription
	4.4.20. SDSRV_Inserting_Composite_ESDT
	4.4.21. SDSRV_Inserting_New_ESDT
	4.4.22. SDSRV_Inserting_Single_ESDT
	4.4.23. SDSRV_Instantiating_an_ESDT
	4.4.24. SDSRV_Op_View_Queued_Requests
	4.4.25. SDSRV_Registering_a_Subscribable_Event
	4.4.26. SDSRV_Returning_List_of_Subscriptions
	4.4.27. SDSRV_Server_Handling_A_Browse_Request
	4.4.28. SDSRV_Server_Handling_A_Search_Request
	4.4.29. SDSRV_Server_Request_Handling
	4.4.30. SDSRV_Server_Resuming_a_Session
	4.4.31. SDSRV_Startup_of_a_Science_Data_Server
	4.4.32. SDSRV_Submitting_a_Subscription
	4.4.33. SDSRV_Subsetting_an_ESDT
	4.4.34. SDSRV_Suspending_a_Session
	4.4.35. SDSRV_Unregistering_a_Subscribable_Event
	4.4.36. SDSRV_Update_Server_Configuration
	4.4.37. SDSRV_Updating_a_Subscription
	4.4.38. SDSRV_Validating_Metadata
	4.5 CSCI Structure
	4.5.1 CSC Definitions
	4.5.2 CSCI Dynamic Architecture
	4.6 SDSRV CSCI Management and Operation
	4.6.1 System Management Strategy
	4.6.2 Operator Interfaces
	4.6.3 Standard SDSRV Reports

	5. DDSRV - Document Data Server CSCI
	5. DDSRV - Document Data Server CSCI
	5.1 CSCI Overview
	5.2 CSCI Context
	5.3 CSCI Object Model
	5.3.1 DsCdASCII Class
	5.3.2 DsCdBinary Class
	5.3.3 DsCdCSDT Class
	5.3.4 DsCdHTML Class
	5.3.5 DsCdKeyword Class
	5.3.6 DsCdKeywordLocator Class
	5.3.7 DsCdPDF Class
	5.3.8 DsCdPostScript Class
	5.3.9 DsCdRTF Class
	5.3.10 DsCdTypeID Class
	5.3.11 DsCsCSDT Class
	5.3.12 DsCtAcquireCommand Class
	5.3.13 DsCtClient Class
	5.3.14 DsCtCommand Class
	5.3.15 DsCtInsertCommand Class
	5.3.16 DsCtRequest Class
	5.3.17 DsCtSearchcommand Class
	5.3.18 DsDoClient Class
	5.3.19 DsDoCommand Class
	5.3.20 DsDoRequest Class
	5.3.21 DsDoServer Class
	5.3.22 DsEsAlgorithmDescription Class
	5.3.23 DsEsAlgorithmDescriptionTypeID Class
	5.3.24 DsEsESDT Class
	5.3.25 DsEsGuide Class
	5.3.26 DsEsGuideTypeID Class
	5.3.27 DsEsProductionPlan Class
	5.3.28 DsEsProductionPlanTypeID Class
	5.3.29 DsEsReferencePaper Class
	5.3.30 DsEsReferencePaperTypeID Class
	5.3.31 DsEsTypeID Class
	5.3.32 DsGeCSDT Class
	5.3.33 DsGeESDT Class
	5.3.34 DsGeTypeID Class
	5.3.35 DsSdCSDT Class
	5.3.36 DsSdClient Class
	5.3.37 DsSdCommand Class
	5.3.38 DsSdESDT Class
	5.3.39 DsSdRequest Class
	5.3.40 DsSdServer Class
	5.3.41 DsSdSession Class
	5.3.42 DsSeIndexer Class
	5.3.43 DsSeWWWServer Class
	5.3.44 DsSvServer Class
	5.3.45 InterleafB Class
	5.3.46 WordB Class
	5.3.47 WordPerfectB Class
	5.4 CSCI Dynamic Model
	5.4.1 Inserting a Document
	5.4.2 Searching for a Document
	5.4.5 Document Metadata Insertion Subscription
	5.5 CSCI Structure
	5.5.1 DDSRV CSCs
	5.5.2 DDSRV CI Processes
	5.6 CSCI Management and Operation
	5.6.1 System Management Strategy
	5.6.2 Operator Interfaces
	5.6.3 Standard DDSRV Reports

	6. STMGT - Storage Management CSCI
	6.1 CSCI Overview
	6.2 CSCI Context
	6.3 CSCI Object Model
	6.3.1 DsCnConfiguration Class
	6.3.2 DsStArchive Class
	6.3.3 DsStBackupListB Class
	6.3.4 DsStCDROM Class
	6.3.5 DsStCacheConfig Class
	6.3.6 DsStFaxB Class
	6.3.7 DsStFileListB Class
	6.3.8 DsStMonitor Class
	6.3.9 DsStNetworkResource Class
	6.3.10 DsStPhysicalResource Class
	6.3.11 DsStPrinter Class
	6.3.12 DsStPullConfig Class
	6.3.13 DsStPullList Class
	6.3.14 DsStPullMonitor Class
	6.3.15 DsStRequestManager Class
	6.3.16 DsStReservation Class
	6.3.17 DsStResource Class
	6.3.18 DsStResourceConfig Class
	6.3.19 DsStResourceManager Class
	6.3.20 DsStResourceManager. Class
	6.3.21 DsStResourceQueue Class
	6.3.22 DsStResourceSchedule Class
	6.3.23 DsStRestoreListB Class
	6.3.24 DsStSchedulingConfig Class
	6.3.25 DsStStagingDataList Class
	6.3.26 DsStStagingDisk Class
	6.3.27 DsStStagingMonitor Class
	6.3.28 DsStStorageResource Class
	6.3.29 DsStStream Class
	6.3.30 DsStTape Class
	6.3.31 DsUzArchiveCostB Class
	6.3.32 DsUzCPUCostB Class
	6.3.33 DsUzCostB Class
	6.3.34 DsUzDiskCostB Class
	6.3.35 DsUzFixedCostB Class
	6.3.36 DsUzIOCostB Class
	6.3.37 DsUzMediaCostB Class
	6.3.38 DsUzResourceCostB Class
	6.3.39 DsUzUtilizationTableB Class

	6.4 CSCI Dynamic Model
	6.4.1 Aborting a Request for Service
	6.4.2 Activating a Resource Reservation
	6.4.3 Allocation of a Physical Resource, No Resour...
	6.4.4 Allocation of a Physical Resource, Resource ...
	6.4.5 Inserting Data into the Archive
	6.4.6 Retrieving Data from the Archive, Checksum E...
	6.4.7 Retrieving Data from the Archive, File not i...
	6.4.8 Canceling a Resource Reservation
	6.4.9 Creating Local Backup
	6.4.10 Creating Offsite Backup
	6.4.11 Deallocation of a Physical Resource, Queued...
	6.4.12 Deallocation of a Physical Resource, Immine...
	6.4.13 Deletion of Pull Disk Data with Operations ...
	6.4.14 Deletion of Staging Disk Data
	6.4.15 Failure Restoring Locally Backed Up File
	6.4.16 Rejecting Service Request Due to Insufficie...
	6.4.17 Restoring a Locally Backed Up File
	6.4.18 Setting the Operational State of a Tape Dev...
	6.4.19 Submitting a Resource Reservation
	6.4.20 Backing Up Archive Data Initiation
	6.4.21 Deleting Files from the Archive
	6.4.22 Estimating Cost of Storage Allocation
	6.4.23 Estimating Time Delay to Retrieve Files fro...
	6.4.24 Monitoring CheckSum Errors
	6.4.25 Show Staging Disk Cache Configuration Param...

	6.5 CSCI Structure
	6.5.1 CSC Definitions
	6.5.2 CSCI Dynamic Architecture

	6.6 CSCI Management and Operation
	6.6.1 System Management Strategy
	6.6.2 Operator Interfaces
	6.6.3 Standard STMGT Reports

	7. DDIST - Data Distribution CSCI
	7.1 CSCI Overview
	7.2 CSCI Context
	7.3 CSCI Object Model
	7.3.1 DsDdCDLabelB Class
	7.3.2 DsDdCDMedia Class
	7.3.3 DsDdCDProcessor Class
	7.3.4 DsDdDataItem Class
	7.3.5 DsDdDistFile Class
	7.3.6 DsDdDistList Class
	7.3.7 DsDdDistRequest Class
	7.3.8 DsDdDistRequestC Class
	7.3.9 DsDdDistRequestS Class
	7.3.10 DsDdDistSubRequestB Class
	7.3.11 DsDdElectronicMedia Class
	7.3.12 DsDdFaxMediaB Class
	7.3.13 DsDdGranuleB Class
	7.3.14 DsDdLabeledMedia Class
	7.3.15 DsDdMedia Class
	7.3.16 DsDdMediaLabelB Class
	7.3.17 DsDdOpsInterventionListB Class
	7.3.18 DsDdOpsRequestC Class
	7.3.19 DsDdPackingSlip Class
	7.3.20 DsDdPrivRequest Class
	7.3.21 DsDdPullMedia Class
	7.3.22 DsDdPullProcessor Class
	7.3.23 DsDdPushMedia Class
	7.3.24 DsDdPushProcessor Class
	7.3.25 DsDdRequestLIst Class
	7.3.26 DsDdRequestList Class
	7.3.27 DsDdRequestManager Class
	7.3.28 DsDdRequestManagerC Class
	7.3.29 DsDdRequestManagerS Class
	7.3.30 DsDdRequestProcessor Class
	7.3.31 DsDdShippingLabelB Class
	7.3.32 DsDdTapeLabelB Class
	7.3.33 DsDdTapeMedia Class
	7.3.34 DsDdTapeProcessor Class
	7.3.35 DsSrCost Class
	7.3.36 DsStResourceConfig Class
	7.3.37 DsStSchedulingConfig Class
	7.3.38 DsStStagingDisk Class
	7.3.39 DsUzArchiveCostB Class
	7.3.40 DsUzCPUCost Class
	7.3.41 DsUzCostB Class
	7.3.42 DsUzDi Class
	7.3.43 DsUzFixedCost Class
	7.3.44 DsUzIOCost Class
	7.3.45 DsUzMediaCost Class
	7.3.46 DsUzResourceCost Class
	7.3.47 DsUzUtilizationTable Class
	7.3.48 EcNotification Class
	7.3.49 MsUtLogger Class

	7.4 CSCI Dynamic Model
	7.4.1 Distributed Creation of a New Distribution R...
	7.4.2 Electronic Pull of Data
	7.4.3 Electronic Push of Data
	7.4.4 Physical Distribution to Tape
	7.4.5 User Abort of a Request Waiting for a Device...
	7.4.6 Tape Fault
	7.4.7 Estimation
	7.4.8 3480 Distribution and Media Labeling
	7.4.9 Detection of a Large Volume Data Distributio...
	7.4.10 Operator Intervention into a Large Volume D...

	7.5 CSCI Structure
	7.5.1 Distribution Products CSC
	7.5.2 Distribution Client Interface CSC
	7.5.3 Distribution Request Management CSC
	7.5.4 Utilization CSC

	7.6 CSCI Management and Operation
	7.6.1 System Management Strategy
	7.6.2 Operator Interfaces
	7.6.3 Standard DDIST Reports

	8. ACMHW - Access Control and Management HWCI
	8.1 HW Design Drivers
	8.1.1 Key Trade-off Studies and Prototypes
	8.1.2 Sizing and Performance Analysis
	8.1.3 Scalability, Evolvability, and Migration in ...

	8.2 HWCI Structure
	8.2.1 HWCI Connectivity
	8.2.2 HWCI Components
	8.2.3 Failover and Recovery Strategy

	9. WKSHW - Working Storage HWCI
	9.1 HW Design Drivers
	9.1.1 Key Trade-off Studies and Prototypes
	9.1.2 Sizing and Performance Analysis
	9.1.3 Scalability, Evolvability, and Migration in ...

	9.2 HWCI Structure
	9.2.1 HWCI Connectivity
	9.2.2 HWCI Component Description
	9.2.3 Failover and Recovery Strategy

	10. DRPHW - Data Repository HWCI
	10.1 HWCI Design Rationale
	10.1.1 Key Trades and Analysis
	10.1.2 Scalability, Evolvability, and Migration in...

	10.2 HWCI Structure
	10.2.1 HWCI Connectivity
	10.2.2 HWCI Component Description
	10.2.3 Failover and Recovery Strategy

	11. DIPHW - Distribution and Ingest Peripheral Man...
	11.1 HWCI Design Rationale
	11.1.1 Key Trades and Analysis
	11.1.2 Scalability Strategies

	11.2 HWCI Structure
	11.2.1 HWCI Connectivity
	11.2.2 HWCI Component Description
	11.2.3 Failover and Recovery Strategy

	12. DDSRVHW - Document Data Server HWCI
	12.1 HW Design Drivers
	12.1.1 Key Trade-off Studies and Prototypes
	12.1.2 Scalability, Evolvability and Migration to ...

	12.2 HWCI Structure
	12.2.1 HWCI Connectivity
	12.2.2 HWCI Components
	12.2.3 Failover and Recovery Strategy

	Appendix A. Requirements Trace
	Abbreviations and Acronyms
	Glossary

